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Abstract

Rydberg states of molecules with high orbital angular momentum (ℓ & 3) are
a unique class of electronic states. These high-ℓ Rydberg states escape the rapid
non-radiative decay by predissociation, which is typical of the intensively studied
low-ℓ Rydberg states. Access to high-ℓ Rydberg states is challenging due to the
Δℓ = ±1 transition propensity rule in combination with the short lifetimes of the
optically accessible, low-ℓ Rydberg states. To address these dual challenges, we im-
plement optical-millimeter-wave stimulated Raman adiabatic passage (optical-mmW
STIRAP), which enables efficient population transfer from a low-lying electronic state
to a high-ℓ Rydberg state without directly populating a lossy, low-ℓ Rydberg state.
Our demonstration of optical-mmW STIRAP on an atomic system includes examina-
tion of the experimental and theoretical details of every step of this coherent process
and demonstrates its promise for molecular applications. We explore the physics
of the Rydberg electron↔ion-core system through investigation of the spectroscopy
and dynamics of high-ℓ Rydberg states of NO. We populate 𝑛𝑔 Rydberg states of
NO by a three-color triple-resonance excitation scheme and probe Rydberg-Rydberg
transitions by chirped-pulse millimeter-wave (CPmmW) spectroscopy. The precision
of the experimental data obtained and the breadth of the state space examined by
CPmmW spectroscopy provides challenges to the existing theory of the structure of
high-ℓ Rydberg states. We apply a long-range electrostatic model to disentangle and
describe the physical mechanisms that contribute to the autoionization dynamics of
NO Rydberg states. Our model accounts for the decay rates of vibrationally excited
𝑛𝑔 Rydberg states. We explain the previously measured NO+ ion rotational state
population distributions produced by autoionization of NO 𝑛𝑓 states and propose
methods to generate single quantum state-selected NO+ ions by selective population
of specific 𝑛𝑔 Rydberg states.

Thesis Supervisor: Robert W. Field
Title: Haslam and Dewey Professor of Chemistry
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polarization of the two probe transitions and subsequent FID detection.144

3-7 Saturation of the 4s30d←4s5p 804 nm transition signal as a function of

laser fluence. For low laser fluence, a nearly linear signal dependence

is observed, while at high laser fluence, the signal changes minimally

with changes in the laser power. . . . . . . . . . . . . . . . . . . . . . 145

3-8 Population measured in the intermediate (red) and final (blue) states

as a function of delay time between the Pump and Stokes pulses. At

short negative delay times, enhanced population transfer to the final

state is evident, while a dip in the population of the intermediate state

occurs simultaneously. A schematic representation of the Pump and

Stokes pulse timing appears above the main figure. . . . . . . . . . . 147

3-9 Detuning dependence of final state population. The left plot shows

population transfer as a function of laser detuning for fixed microwave

detunings from -600 MHz (dark blue) to 0 MHz (dark red) in steps

of 50 MHz. The right plots correspond to microwave detunings from

+600 MHz (dark blue) to 0 MHz (dark red). The solid lines are fits to

the data with a skew Gaussian function. The STIRAP ridge appears

as the peak population transfer along the approximate zero two-photon

detuning line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

3-10 Simulation results for the intermediate (red) and final (blue) state pop-

ulation transfer as a function of pulse delay. The solid lines are the

mean population and the standard deviation of the 100 simulations is

shown as a shaded area. For comparison, the experimental data points

appear as circle markers in matching colors. . . . . . . . . . . . . . . 153
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3-11 Top: Fitted skew Gaussian lineshapes to the experimental data pre-

sented in Figure 3-9. The dashed arrow is a guide to the eye, indicating

the frequency shift in peak population transfer as the Stokes detuning

is changed. Bottom: Simulation results for the population transfer as

a function of Pump detuning for fixed values of the Stokes detuning.

Left: -600 MHz (dark blue) to 0 MHz (dark red) in steps of 50 MHz.

Right: 600 MHz (dark blue) to 0 MHz (dark red) in steps of -50 MHz. 157

3-12 Pump detuning that produces the peak population transfer as a func-

tion of Stokes detuing. The experimental data is shown as red circles

and the simulated data as black circles. The dashed black line is the

two-photon resonance line, Δ𝑃 = Δ𝑆. The experiment and simulation

deviate from the two-photon resonance line in the same way. . . . . . 159

3-13 Skewness (left) and kurtosis (right) of the observed (red) and simulated

(black) lineshapes for each value of the Stokes detuning. . . . . . . . 160

3-14 Simulation results for the intermediate (red) and final (blue) state pop-

ulation transfer as a function of pulse delay when the intermediate state

has non-radiative lifetime of 1 ns. The solid lines are the mean popu-

lation and the standard deviation of the 100 simulations is shown as a

shaded area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

3-15 Simulation results for the population transfer as a function of Pump

detuning for fixed values of the Stokes detuning for a system with a 1

ns intermediate state lifetime. Left: -600 MHz (dark blue) to 0 MHz

(dark red) in steps of 50 MHz. Right: 600 MHz (dark blue) to 0 MHz

(dark red) in steps of -50 MHz. . . . . . . . . . . . . . . . . . . . . . 165

3-16 Simulated population transfer to the intermediate (red) and final (blue)

state at the STIRAP timing as a function of the radial coordinate of

the Pump laser. The Gaussian variation in the Pump laser intensity

(HWHM 5 mm) gives rise to pronounced variation in the population

transfer across the Pump beam profile. . . . . . . . . . . . . . . . . . 166
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3-17 Simulated population transfer to the intermediate (red) and final (blue)

state at the STIRAP timing as a function of the Pump laser detuning.

