Reduced dimension discrete variable representation study of cis–trans isomerization in the S1 state of C2H2

J. H. Baraban,1 A. R. Beck,2 A. H. Steeves,3 J. F. Stanton,4 and R. W. Field1,a)

1Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
2Department of Chemistry, University of California, Berkeley, California 94720, USA
3Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California 94143, USA
4Institute for Theoretical Chemistry, Departments of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712, USA

(Received 18 February 2011; accepted 7 March 2011; published online 29 June 2011)

Isomerization between the cis and trans conformers of the S1 state of acetylene is studied using a reduced dimension discrete variable representation (DVR) calculation. Existing DVR techniques are combined with a high accuracy potential energy surface and a kinetic energy operator derived from FG theory to yield an effective but simple Hamiltonian for treating large amplitude motions. The spectroscopic signatures of the S1 isomerization are discussed, with emphasis on the vibrational aspects. The presence of a low barrier to isomerization causes distortion of the trans vibrational level structure and the appearance of nominally electronically forbidden transitions to vibrational levels of the cis conformer. Both of these effects are modeled in agreement with experimental results, and the underlying mechanisms of tunneling and state mixing are elucidated by use of the calculated vibrational wavefunctions. © 2011 American Institute of Physics. [doi:10.1063/1.3570823]

I. INTRODUCTION

The history of the A state of acetylene is full of spectroscopic surprises. Beginning with the discovery that acetylene changes shape from linear to trans-bent upon electronic excitation,1–3 the A ← X spectrum has exhibited a string of unexpected phenomena, including axis switching,4 triplet perturbations,5–7 as well as unusually strong Coriolis interactions and Darling–Dennison resonance between the bending vibrations.8,9 Most recently, the comprehensive assignment of the low energy vibrational structure has led to the identification of several “extra” levels. These appear in the spectrum near 3000 cm−1 above the ground vibrational state of the trans conformer, just as the effective Hamiltonian (H_eff) models developed at lower energy begin to break down.10

The most probable explanation for these “extra” levels is that they belong to the cis conformer of the S1 state.11 Ab initio calculations have long predicted a cis minimum,12–14 but experimental confirmation has been hard to come by. This is because the S1–S0 electronic transition is forbidden in C2v geometries, and any spectroscopic observation of the cis conformer is therefore expected to manifest itself in the form of weak transitions or indirect effects, necessarily resulting from vibronic mechanisms.

The purpose of this paper is to investigate theoretically the spectroscopic consequences of the low barrier isomerization process on the A state potential surface. In general, how will the presence of a second distinct accessible minimum distort the vibrational energy level patterns? One detail of particular interest is whether S1 cis states could appear at the observed energies with the intensities observed for the “extra” levels. The calculations in the literature characterize the relevant stationary points on the potential energy surface (PES), but cannot address these questions because of the delocalized nature of the wavefunctions involved in large amplitude motion and the importance of effects such as tunneling. Large amplitude dynamics on a reduced dimension S1 surface have been studied previously by spectral quantization,15,16 but those calculations focused mainly on the well-known Franck–Condon active progressions in the CC stretching mode, v1, and the trans-bending mode, v3, while revealing little about the weak or forbidden bands that encode the isomerization dynamics.

The method we choose for our treatment uses a reduced dimension discrete variable representation (DVR).17 Since we are investigating an isomerization process, the calculation must be able to treat large amplitude motions that span the two geometries. DVR methods are well-suited to this type of problem because the basis functions are not tied to a single center as they usually are in a variational calculation.18 Since the half-linear transition state13 and the Franck–Condon active vibrations are all planar, we can perform a reduced dimension calculation and still expect to capture the essential features of the experimental spectrum. As described in detail below, the calculation is performed in the three dimensions that encompass the CC stretch as well as the trans and cis bending vibrations.

An important ingredient in our calculation is a high accuracy potential energy surface for an excited electronic state. This work represents the first application of equation-of-motion-coupled-cluster singles, doubles, and triples (EOM-CCSDT) (Ref. 19) methods to the PES of a polyatomic...
molecule, and we believe there is great promise in applying such methods to the study of electronically excited states. In fact, we find that this level of theory is necessary to obtain quantitatively acceptable agreement with experiment for this system.

We obtain from our DVR calculation the vibrational eigenstates of the full S1 potential surface in the three dimensional coordinate space. Since the basis functions are not defined relative to one specific geometry, the eigenfunctions are not predetermined to belong to either the cis or trans conformer, although they naturally divide themselves in this way at low energy. We therefore expect that the calculated results will contain all of the effects we desire to model: the possible existence of cis levels interspersed among those of the trans conformer, and any mixings between them that arise from tunneling through the isomerization barrier. Other signatures of the isomerization, such as the distortion of the trans level structure, should also be satisfactorily reproduced.