This represents the effect of Doppler broadening on the total population

transfer. For reference, the Pump transition was measured to have a

HWHM of 155 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

4-1 Angular momentum coupling in the presence of nuclear spin. Left:

The Rydberg electron orbital angular momentum couples to the ion-

core rotation to form 𝑁 . These energies are determined by the long-

range model and form the zeroth-order basis states for consideration of

nuclear spin effects. Center: The nuclear spin, 𝐼, is coupled to 𝑁 , to

form what we will call the total angular momentum 𝐹 . This results in

a splitting of the zeroth-order energy levels into three sub-levels for a

nucleus with 𝐼 = 1. Right: In reality, the total angular momentum is

given by the coupling of 𝐹 with the Rydberg electron spin, 𝑠, to form

𝐽 . This would split every hyperfine level into a pair of spin doublets.

We will neglect this energy level splitting entirely. . . . . . . . . . . . 180

4-2 Energy level splitting due to electric quadrupole hyperfine interaction.

The zeroth-order energies of the 43𝑔23 and 44ℎ24 Rydberg states are

shown in blue on the left- and right-hand side of the plot, respectively.

The first order perturbation theory result appears in red and the full

matrix diagonalization result appears in black. . . . . . . . . . . . . . 182

4-3 Simulation of the 44ℎ24 ← 43𝑔23 transition including hyperfine split-

ting. The spectral intensity is concentrated in the closely spaced

Δ𝐹 = Δ𝑁 lines that form the central peak. Very weak satellite lines

(labeled) are from transitions with Δ𝐹 ̸= Δ𝑁 and occur at spacings

similar to the actual hyperfine splitting. . . . . . . . . . . . . . . . . . 183

22



4-4 Energy level scheme for NO spectroscopy experiments. The A-X and

4𝑓 -A transitions are probed by 1+1 and 1+1’+1’ REMPI schemes,

respectively. Transitions to 𝑛𝑔 states are probed by pulsed field ion-

ization for 𝑣 = 0 states and by autoionization for 𝑣 = 1 states. The

final mmW transitions can be probed by selective field ionization or by

CPmmW spectroscopy. . . . . . . . . . . . . . . . . . . . . . . . . . . 184

4-5 Left: Schematic of the experimental setup for ion-detected experiments

in the supersonic jet apparatus. A supersonic jet is skimmed twice be-

fore entering the probe region of the differentially pumped detection

chamber. Laser excitation occurs transverse to the direction of the

molecular beam propagation. If used, mmW radiation is introduced

counter-propagating along the molecular beam axis via a waveguide

feedthrough in the chamber. The time-of-flight axis for the mass spec-

trometer points out of the plane. Right: Simplified schematic of the

TOF electrode stack. Excitation occurs under nearly field-free condi-

tions. A pulsed field is then applied to the bottom plate to simultane-

ously ionize high-𝑛 Rydberg states and extract ions for detection. . . 186

4-6 Schematic of the experimental setup for CPmmW experiments in the

supersonic jet apparatus. An unskimmed free jet expansion is probed

transversely by the co-propagating laser and mmW fields. FID from

the polarized Rydberg-Rydberg transitions is detected at a second horn

on the opposite side of the chamber. . . . . . . . . . . . . . . . . . . 187

4-7 Level diagram for the A 2Σ+ ← X 2Π1/2 transition. Transition labels

appear next to each arrow. Number subscripts indicate the transi-

tion is between the specified spin states, F1 or F2. The energy level

assignments are shown on the right side of each level. . . . . . . . . . 194

4-8 Top: Spectrum of the A-X transition measured by 1+1 REMPI in the

supersonic jet apparatus. Bottom: Simulation of the same transition

with a rotational temperature of 3.5 K. Red and blue lines are transi-

tions to the F1 and F2 spin components of the upper state, respectively.196
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4-9 Level diagram for the 4𝑓 ← A 2Σ+ transition. The transition labels

next to each arrow indicate the numerical value of 𝑁 ′ − 𝑅 in the left

superscript, ℓ𝑅 in the right subscript, and Δ𝑁 = −1, 0, 1 by P, Q, and

R as usual. The energy level assignments are shown on the right side

of each level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

4-10 REMPI spectra of the 4𝑓 -A (0,0) band. The experimental measure-

ments are the black curve and theoretical predictions for each transition

frequency and intensity appear as a red line spectrum. The top and

bottom spectra correspond to 𝑁 ′ = 2 and 1, respectively, in the A state.202

4-11 Reduced term value plot of observed (red crosses) and calculated (black

circles) energy levels of the 4𝑓 (𝑣 = 1) Rydberg complex. The solid

black lines connect states with the same ℓ𝑅 value. . . . . . . . . . . . 207

4-12 Level diagram for the 𝑛𝑔 ← 4𝑓 transition. The energy level diagram

for all Rydberg-Rydberg transitions, such as the (𝑛± 1)ℎ← 𝑛𝑔 tran-

sitions probed by microwave spectroscopy, will have a similar appear-

ance. The selection rules for transitions between case (d) states dra-

matically restrict the number of lines in these spectra. The energy level

assignments are shown on the right side of each level. . . . . . . . . . 211

4-13 Laser spectrum of the 12𝑔2𝑁 ← 4𝑓25 (1,1) transition. The simulated

spectrum appears as a red line spectrum. Note that the intensities

of the overlapped P and Q transitions at high frequency have been

multiplied by 10 in both the experiment and theory. . . . . . . . . . . 212

4-14 Selective field ionization-detected spectrum of the 44ℓ ←43g transi-

tions. The experimental spectrum appears in black and a simulated

spectrum, using the long-range parameters of Martin et al.,97 appears

as a red stick spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . 214
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4-15 Schematic of typical Rydberg-Rydberg transitions probed by CPmmW

spectroscopy. Laser excitation populates multiple initial electric fine

structure components of the desired Rydberg state. Left: By probing

transitions upward and downward in 𝑛, combination differences can be

identified to confirm assignments. Right: Combination differences also

link laser-populated levels to the accuracy of mmW transition frequencies.216

4-16 Schematic of Rydberg-Rydberg transitions probed by CPmmW spec-

trosopy. Similar to Figure 4-15, combination differences can be estab-

lished from transitions upward and downward in 𝑛. In addition, after

transferring population from the laser-populated state to another Ry-

dberg state, transitions back to states with the initial value of 𝑛 allow

construction of a network of transitions. . . . . . . . . . . . . . . . . 216

4-17 Polarization diagnostics can help to confirm transition assignments. In

this case, altering the polarization arrangement of the IR and mmW

photons (perpendicular vs. parallel) leads to significant, and pre-

dictable, increases or decreases in transition intensity. . . . . . . . . . 218

4-18 CPmmW spectrum from the 41𝑔23 and 41𝑔22 initial states. Instru-

mental artifacts are indicated by asterisks. The broader peaks below

99 GHz correspond to expected 41𝑔-40ℎ transitions. The intense, nar-

row line at 99.07 GHz, which displays superradiant emission at high

densities, is assigned to an electric-field-induced 41𝑔-40𝑔 transition. . 220

4-19 Cascading superradiant emission from a high density sample of NO

Rydberg states, initially prepared in a 43𝑔2𝑁 state. The principal

quantum numbers, 𝑛, of the transitions are indicated. . . . . . . . . . 221

4-20 CPmmW spectrum from the 42𝑔23 and 42𝑔22 initial states (upward)

and the 43𝑔23 and 43𝑔22 initial state (downward). Expected 𝑔-ℎ tran-

sitions occur below 85.6 GHz and above 85.9 GHz in the two spectra.

The two strong features in the center of the spectrum occur at the

same frequency in both spectra, indicating the transitions occur be-

tween laser-populated levels, in violation of parity restrictions. . . . . 224
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4-21 Full manifold of Stark states in NO. An 𝑛𝑔 state is highlighted in blue

and shows a quadratic Stark shift. An 𝑛ℎ state is highlighted in red

and quickly approaches the regime of linear Stark effect due to the

nearby high-ℓ manifold of states. The 𝑛𝑓 states occur far away from

the 𝑛𝑔 and 𝑛ℎ states on this energy scale and limited mixing occurs at

the field values considered here. . . . . . . . . . . . . . . . . . . . . . 226

4-22 Simplified Stark tuning diagram indicating transitions from an initial

𝑛𝑔 state to either the (𝑛−1)ℎ or (𝑛−1)𝑔 state as a function of electric

field. The difference in 𝑛𝑔 → (𝑛 − 1)ℎ transition frequencies (solid

arrows) at two electric field values is much larger than the difference

in 𝑛𝑔 → (𝑛− 1)𝑔 transition frequencies (dashed arrows). . . . . . . . 226

4-23 Simulation of the mmW spectrum from the initial 41𝑔23 (blue) and

41𝑔22 (red) states as a function of applied electric field. Note the

intensity axis changes for each plot. As the electric field increases the

intensity of the “allowed” transitions, shown unperturbed in the top

plot, decreases rapidly. The 𝑔-𝑔 transitions near 99.1 GHz rapidly gain

intensity before eventually weakening at high field values. . . . . . . . 229

4-24 Simulation of the mmW spectrum from the initial 41𝑔23 (blue) and

41𝑔22 (red) states with a Gaussian distribution of applied electric field

centered at 30 mV/cm with a FWHM of 10 mV/cm. The three “al-

lowed” transitions experience dramatic electric field broadening, which

further reduces their intensity. In contrast, the 𝑔-𝑔 transitions near

99.1 GHz are minimally broadened, leading to a pile up of transition

intensity. The simulated intensity transferred into the high-ℓ manifold

at frequencies below 98.9 GHz is much larger than observed experi-

mentally. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
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4-25 Lifetime measurement of the 30𝑔23 state. Since the linewidth is cor-

rupted by electric field broadening, the lifetime is measured by monitor-

ing the mmW signal as a function of delay between the excitation laser

that populates the Rydberg state and the mmW pulse that probes the

30𝑔23 → 29ℎ24 transition. This population decay time demonstrates

that the natural linewidth (∼780 kHz) is much narrower than the ob-

served linewidth (∼5 MHz), confirming that the observed transitions

are broadened by external effects rather than by the intrinsic lifetime. 232

4-26 CPmmW spectrum from the 43𝑔23 and 43𝑔22 initial states. With field

plates inserted into the apparatus the stray field magnitude and in-

homogeneity is decreased, leading to no intensity in the 𝑔-𝑔 transi-

tions and to narrow 𝑔-ℎ transitions. In the right panel, a fit to the

44ℎ24 ← 43𝑔23 transitions is shown with a linewidth of less than 1

MHz FWHM. The side lobes are likely due to uncompensated mag-

netic field in the apparatus and only the central peak is fit. . . . . . . 233

5-1 Red: NEVPT2 potential energy curve. Blue: CCSDT potential energy

curve calculated by Joshua Baraban.9 Black: CASSCF potential en-

ergy curve calculated by Fehér and Martin.44 The inclusion of dynamic

correlation by NEVPT2 significantly lowers the energy of the CASSCF

result and yields a result comparable to sophisticated coupled cluster

methods. The discontinuity in the CASSCF curve between 5 and 6 a.u.