Finally, we note that this method could be generally applicable to other isomerizations, even in larger molecules. It allows for a selective treatment of only the few coordinates relevant to the minimum energy isomerization path, but is still based on a simple and easily understandable Hamiltonian. Its foundation on established DVR methods provides computational efficiency and accuracy.

II. METHODS

In this section, we describe the elements of our method for reduced dimension vibrational DVR calculations. Ours is not the first such calculation, even on acetylene,20,21 but our approach differs from those of previous authors. We specify significant departures from earlier reduced dimension DVR calculations on acetylene where appropriate.

An important consideration in a reduced dimension calculation is that the qualitative and quantitative accuracy of the results are frequently balanced against the effort required to perform the calculation. In this work we have gone to some lengths in order to obtain quantitatively accurate results, but very useful qualitative results can be obtained much more easily. Even for spectroscopists, the pattern and assignments of the levels can be valuable even if quantitative agreement with experiment is poor. We demonstrate this point later on in connection with the quality of the potential energy surface and the number of dimensions included in the calculation, which are the two factors that have the greatest impact on the computational cost of the calculation.

It is appropriate to begin our discussion of the details by mentioning that we desire a matrix representation of $H = T + V$, where T and V are expressed in the same basis. We will examine the two parts of the Hamiltonian separately, but first we must digress briefly on the subject of coordinate systems.

A. Molecule-fixed coordinate systems

The choice of coordinate system for a calculation in the molecular frame is a complicated one. The problem of separating vibration and rotation is exacerbated when large amplitude motions are possible,22 and even remaining in the center of mass frame may not be trivial20,21 for molecules larger than triatomics. For acetylene, several different coordinate systems have been used in the literature for various types of calculations.23,24 We find the internal coordinates of FG theory25 to be extremely convenient and recommend them generally. The vibrational phase space is spanned efficiently by these coordinates, especially at low energy, and the G matrix elements26,27 derived from them provide a simple way to represent the kinetic energy operator.

In reduced dimension calculations using internal coordinates, one departure that may be necessary from the canonical set of such coordinates for a given molecule concerns their domains. Since the usual set of $3N − 6$ coordinates is chosen to uniquely specify all possible geometries (leaving aside linearity for the moment), it may be necessary to change the domain of one or more of the angles. For example, since we do not include the usual torsional coordinate, τ, in our planar acetylene calculation, it is necessary to increase the domain maximum of at least one of the φCCH valence angle bends from π to 2π in order to allow both cis and trans geometries. (In this paper τ is defined as zero, except in Table I where $\tau = \pi$.) Additionally, here both φCCH bends extend from 0 to π, a space that encompasses two cis and two trans minima. The calculated wavefunctions are therefore rovibrational and can be classified in the G_4 CNPI-MS group, as explained in Sec. III A.

B. The potential energy surface

The hallmark of all DVR calculations is the simplicity of the potential energy matrix elements. More generally, any function of coordinates is a diagonal matrix, $(\langle \theta_i | \hat{f}(x) | \theta_j \rangle) \approx \delta_{ij} f(x_i)h_{ij}$, where the $\{x_i\}$ are the pseudospectral grid points of the DVR basis.31 Once a reduced set of coordinates has been chosen, only two things remain to be done to express V in the DVR basis: finding the appropriate level of $ab\ initial$ theory at which to calculate the potential energy surface, and
deciding how to treat the discarded degrees of freedom when the active coordinates are varied.

Previous theoretical investigations of the S_1 surface encountered difficulties with the harmonic frequencies of the trans structure, especially the lowest frequency modes, v_4 and v_6.13,14 We report here EOM-CCSDT harmonic frequencies and compare them to EOM-CCSD values and experimental data in Table I. Since we exclude v_4, the CCSD frequencies seem satisfactory, but still the improved agreement at CCSDT is obvious. Indeed, we were able to obtain qualitatively useful results with a CCSD potential surface, but quantitative agreement requires CCSDT. In light of this, a reasonable full results with a CCSD potential surface, but quantitative agreement requires CCSDT. In light of this, a reasonable full dimensional calculation of the vibrational fundamentals using a CCSD surface32 corroborates this conclusion, as our reduced dimensional CCSD vibrational fundamentals for v_3 and v_6 are very similar to their results.

The simplest approach for dealing with the discarded degrees of freedom is to fix them at their equilibrium values. While it is impossible to make absolute generalizations due to the heterogeneous decomposition of the normal modes into the internal coordinates, our experience is that this approximation leads to computed vibrational fundamentals within at worst 10% of the experimental values, but usually significantly better. We would have been satisfied with this approximation except for the Fermi resonance that manifested itself between 2^n6^n and $2^{n-1}6^{n+2}$ in early calculated results, which precluded comparisons with effective Hamiltonian fits to experimental data. We therefore replace R_{CC} with the normal coordinate for v_2 from the harmonic frequency calculation, which provides a prescription for varying the CH distances as the CC bond length changes.33 We did also consider vibrational adiabatic potentials, which are commonly used in recent literature.20,21 However, given the limited return and the enormous computational cost of minimizing the energy at every point on the entire three dimensional grid, we elected not to pursue this option. A fitted surface might be more suitable for addressing this particular issue.

C. The kinetic energy operator

The kinetic energy operator presents several difficulties. The form of the Laplacian in the chosen coordinate system must be determined, which can be very tricky,20,21,24 especially since singularities in the kinetic energy are possible. Furthermore, expressing the Laplacian in a DVR basis can lead to a non-Hermitian H. The kinetic energy operator matrix elements are more complicated than those of V, but we merely need to add matrix representations of differential operators to the trivial matrix representations of functions of coordinates already in our repertoire. Depending on the underlying basis, DVR matrix elements of differential operators can be calculated straightforwardly either via basis transformations to and from a finite basis representation,34 e.g. a harmonic oscillator, or by explicit formulas.35 most commonly based on Fourier functions.36–38 The selection of an appropriate DVR basis consists primarily of choosing one whose underlying basis functions have the same boundary conditions as the eigenfunctions to be obtained.37

We use the G matrix elements to obtain the kinetic energy operator, taking care to follow Podolsky,29 and also using an explicitly Hermitian form40 of each term, such that

$$T = -\frac{\hbar^2}{2} g^{1/4} \sum_{i,j} \left(\frac{\partial}{\partial S_{ij}} \right)^4 g^{-1/2} G_{ij} \frac{\partial}{\partial S_{ij}} g^{1/4},$$

(1)

where $g = \det |G|$ and the S_i are the internal coordinates. Even though the sum extends only over the active coordinates, the determinant g includes G_{ij} for all pairs of coordinates. It is important to note that although the traditional FG matrix solution invokes the approximation of infinitesimal displacements, the coordinates themselves and their G matrix elements are valid for motions of any amplitude.25 We simply represent the functions of coordinates in the G_{ij} as diagonal matrices instead of evaluating them at a specific geometry. In our planar acetylene calculation, we take care to use the kinetic energy matrix elements for the bending of a linear molecule,27 since the torsional angle is not well behaved when planar cis-trans isomerization can occur.

Finally, for consistency with our use of the v_2 normal coordinate when calculating the PES, we also redefine R_{CC} as the CC stretch component of the v_2 normal coordinate, according to $Q_s = \sum (L^{-1})_{is} S_i$, where Q, S, and L are the mass-weighted normal coordinate, an internal coordinate, and the transformation that diagonalizes GF, respectively.25,41 The R_{CH} contributions are still neglected.

D. Specifics and practical considerations

The specifics of our treatment of S_1 acetylene are as follows. We take a subset of the internal coordinates, consisting of the two $\angle CCH$ valence angle bonds ($0 \leq \phi_1, \phi_2 \leq 2\pi$) and the $C-C$ bond stretch, which correspond loosely to $\{v_2, v_3, v_6\}$. Our DVR basis is then the direct product basis $\phi_1 \otimes \phi_2 \otimes R_{CC}$, and we use the sinc DVR basis37 for the angles, but a harmonic oscillator basis for the bond stretch. The final results were generated using 120 grid points for each of the two bend bases, and 43 points for the stretch basis. The pseudospectral grid points and differential operator matrix elements are available from analytical formulas for the sinc basis, and, for the harmonic oscillator basis, from the diagonalization of the coordinate matrix and the application of the resulting transformation matrix to other operators expressed in the harmonic oscillator basis. We then construct T according to Eq. (1). We calculate the potential energy for ten geometries along each coordinate at regular intervals spanning $(60^\circ \leq \phi_1 \leq 300^\circ, 60^\circ \leq \phi_2 \leq 180^\circ, 1$ Å $\leq R_{CC} \leq 2$ Å); the rest of the PES is related to this portion by symmetry. Ab initio calculations were performed with the CFOUR program system,42,43 using the EOM-CCSDT method and the NASA Ames AO1 basis set. The elements of V are found by interpolating the potential energy surface at the DVR grid points using a cubic spline method, after discarding grid points that lie outside the original domain of the ab initio surface. This reduced the size of the basis mentioned above to $80 \times 80 \times 34$.

Downloaded 14 Jul 2011 to 18.74.5.17. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions
In practice, the construction and diagonalization of H are accomplished by a basis set contraction [see Eq. (35) of Ref. 18]. The DVR H for the 2D $\phi_1 \otimes \phi_2$ space at every value of R_{CC} is diagonalized, and the eigenvectors above a chosen cutoff energy are discarded. (For the results presented here this cutoff energy was $10,000 \text{ cm}^{-1}$, with a minimum of 35 vectors retained per 2D block.) The resulting rectangular transformation matrices are used to compress the remaining blocks of the 3D H, which are off-diagonal in R_{CC}, prior to the final diagonalization. Applying the rectangular transformation matrices in reverse transforms the final eigenvectors back to the grid point representation.