is likely a result of the calculation converging to the wrong dissociation

limit, as discussed in the text. . . . . . . . . . . . . . . . . . . . . . . 244

5-2 The same potential energy curves as Figure 5-1, zoomed into the bond-

ing region of NO+. Red: NEVPT2 potential energy curve. Blue:

CCSDT potential energy curve calculated by Joshua Baraban.9 Black:

CASSCF potential energy curve calculated by Fehér and Martin.44 . 244
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5-3 Molecular orbital diagram for NO+ showing the dominant electron con-

figuration in the bonding region of the ground state and the atomic

configuration (4S) of the N atom and O+ ion in the correct dissocia-

tion limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

5-4 Orbital occupancy of NO+ as a function of internuclear distance. The

circle markers are the molecular p𝜎 orbitals, and the square markers

are the molecular p𝜋 orbitals. The p𝜋 orbitals are doubly degenerate at

all internuclear spacings. As the bond length is increased, the initially

doubly occupied orbitals (blue) lose electron density and the initally

unoccupied orbitals (red) become filled. At the separated atom limit

every p orbital is singly occupied as required for two 4S atoms. . . . . 246

5-5 Dipole moment, calculated in the center of mass frame, as a function of

internuclear distance, 𝑅. Red: CASSCF, this work. Black: CASSCF,

Fehér and Martin.44 Blue: Separated atom calculation as described in

text. Square data points are for the N(4S) + O+(4S) limit. Cross data

points with the dashed line are the negative of the result for the dipole

moment in the N+(3P) + O(3P) limit. It is unclear how the sign error

occurred in the previous result.44 See text for discussion. . . . . . . . 247

5-6 Quadrupole moment as a function of internuclear distance, 𝑅. Red:

CASSCF, this work. Black: CASSCF, Fehér and Martin.44 Blue:

Separated atom calculation as described in text. Square data points

are for the N(4S) + O+(4S) limit, and the cross data points are for the

N+(3P) + O(3P) limit. . . . . . . . . . . . . . . . . . . . . . . . . . . 247

5-7 Octupole moment as a function of internuclear distance, 𝑅. Red:

CASSCF, this work. Black: CASSCF, Fehér and Martin.44 Blue:

Separated atom calculation as described in text. Square data points

are for the N(4S) + O+(4S) limit, and cross data points are for the

N+(3P) + O(3P) limit. . . . . . . . . . . . . . . . . . . . . . . . . . . 248
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5-8 Hexadecapole moment as a function of internuclear distance, 𝑅. Red:

CASSCF, this work. Black: CASSCF, Fehér and Martin.44 Blue:

Separated atom calculation as described in text. Square data points

are for the N(4S) + O+(4S) limit, and cross data points are for the

N+(3P) + O(3P) limit. . . . . . . . . . . . . . . . . . . . . . . . . . . 248

5-9 Parallel polarizability (𝛼𝑧𝑧) as a function of internuclear distance, 𝑅.

Red: CASSCF, this work. Black: MP2, Fehér and Martin.44 . . . . . 252

5-10 Perpendicular polarizability (𝛼𝑥𝑥) as a function of internuclear dis-

tance, 𝑅. Red: CASSCF, this work. Black: MP2, Fehér and Martin.44 253

5-11 Fractional error in 𝑟𝑘 expectation values for a 25𝑓 wavefunction calcu-

lated by inward (red) or outward (blue) Numerov integrations. Solid

(hatched) bars indicate the direction of the error is negative (positive).

Outward integration for both bound and continuum wavefunctions is

used in this work because it produces more accurate 𝑟−𝑘 matrix elements.257

5-12 Stark-induced decay rates of the members of the 28𝑔3𝑁 complex. The

colors correspond to the nominal ℓ𝑅 value of each Stark state as in-

dicated in the legend. The details of the calculation are given in the

text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

5-13 Stark-induced decay rates of the members of the 28𝑓3𝑁 (left) and

28𝑔3𝑁 (right) states as a function of electric field. Note the differ-

ence in decay rate scale for the two plots. The colors correspond to the

nominal ℓ𝑅 value of each Stark state as indicated in the legend. The

details of the calculation are given in the text. . . . . . . . . . . . . . 266

5-14 Total autoionization rates as a function of 𝑅 for the 25𝑔𝑅𝑁 complex.