III. RESULTS

Using the method described here, vibrational eigenstates of S_1 acetylene could be obtained up to energies exceeding 15,000 cm^{-1}. For the most part, we will limit the discussion to states up to about 5000 cm^{-1}. In general, we will forego itemized examination of the calculated states and instead focus on more broad agreement with experiment and predicted trends, in keeping with the goals stated in the beginning of Sec. II. Nevertheless, it is worth mentioning that the calculated vibrational fundamentals are within 2% of the experimental values (Table II), despite the neglect of the other dimensions. (The results of an ab initio harmonic frequency calculation for the cis geometry are given for reference in Table III.)

TABLE II. DVR vibrational fundamentals for \tilde{A}^1A_a and \tilde{A}^1A_2 12C$_2$H$_2$.^a

<table>
<thead>
<tr>
<th>\tilde{A}^1A_a</th>
<th>\tilde{A}^1A_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calc.</td>
<td>Expt.b</td>
</tr>
<tr>
<td>v_2</td>
<td>1414.65</td>
</tr>
<tr>
<td>v_3</td>
<td>1033.6</td>
</tr>
<tr>
<td>v_6</td>
<td>780.35</td>
</tr>
</tbody>
</table>

aFrequencies in cm^{-1}.
bReferences 8 and 44.
cEstimated from the energy difference between two observed combination bands.

TABLE III. Ab initio geometry and harmonic frequencies for \tilde{A}^1A_2 12C$_2$H$_2$.^a

<table>
<thead>
<tr>
<th>ω</th>
<th>2997.14</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω_2</td>
<td>1583.22</td>
</tr>
<tr>
<td>ω_3</td>
<td>806.09</td>
</tr>
<tr>
<td>ω_4</td>
<td>817.5</td>
</tr>
<tr>
<td>ω_5</td>
<td>2941.81</td>
</tr>
<tr>
<td>ω_6</td>
<td>571.62</td>
</tr>
</tbody>
</table>

$\angle CCH$ | 132.62 |

R_{CC} | 1.3423 |

R_{CH} | 1.0983 |

T_0 | 45155 |

aFrequencies in cm^{-1}, angle in degrees, and bond lengths in Å.

A. Symmetry of the reduced dimension eigenstates

Before entering into a more detailed discussion of the calculated states, it is necessary to work out the connections between the symmetries that exist in the coordinate space of the calculation and the true symmetries of the molecule, so as to be able to interpret the wavefunctions. It can be seen in Fig. 1 that two trans and two cis minima exist in the calculation. Each well possesses a twofold symmetry, such that the PES has four equivalent (triangular) quadrants. More generally, the symmetry group of the reduced dimension Hamiltonian is of order four. Reflection across the antidiagonal corresponds generally to the $(12)(ab)$ CNPI symmetry operation, but can also be thought of as the C_2 operation in the C_{2v} point group. Reflection across the diagonal operation in the C_{2h} point group. This leads to the conclusion that inversion through the center of the coordinate space as depicted in Fig. 1 correlates with the E^* operation. Therefore, the eigenstates produced by the calculation will belong to one of the four rovibrational irreducible representations laid out in Table IV, as will be illustrated in Fig. 2. Accordingly, we expect each calculated vibrational level to appear as a near degenerate pair of eigenstates with different rotational

FIG. 1. A slice of the S_1 PES with R_{CC} and R_{CH} at their trans equilibrium values. The cis minima are located in the lower left and upper right, and the trans minima are in the upper left and lower right. The energy scale is in cm^{-1} and the contour spacing is 10^4 cm^{-1}.

TABLE IV. Rovibrational symmetries of DVR wavefunctions.a

<table>
<thead>
<tr>
<th>CNPI-MS b</th>
<th>C_{2h}</th>
<th>C_{2v}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Sa + /As+$</td>
<td>a_s, K, even</td>
<td>a_1 ee</td>
</tr>
<tr>
<td>$Ss + /Aa+$</td>
<td>a_s, K, odd</td>
<td>b_2 oo</td>
</tr>
<tr>
<td>$Su + /As+$</td>
<td>b_u, K, even</td>
<td>a_1 ee</td>
</tr>
<tr>
<td>$Ss + /Aa+$</td>
<td>b_u, K, odd</td>
<td>a_1 oo</td>
</tr>
</tbody>
</table>

aRotation not equivalent for the trans geometry, and therefore its oe/ee and oo/co have the same CNPI symmetry. Conversely, the cis rotational structure supports all CNPI symmetries, but only oo and ee appear here. The first member of a pair of CNPI-MS labels will be used as a shorthand notation.

bReference 45.
States involving quanta in v_1 and v_3 are also missing, but less conspicuously.