The rate for the ℓ𝑅 components are labeled on the plot in red (positive

Kronig symmetry) and blue (negative Kronig symmetry) numbers and

connected by solid lines. The variation with ℓ𝑅 and 𝑅 is rapid at low

𝑅. In the limit of high rotation, the two states with the same value of

|ℓ𝑅| approach the same autoionization rate. . . . . . . . . . . . . . . . 267
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5-15 Autoionization rates of particular electrostatic mechanisms as a func-

tion of ℓ for the 25ℓ10𝑁 complex. The rates are summed over all ℓ𝑅

components to give a single rate for the complex of states. Note that

when more than one mechanism is operative for one decay channel,

as is generally the case, the amplitudes of each mechanism must be

summed. This means that the sum of the rates in this plot will not

give the correct total autoionization rate. The relative contributions at

low-ℓ vary significantly with ℓ, as the innermost lobe of the wavefunc-

tion shifts further away from the ion-core. For states with ℓ ≥ 4 the

relative rates are ordered by the power of the involved radial electronic

matrix element (𝑟−2 for the dipole, 𝑟−3 for the quadrupole, 𝑟−4 for

the polarizability, etc.). The dipole mechanism is dominant at high-ℓ

because it is the longest-range mechanism. . . . . . . . . . . . . . . . 269

5-16 Measured (solid) and calculated (hatched) autoionization rates for sev-

eral 22𝑔𝑅𝑁 complexes. Experimental uncertainties are 95% confidence

intervals from a fit to the raw data. A dip in the autoionization rate

at the center of each complex of states is observed in the experimental

and calculated data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

5-17 Measured (solid) and calculated (hatched) autoionization rates for sev-

eral 25𝑔𝑅𝑁 complexes. Experimental uncertainties are 95% confidence

intervals from a fit to the raw data. With the exception of 𝑅 = 3, a

dip in the autoionization rate at the center of each complex of states

is observed in the experimental and calculated data. . . . . . . . . . . 271

5-18 Measured (solid) and calculated (hatched) autoionization rates for sev-

eral 28𝑔𝑅𝑁 complexes. Experimental uncertainties are 95% confidence

intervals from a fit to the raw data. A dip in the autoionization rate

at the center of each complex of states is observed in the experimental

and calculated data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

30



5-19 Autoionization rates for all ℓ𝑅 components of the 25𝑔25𝑁 Rydberg

complex. The |ℓ𝑅| = 4 states autoionize fastest, and the rate reaches

a minimum around ℓ𝑅 = 0. . . . . . . . . . . . . . . . . . . . . . . . . 273

5-20 Numerical radial hydrogenic wavefunctions for the 25𝑔 (red, solid)

bound state and the 𝜖𝑓 (black, dashed) and 𝜖ℎ (red, dot-dashed) contin-

uum states, with 𝜖 = 0.01, representative of the energy for vibrational

autoionization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

5-21 Vector model of the 6j symbol that describes the coupling of angular

momenta in the bound Rydberg state and free electron-ion state. . . 276

5-22 All measured 𝑛𝑔 decay rates plotted against the calculated rates. The

dashed line has a slope of 1 and would represent perfect agreement

between the measurements and the calculation. The solid line is a

proportional fit to the data with fit uncertainty represented by the

shaded gray area. As suggested by the plot of individual 𝑛 states, the

calculation generally underestimates the measured rates. Although the

calculated rates from our model explain a large fraction of the variance

in the data set, there is not quantitative agreement. . . . . . . . . . . 278

5-23 Total decay rates of the 7𝑓(𝑣 = 1) complex measured by Biernacki

et al.15 plotted against the fractional 𝜎 character for a case (d) basis

state. The negative Kronig symmetry states (blue) are all longer-lived

than the positive Kronig symmetry states (red), whose decay rates are

directly proportional to the fractional 𝑓𝜎 character of the state. The

solid line is a fit to the positive Kronig symmetry states only, and the

gray shaded area represents the fit error. . . . . . . . . . . . . . . . . 282

5-24 Measured decay rates of ng Rydberg states scaled by 𝑛3 versus the

fractional 𝜎 character of each state.The blue data points are negative

Kronig symmetry states, which all have zero 𝜎 character by symmetry.

The variation of positive Kronig symmetry state decay rates varies

with 𝜎 character because, within the long-range model, this value is

correlated with the angular dependence of the autoionization rates. . 282
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5-25 Plots of the total measured decay rates, scaled by 𝑛3, against fractional

𝜋, 𝛿, 𝜑, and 𝛾 state character (from left to right, top to bottom). There

is strong positive correlation with the data for the 𝑔𝜋 character as for

the 𝑔𝜎 character, but this correlation is gradually lost at higher Λ. This

suggests that any correlation with Λ is accidental, or more accurately,

peculiar to the low rotational states investigated in this work. . . . . 284

5-26 Angle- and energy-resolved photoelectron spectra measured by Park

and Zare117,118 following vibrational autoionization of the indicated

𝑛𝑓𝑅𝑁 states, where the 𝑁 = 18, 19, and 20 components are unre-

solved by the excitation laser. The time of flight axis is calibrated in

order to associate a particular 𝑁+ value of the resulting ion with each

photoelectron peak, indicated by the comb at the top of each plot.

Top, Center: Reprinted from H. Park and R. N. Zare, J. Chem. Phys.,

106, 2239 (1997), with the permission of AIP Publishing. Bottom:

Reprinted figure with permission from H. Park, D. J. Leahy, and R. N.

Zare, Phys. Rev. Lett., 76, 1591-1594 (1996). Copyright 1996 by the

American Physical Society. . . . . . . . . . . . . . . . . . . . . . . . . 288
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5-27 Angle- and energy-resolved photoelectron spectra measured by Zhao164

following vibrational autoionization of the indicated 𝑛𝑓𝑅𝑁 states. The

time of flight axis is calibrated in order to associate a particular 𝑁+

and 𝑣+ value of the resulting ion with each photoelectron peak, in-

dicated by the comb at the top of each plot. The dashed and solid

line spectra in each plot are collected at two different angles. The

top and bottom plots are the results for the single ℓ𝑅 component that

was selectively excited. In both of those plots, the intense peak at

the center of the 𝑣+ = 1 signal is an artifact and not a product of
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Chapter 1

Introduction

The focus of this thesis is the spectroscopy and dynamics of Rydberg states of

atoms and molecules with high electron orbital angular momentum, ℓ. The following

chapters describe in detail a new method to populate these states, as well as new

physical insights gained through spectroscopic and dynamical investigations. In this

introductory chapter, we review some basic physics of Rydberg states and highlight

current research areas of relevance to this work. Next, a review of Hund’s angular

momentum coupling cases is presented, which is critical to the theory developed

in Chapters 4 and 5. An outline of this thesis appears in the final section, which

summarizes the primary results of each project.

1.1 Rydberg states

Rydberg states of atoms and molecules are electronic states in which the outer

electron is placed in a highly excited state. These states take their name from Jo-

hannes Rydberg, who developed his eponymous formula that reproduced the spectral

lines observed in the emission of the hydrogen atom.132 In the limit of a nucleus with

infinite mass, this formula is written as:

𝐸𝑛 = −𝑅∞

𝑛2
(1.1)
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where 𝑛 is the principal quantum number, and 𝑅∞ is the Rydberg constant in the

infinite mass limit. This Rydberg constant can be written in terms of fundamental

constants:

𝑅∞ =
𝑚𝑒𝑒

4

8𝜖20ℎ
3𝑐

(1.2)

where 𝑚𝑒 is the electron mass, 𝑒 is the fundamental unit of charge, 𝜖0 is the permittiv-

ity of free space, ℎ is Planck’s constant, and 𝑐 is the speed of light. Using the reduced

mass of the system, the constant, 𝑅∞, can be related to the Rydberg constant of an

atom or molecule with finite mass, 𝑚𝐴 = 𝑚core +𝑚𝑒, where 𝑚core is the mass of all

particles except the Rydberg electron (the “ion-core”):

𝑅𝐴 = 𝑅∞ ·
𝜇𝑒

𝑚𝑒

(1.3)

= 𝑅∞ ·
1

𝑚𝑒

(︂
𝑚𝑒𝑚core

𝑚𝑒 +𝑚core

)︂
(1.4)

= 𝑅∞ ·
(︂
𝑚𝐴 −𝑚𝑒

𝑚𝐴

)︂
(1.5)

= 𝑅∞ ·
(︂
1− 𝑚𝑒

𝑚𝐴

)︂
(1.6)

Any state with sufficiently high 𝑛, such that the energy level spacing approximately

obeys the Rydberg formula, may rightly be considered a Rydberg state.

Beyond the difference in the value of the Rydberg constant, atoms other than

hydrogen possess core structure. The core has a finite size and the nuclear charge is

incompletely shielded by the core electrons. This results in deviations from a purely

Coulombic potential at short distances from the core, as shown schematically in Figure

1-1. Outside of some critical distance from the core, the potential again resembles

that of a hydrogenic system. This short-range, non-Coulombic interaction results in

an overall phase shift of the Rydberg wavefunction and modification of Equation 1.1

by a so-called quantum defect:

𝐸𝑛,ℓ = −
𝑅∞

(𝑛− 𝛿ℓ)2
(1.7)

where 𝛿ℓ is the quantum defect for the Rydberg series with orbital angular momentum,
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Figure 1-1: For the hydrogen atom, the interaction potential is purely Coulombic. For
non-hydrogenic atoms and molecules, the finite size of the core and incomplete nuclear
shielding distort the potential. Beyond some critical radius, 𝑟0, the non-hydrogenic
potential closely matches the hydrogenic potential.

ℓ. In fact, this quantum defect depends on all properties of the ion-core, including the

hyperfine, electronic, and spin-orbit state. In molecules, the rotational and vibrational

states must also be considered, as well as the projection quantum numbers of the

orbital and spin angular momenta of the Rydberg electron. Nevertheless, the quantum

defects generally depend most significantly on the orbital angular momentum, ℓ. For

low-ℓ states, the quantum defects are very large because the Rydberg electron closely

approaches the core and experiences complicated, non-Coulombic interactions. As ℓ

increases, the quantum defects approach zero because the centrifugal barrier results

in a very low probability for the Rydberg electron to be found in the core region. The

centrifugal potential is defined by:

𝑉cent =
ℓ2

2𝑟2
=

ℓ(ℓ+ 1)

2𝑟2
(1.8)

For two Rydberg states with radial wavefunction, 𝑅(𝑟), and ℓ = 1 (red) or ℓ = 5

(blue), the quantity 𝑟2𝑅2 is plotted as a function of 𝑟 in Figure 1-2. This represents the

probability distribution function of the Rydberg electron and highlights the enormous
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difference between low-ℓ and high-ℓ states at short distances.

The distinction between these low-ℓ, core-penetrating, and high-ℓ, core-nonpenetrating

Rydberg states is particularly important for Rydberg states of molecules. Unlike

atoms, molecular Rydberg states generally suffer from non-radiative decay. The non-

radiative decay pathways include autoionization, the transition from a bound Ryd-

berg state with energy above the first ionization limit to a free ion and electron, and

predissociation, the transition from a bound Rydberg state to a dissociative contin-

uum state at the same energy, which leads to fragmentation into constituent atoms.