The simplest illustration of the agreement between calculation and experiment is the juxtaposition of one photon spectra in Fig. 3. (The method for computing spectra is described in the Appendix.) The correspondence between individual features is clear at low vibrational energy, not only for the strong Franck–Condon active progressions that can be seen easily in the figure, but also for the weaker bending polyads\cite{9,10} that have been identified. The comparison does become slightly more complicated at higher energy where the experimental characterization of the level structure is less complete. The onset of predissociation\cite{46} above 46 074 cm$^{-1}$ causes many states to essentially disappear from the LIF spectrum, but the simulated spectrum makes no allowance for this effect. Furthermore, the density of states not present in the reduced dimension calculation increases rapidly above the fundamentals of the neglected CH stretching modes (45 077.65 and 45 054.97 cm$^{-1}$ for v_1 and v_3, respectively). Fortunately, these discrepancies do not cause significant difficulties in analyzing the calculated levels and extracting information relevant to the states observed experimentally.

We now proceed with a more detailed comparison of the calculated level structure to that observed experimentally. In the recent experimental literature, the vibrational states are categorized in three groups: states containing excitation only in the totally symmetric modes,\cite{28,47} the pure bending polyads,\cite{9} and the stretch-bend combination polyads.\cite{10} We organize our discussion accordingly.

1. **Totally symmetric modes**

The states 2^n3^m are relatively straightforward, and the calculated levels match well with experiment. Values obtained from fitting the groups 2^n and 3^m agree with Table 5 of Ref. 28, with ω_2 and ω_3 approximately 20 cm$^{-1}$ too high and too low, respectively. The parameters x_{22} and x_{33} are close to correct but too small in magnitude, such that the residual for v_3
changes sign at \(3\nu_3\). Even for \(\nu_2\), the residuals remain in the tens of \(\text{cm}^{-1}\) over the energy region of interest. The deviations from experiment are presumably due primarily to the neglect of the symmetric CH stretch.

2. Pure bending states

We next consider the pure bending polyads, where the lowest members are nominally the \(6^e\) states that exist in the DVR calculation. Here the comparison is complicated by the omission of the torsion from the calculation, since \(\nu_6\) and \(\nu_4\) interact very strongly via Coriolis effects and Darling–Dennison resonance. Nevertheless, we find that \(\omega_6\) from the DVR is only 8 \(\text{cm}^{-1}\) higher than the experimental value, and the anharmonicity is once again too small in magnitude. This is undoubtedly due to the surprisingly large contribution of the vibrational angular momentum to the experimental value of \(\chi_{66}\), an effect absent from the calculation. Overall the bending behavior here is nearly harmonic, as is the case with the deperturbed level structure. As in the previous section (Sec. III B 1), the too high harmonic frequency is presumably due at least in part to the neglect of the CH stretches, since \(\nu_5\) is also of \(b_u\) symmetry.

3. Stretch-bend combination polyads

The stretch-bend combination polyads demand a more detailed comparison, because a global model that accounts for their vibrational structure has not yet been developed, despite the existence of extensive assignments and rotational analyses.\(^{10}\) Such a comparison is presented graphically in Fig. 4 by plotting the effective frequencies of the bending modes as a function of quanta in \(\nu_3\). It can be seen that the calculation reproduces well even the more unusual features of the observed level structure, and the minor differences are due to the disagreement in the diagonal anharmonicities, explained in the previous two sections (Secs. III B 1 and III B 2).

One oddity of particular interest is the dramatic decrease in \(\omega^\text{eff}_3\) for the \(3^i6^e\) series, illustrated in Fig. 13 of Ref. 10 up to \(3^i6^2\). Our recent high sensitivity spectra have revealed a band that is a promising candidate for \(3^i6^2\), although the assignment has yet to be confirmed by rotational analysis and therefore details regarding it will be communicated later. We nevertheless incorporate it in the figure for comparison with the DVR prediction. We further include the well-known level at 47206 \(\text{cm}^{-1}\) as \(3^i6^2\), based on the preliminary assignment of \(3^i6^2\) as well as previous discussions,\(^{28,48}\) in addition to the strong intensity and proximity of \(3^i6^2\) to \(3^i5\) in the calculated spectra. For both of these tentative assignments we find good agreement with the DVR results.

The importance of this sharp decrease in the effective frequencies is that it signals the onset of the \(cis\text{–}trans\) isomerization process as the potential softens approaching the transition state. We now turn our attention to the \(cis\) minimum of the \(S_1\) state and its vibrational levels.

C. \(1^A_2\) cis states

The adiabatic energy separation between the \(cis\) and \(trans\) isomers of acetylene is found to be 2659 \(\text{cm}^{-1}\) based on high-level \(ab\ initio\) calculations. Specifically, the effects of valence electron correlation have been included up to the coupled-cluster singles, doubles, triples and quadruples (CCSDTQ) level of theory, using the EOM variant of coupled-cluster theory to treat these excited state isomers. In addition, effects of basis set insufficiency are estimated using extrapolation techniques,\(^{49,50}\) and contributions due to zero point energies, core correlation, and scalar relativistic effects are included as well. The final result of these calculations predicts the zero-point level of the \(cis\) isomer to lie at 44856 \(\text{cm}^{-1}\), a calculation that we believe to be in error by no more than 50 \(\text{cm}^{-1}\). In passing, we note that the present results are in line with a similar estimate published some time ago by Kállay and Gauss,\(^{52}\) of 44852 \(\text{cm}^{-1}\).

At the EOM-CCSDT/ANO1 level of theory used in the DVR, the \(cis\) ground state lies above that of the \(trans\) conformer by \(\sim2820\ \text{cm}^{-1}\), and its vibrational state...
TABLE V. Calculated cis levels up to 5000 cm\(^{-1}\).

<table>
<thead>
<tr>
<th>State(^a)</th>
<th>(E - T_{00}^{ cis})</th>
<th>(E - T_{00}^{ tran})</th>
<th>% trans</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0^0)</td>
<td>2840.84</td>
<td>0</td>
<td><0.01</td>
</tr>
<tr>
<td>(6^1)</td>
<td>3429.19</td>
<td>588.35</td>
<td>0.03</td>
</tr>
<tr>
<td>(3^1)</td>
<td>3630.4</td>
<td>789.56</td>
<td>0.05</td>
</tr>
<tr>
<td>(6^2)</td>
<td>4015.4</td>
<td>1174.56</td>
<td>1.61</td>
</tr>
<tr>
<td>(3^1 b^1)</td>
<td>4161.3</td>
<td>1320.46</td>
<td>5.13</td>
</tr>
<tr>
<td>(3^2)</td>
<td>4330.45</td>
<td>1489.61</td>
<td>0.17</td>
</tr>
<tr>
<td>(3^3)</td>
<td>4417.97</td>
<td>1577.13</td>
<td>16.8</td>
</tr>
<tr>
<td>(6^3)</td>
<td>4576.07</td>
<td>1735.23</td>
<td>25.9</td>
</tr>
<tr>
<td>(3^1 b^2)</td>
<td>4664.0</td>
<td>1823.16</td>
<td>45.5</td>
</tr>
<tr>
<td>(3^2 b^1)</td>
<td>4883.01</td>
<td>2042.17</td>
<td>34.7</td>
</tr>
<tr>
<td>(2^1 b^1)</td>
<td>4919.7</td>
<td>2078.86</td>
<td>2.01</td>
</tr>
</tbody>
</table>

\(^a\) Values given are averaged between \(oo\) and \(ee\).

\(^b\) This level will be discussed in detail in Sec. III D.

manifold is consequently less dense at any given energy. We find that all but the lowest-lying states contain at least a few percent \(tran\) character, using the crude metric
\[
2 \int_0^\pi \int_0^{2\pi} \int_0^\infty |\psi|^2 \, dR \, d\phi_1 \, d\phi_2,
\]
but even these states are predicted to have non-negligible intensity in one of the four spectra discussed in Ref. 9. These results are partially summarized in Table V. At higher energy it is frequently the case that one or both rovibrational symmetries interact so strongly with several \(tran\) states that it is difficult to attach that zero-order assignment to any particular eigenstate. Accordingly, it should be kept in mind that the mixing fractions are probably sensitively dependent on local resonances. Spectral intensity is, as expected, generally correlated with \(tran\) character. Using the crude metric
\[
\frac{\langle \phi_n | \psi_i \rangle \langle \psi_i | \phi_m \rangle}{\sqrt{\langle \phi_n | \phi_n \rangle \langle \psi_i | \psi_i \rangle \langle \phi_m | \phi_m \rangle}}
\]
and the mixing fractions follow from dividing by the zero-order energy differences. (The “true” interaction matrix elements also include an electronic prefactor, so that we obtain only relative coupling strengths.) Zero-order spectra can also be computed between the \(\tilde{X} \) state and the noninteracting sets of \(S_1 \) states, which allows for the tracking of intensity borrowing when the interaction is turned on. It should also be noted that this method can aid in assigning highly mixed eigenstates, particularly by inspection of the quantities \(\langle \psi_i | \phi_m^{ cis} \rangle \) and \(\langle \psi_i | \phi_n^{ tran} \rangle \).