Predissociation is particularly insidious because, at the high internal energies char-

acteristic of Rydberg states, many possible dissociation pathways exist, which often

leads to complex multi-state interactions that are not easily disentangled. The dis-

sociative states responsible for fragmentation are generally valence electronic states.

All valence states possess large wavefunction amplitude in the core region. As a

result, core-nonpenetrating Rydberg states are relatively immune to predissociation

and possess much longer lifetimes than core-penetrating states.

Figure 1-2: Radial probabilities for ℓ = 1 (red) and ℓ = 5 Rydberg wavefunctions.
The centrifugal barrier in the high-ℓ state results in negligible probability of finding
the Rydberg electron at short 𝑟 values.

Rydberg states play a key role in modern physics experiments due to their simpli-

fied energy level structure and exaggerated atomic properties. A Rydberg state with
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𝑛 = 50 has a radius of over 100 nm and a radiative lifetime of nearly 100 𝜇s.53 These

properties are best explored by considering the hydrogen wavefunction as the model

for the Rydberg wavefunction and examining how its properties scale with 𝑛. For ex-

ample, consider the transition dipole moment between a Rydberg state and the ground

state. As 𝑛 → ∞, the transition frequency between the ground state and the Ryd-

berg state approaches a constant since the binding energy is given by Equation 1.1.

Thus, the transition amplitude is due entirely to the integral, ⟨valence|𝑟|Rydberg⟩,

between the valence state wavefunction and Rydberg wavefunction. The intensity of

this integral accumulates near a point of stationary phase in the ion-core region.91 As

𝑛 increases, the inner-lobe of a hydrogenic wavefunction does not change shape, but

the amplitude decreases as 𝑛−3/2. This means the transition dipole moment between

a Rydberg state and the ground state (or indeed any low-lying electronic state) scales

as 𝑛−3/2, and the radiative lifetime must scale as 𝑛3. This scaling of the radiative

lifetime means atomic Rydberg states are spectacularly stable in spite of their huge

amount of internal energy. Several other properties of interest and their 𝑛-scaling are

presented in Table 1.1.

Taking advantage of these exaggerated properties and their simple scaling rules

has enabled the development of many exciting areas of active research. One prominent

example is the use of electric fields for Rydberg state-enabled spatial manipulation

of atoms and molecules. The ability to control the spatial degrees of freedom of

atoms and molecules is the hallmark of modern atomic physics. Since all atoms and

molecules possess Rydberg states, techniques relying upon Rydberg state physics to

achieve this control open up a wide range of atoms and molecules for study.

It was recognized nearly forty years ago that the very large electric dipole mo-

ments of Rydberg states, which scale as 𝑛2, result in a very strong interaction be-

tween a dipolar Rydberg state and an externally applied electric field gradient.18,162

A number of manipulations have since been demonstrated including deflection,147 de-

celeration,155 and reflection154 of atomic beams, and even trapping68,166 of Rydberg

states on timescales limited only by their fluorescence lifetime. While the majority

of these experiments were performed on atomic Rydberg states, one seminal study
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Table 1.1: Principal quantum number (𝑛) scaling of several Rydberg state proper-
ties.53 These 𝑛-scaling rules are derived from the hydrogen radial wavefunctions and
assume a small value of ℓ. For very high ℓ values, the “circular” state limit, ℓ = 𝑛− 1,
is approached, and some properties exhibit different 𝑛-scaling. For example, the tran-
sition dipole moment between the Rydberg state and the ground state goes to zero
for all 𝑛, and the radiative lifetime scales as 𝑛5.

Property Scaling

Binding energy 𝑛−2

Energy level spacing 𝑛−3

Mean radius 𝑛2

Transition dipole moment: Rydberg to ground state 𝑛−3/2

Radiative lifetime 𝑛3

Transition dipole moment: Rydberg-Rydberg 𝑛2

Dipole-dipole interaction 𝑛4

Polarizability 𝑛7

van der Waals interaction 𝑛11

by the Merkt group demonstrated the ability to both decelerate and three dimen-

sionally trap 𝑛𝑓 Rydberg states of H2.69 These spatial manipulations with electric

fields are not possible unless the Rydberg states exist for long enough, typically 10s of

microseconds, to alter their trajectories and localize them in traps. Core-penetrating

Rydberg states of molecules predissociate too quickly. In the study by Merkt and

co-workers on trapping H2 Rydberg states,69 a triple-resonance scheme was used to

populate a high-ℓ state that did not significantly interact with the ion-core. The au-

thors explicitly mention that “essential for the success of these experiments was the

excitation of core-nonpenetrating Rydberg-Stark states.”69

Another area of intense research into Rydberg atoms and molecules is microwave

spectroscopy of Rydberg-Rydberg transitions. Since the energy spacing between Ry-

dberg levels scales as 𝑛−3, the frequencies of many Rydberg-Rydberg transitions fall

in the microwave spectral region: Δ𝑛 = ±1 transitions with 25 . 𝑛 . 100 have

frequencies of 400 & 𝜈 & 6 GHz. These transitions have enormous transition dipole

moments due to their 𝑛2 scaling. At 𝑛 = 50, 𝜇 ≈ 10 kiloDebye (kD). This allows very
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weak microwave sources to be used for excitation and has also enabled coherent spec-

troscopy in the form of chirped-pulse Fourier transform millimeter-wave (CPmmW)

spectroscopy.126,169

These high-resolution spectroscopic investigations have allowed for determination

of difficult-to-measure electric properties of the ion-core,6,74 precision measurements

of the energy levels in few-electron systems to challenge ab initio theory,63,137 and new

insights into many-body Rydberg physics.61,105 Rapid decay by predissociation limits

the achievable resolution of microwave experiments, and thereby, the physical insights

that can be attained. In addition, CPmmW spectroscopy necessitates sufficiently

long lifetimes to accomplish both polarization of the Rydberg-Rydberg transition

and time-domain detection of the coherent emission.