The results of the above procedure as they apply to \(cis\) \(3^1 b^2\), a state that lies in the region below \(tran\) \(3^4\), are discussed in the remainder of this section.\(^{53}\) The vibrational \(b_2\) symmetry of this state means that its \(K = 1\) level interacts with \(K = 1\) \(a_e\) levels, and that its \(K = 0\), \(2\) \(b_n\) levels. The two rotational symmetries therefore require parallel but separate analyses, and so we will treat only \(oo\), since it appears in the simpler one photon spectrum.\(^{11}\)

The zero-order state of interest is trivially recognized by its nodal pattern [Fig. 5(a)]. The eigenstate with this nominal assignment can then be identified [Fig. 5(b)], even though

FIG. 5. Plots depicting the analysis of cis–trans mixing and intensity borrowing involving cis \(3^1 b^1\) oo. (a) Zero-order wavefunction of cis \(3^1 b^1\) oo. (b) Eigenstate with nominal assignment of cis \(3^1 b^1\) oo, showing significant trans character. (c) Stick spectrum of the zero-order states. The peak of cis \(3^1 b^1\) oo (white) has been multiplied by 10\(^3\). (d) Stick spectrum of the eigenstates, in which intensity has been transferred to cis \(3^1 b^1\) oo from the nearby trans states. (The intensity of trans \(3^2\) is off scale in both (c) and (d), and the energy offset between the two spectra is slightly arbitrary.) (e) Magnitudes of vibrational overlaps between the states shown in (c) and cis \(3^1 b^1\) oo. Many other states (not shown) have as large or larger vibrational overlaps with cis \(3^1 b^1\) oo. (f) Magnitudes of the mixing angles between the states shown in (c) and cis \(3^1 b^1\) oo. These are the largest mixing angles by at least an order of magnitude, belonging to trans \(2^1 3^2 6^2\) and trans \(3^4\), whose zero-order wavefunctions are shown in (g) and (h), respectively.
zero-order state is mixed into several eigenstates. The spectra for the zero-order states and the eigenstates are plotted in Figs. 5(c) and 5(d) for 100 cm\(^{-1}\) above and below cis \(3^1\)\(^6\). These spectra differ in two diagnostically important ways. First, the intensity has been redistributed such that the cis state has increased its intensity from essentially nothing to greater than that of trans \(2^1\)\(^3\)\(^6\). This tells us not only that there is cis–trans interaction, but also that the intensity of the cis state derives entirely from this mixing and not from purely vibronic effects, such as the variation of the electronic transition moment with the nuclear coordinates (Fig. 7). Second, the energy level pattern has changed because the interacting states repel one another. Interestingly, although ordinarily no strong resonance would mix trans \(2^1\)\(^3\)\(^6\) and trans \(3^1\), their interactions with a common cis state cause them to move apart, an example of indirect mixing.

The explanation for these two phenomena is displayed in Figs. 5(e) and 5(f). We see that trans \(2^1\)\(^3\)\(^6\) has a much larger overlap integral with cis \(3^1\)\(^6\), as expected because of its excitation in \(v_6\), but trans \(3^1\) is near resonant, and consequently the two states have approximately equal mixing angles with cis \(3^1\)\(^6\). This provides the cis state with significant intensity, and in fact the calculated relative intensities for these three states agree quite well with those observed experimentally. Finally, the vibrational overlaps between the two trans states and the cis state are in fact of opposite sign, which suggests the possibility of observable interference effects. This three state interaction is currently being investigated experimentally, and early results are so far consistent with the calculation.

IV. CONCLUSION

We set out in this paper to investigate the spectroscopic consequences of low barrier cis–trans isomerization in \(\text{S}_1\) acetylene by calculating the vibrational eigenstates of a high accuracy PES using a reduced dimension DVR method. The calculation reproduces some difficult aspects of the trans conformer level structure, which are ultimately due to the isomerization. Another consequence of the isomerization process is that nominally forbidden transitions to the cis conformer appear. These transitions occur in our calculation near the ob-
observed energies of the “extra” levels in the $\tilde{A} \rightarrow \tilde{X}$ spectrum of acetylene. We find that our reduced dimension DVR calculation agrees with the explanation of these “extra” levels as belonging to the cis conformer, and that we are able to explain the intensities of these levels by using the calculated results to investigate cis–trans mixings. Although we believe that the reduced dimension DVR method demonstrated here is a powerful approach for studying isomerizing systems, there are interesting aspects of the S_1 C_2H_2 spectrum that it does not address, including strong vibration-rotation interactions and possible multiple pathways to isomerization. We intend to develop a full dimensional treatment for S_1 acetylene to study these effects and enable comparison with the complete set of experimental observations.

ACKNOWLEDGMENTS

J. H. Baraban would like to thank D. J. Tannor, T. Van Voorhis and A. J. Merer for helpful discussions, and is grateful for support by an NSF Graduate Research Fellowship. This work was supported at MIT by (U.S.) Department of Energy (DOE) Grant No. DE-FG0287ER13671.

APPENDIX: COMPUTATION OF $S_1 \leftrightarrow S_0$ SPECTRA

In order to calculate $\tilde{A} \leftrightarrow \tilde{X}$ spectra, two additional quantities are required beyond the \tilde{A} state vibrational wavefunctions: the electronic transition moment, μ, and the \tilde{X} state vibrational wavefunctions. We calculate the transition moment ab initio over our coordinate grid at the EOM-CCSD/ANO1 level of theory, again using the CFOUR program system. The \tilde{X} state vibrational wavefunctions can be obtained merely by replacing the \tilde{A} state PES with that of the \tilde{X} state and repeating the DVR calculation. This portability of the method is one of its powerful features. Although the results thus obtained for the \tilde{X} state are not worth examining in depth, given the numerous ab initio treatments in the literature, we would like to note that the qualitatively important features related to large amplitude motions are simulated correctly by our DVR method. Chief among these is the emergence of the “local-bender” states from the normal modes $\nu_4^{	ext{a}}$ and $\nu_5^{	ext{a}}$, as shown in Fig. 8.

With these two results in hand, we calculate for each pair of eigenstates the spectral intensity $I_{mn} = |\langle m | \mu | n \rangle|^2$, where m and n belong to different electronic states. In order to calculate the product it is necessary to interpolate the transition moment and wavefunctions to a common set of grid points. This process yields all possible upward spectra, including the four necessary to sample experimentally the full rovibrational structure of the \tilde{A} state, and also all possible downward spectra (DF/SEP). This wealth of information was of enormous value when analyzing the calculated results, and we expect it to guide future experiments.

FIG. 7. The transition moment μ as a function of the bending angles. Note that $\mu = 0$ at all points of C_2v symmetry, including linearity. In order for the overall symmetry of μ to be S_2v–, the quantity used to calculate $\tilde{A} \leftrightarrow \tilde{X}$ spectra must have S_a– symmetry in the DVR coordinate space. Briefly, this requirement arises because the \tilde{X} state DVR wavefunctions are vibrational instead of rovibrational. Adding the rotational symmetry factor necessary to ensure that transitions occur between the same nuclear spin symmetry species includes an extra S_a– in μ.

FIG. 8. From top to bottom, pairs of wavefunctions depicting the evolution from the normal mode limit to the local mode limit in S_0 acetylene from approximately 8000–12 000 cm$^{-1}$ of vibrational excitation.

33. The consequences of this substitution for the kinetic energy will be discussed in Sec. II C. This is not a major alteration of the calculation; it significantly improves the value obtained for the \(v_2 \) fundamental and otherwise causes only minor changes in the level structure. Results quoted are solely from this version of the calculation, except in Sec. III D.
41. This redefinition weights the \(R_{CC} \) kinetic energy by the projection of the internal coordinate onto the \(v_2 \) normal mode. The effect is to discard portions of this term that would be included in \(v_3 \) in full dimensionality.
50. Because the target of the calculations is associated with an excited electronic state, no HEAT-based protocol exists and the specifics of the calculation warrant explanation. First, the geometries used in the calculations are those from Tables I and III. Contributions to the electronic energy of the ground electronic states at these geometries were evaluated as per the HEAT-45Q protocol. The excitation energies at these geometries were evaluated by extrapolating all-electron EOM-CCSD results obtained with the cc-pCVXZ (\(X = 5 \) and \(6 \)) basis sets using the formula advocated by Helgaker et al. (Ref. 51). Contributions of triple and quadruple excitations to the excitation energy were obtained by extrapolating (frozen core) cc-pVDZ and cc-pVTZ EOM-CCSDT results and taking the difference between them and the corresponding EOM-CCSD energies. Quadruple excitations were taken from (frozen core) EOM-CCSDTQ and EOM-CCSDT results. In addition, the zero-point correction is that obtained from the EOM-CCSD calculations with the ANO1 basis. A smaller contribution comes from scalar relativistic effects, which were obtained by contracting the relaxed EOM-CCSD density matrix obtained with the cc-pVTZ basis in an all-electron calculation with the appropriate operators. The diagonal Born–Oppenheimer correction was neglected.
53. The results in Sec. III D are based on the first version of the calculation mentioned in Sec. II B. The zero-order energy ranking of the levels makes it impossible for the second version of the calculation to capture this interaction correctly, since the interacting levels cannot cross. In the first version of the calculation, the trans \(v_3 \) fundamental is 1058.8 cm\(^{-1}\) (as opposed to 1033.6 cm\(^{-1}\)), such that trans \(3^2 \) lies considerably higher, and crucially, above rather than below cis \(3^2 \) in zero-order.
54. The reduced dimension potential does not allow the CH bond distances to be different, yet their asymmetry is appreciable (see Table VI). Relaxing these bond distances would give a lower, more accurate barrier height.