Finally, an application that has been proposed in recent years exploits excita-

tion of an autoionizing Rydberg state to generate molecular ions in selected quantum

states. The first experimental demonstration of this idea was in the electron electric

dipole moment (eEDM) search at JILA.92 The investigators found 30% of all HfF+

ions were produced in one rotational state following autoionization of a vibrationally

excited HfF Rydberg state. Although the efficiency of this state-selected ion gener-

ation is promising, the mechanism is not clearly established. The latest generation

of the eEDM experiment proposes a similar approach to generate ThF+ ions.170 Be-

yond this particular precision measurement application, there is significant interest

in producing quantum state-selected molecular ions for chemical reactivity studies in

cold ion traps.134,146

Both low-ℓ and high-ℓ Rydberg states decay by autoionization. However, the elec-

tron in a high-ℓ, core-nonpenetrating Rydberg state does not experience the complex,

many-electron dynamics in the core region. This typically leads to autoionization into

only a few rotational channels. Moreover, the physics of the autoionization process is

enormously simplified for high-ℓ states, allowing for detailed theoretical analysis and

predictive power.

In all of these applications, a requirement, or at least, a significant advantage,

is the use of high-ℓ, core-nonpenetrating Rydberg states. This class of electronic
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states represents a unique platform for study and control. These core-nonpenetrating

states behave both like atomic Rydberg states, characterized by simplified physics

and exaggerated properties, and molecules, characterized by non-radiative internal

dynamics and many degrees of freedom. The unifying theme of this thesis is access

to and exploitation of these special high-ℓ, core-nonpenetrating Rydberg states of

molecules.

1.2 Hund’s Angular Momentum Coupling Cases

When it is possible to resolve the rotational structure of a molecular transition,

it is necessary to consider the interaction between the molecular rotation and the

electronic motion in order to explain the spectrum. In the theory of the structure

and dynamics of diatomic molecules, an extremely useful tool for understanding the

angular momentum coupling in a particular electronic state is the recognition of the

dominant Hund’s coupling case. Each Hund’s case corresponds to a complete set of

basis states with which the details of the spectrum can be calculated. The choice of

one coupling case over another can dramatically simplify this calculation by placing

the most important matrix elements of the molecular Hamiltonian along the diagonal.

Moreover, the approximately good quantum numbers, that is, the angular momentum

operators that commute with the zeroth-order Hamiltonian, H0, and typically serve

as the spectroscopic “assignment,” are immediately specified by the choice of a Hund’s

case. Although there are six traditional cases (a)–(e) and (e’), and a multitude of

more complex Rydberg-specific cases (a+e, b+d, etc.),160 we will only consider in

detail cases (a), (b), and (d), which are most relevant to and extensively used in this

work.

The vector model of angular momentum will be used throughout. In this model,

the total angular momentum 𝐽 is the vector sum of the angular momenta: 𝑅, 𝐿, and

𝑆. These correspond to the rotational angular momentum of the molecular frame,

the electron orbital angular momentum, and the electron spin angular momentum,

respectively. The upper case angular momentum vectors, for instance, 𝐿 or 𝑆, refer
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Table 1.2: Hund’s angular momentum coupling cases. The relative strengths of dif-
ferent parts of the molecular Hamiltonian determine the most appropriate Hund’s
case to use in calculations for a given electronic state.

Hund’s Case 𝐻𝑒𝑙 𝐻𝑠𝑜 𝐻𝑟𝑜𝑡

(a) strong intermediate weak

(b) strong weak intermediate

(c) intermediate strong weak

(d) intermediate weak strong

(e) weak intermediate strong

(e’) weak strong intermediate

to the total angular momentum summed over all electrons with angular momentum ℓ𝑖

or 𝑠𝑖. In other words, 𝐿 =
∑︀

𝑖 ℓ𝑖 and 𝑆 =
∑︀

𝑖 𝑠𝑖. This situation will break down when

handling Rydberg states, in which the angular momenta of the Rydberg electron will

be (almost) completely decoupled from the rest of the molecule. A shift in notation

to the single-electron angular momenta will be detailed in Section 1.2.3 on Hund’s

case (d).

An intuitively appealing way to distinguish among the different Hund’s cases is to

consider the relative strength of different parts of the total molecular Hamiltonian,

𝐻 .91 In particular, we will examine the pure electronic Hamiltonian, 𝐻𝑒𝑙, the spin-

orbit Hamiltonian,𝐻𝑠𝑜, and the rotational Hamiltonian,𝐻𝑟𝑜𝑡. The nonspherical part

of 𝐻𝑒𝑙 destroys the quantum number 𝐿, lifting the degeneracy of states with different

values of Λ, the projection of 𝐿 on the internuclear axis. 𝐻𝑠𝑜 destroys both 𝐿 and

𝑆 quantum numbers, causing energy splitting between states with different values of

Ω = Λ + Σ, where Σ is the projection of 𝑆 on the internuclear axis. Finally, 𝐻𝑟𝑜𝑡

destroys the Λ and Σ quantum numbers, resulting in states separated predominantly

by rotational intervals rather than electronic influences. By ranking the order of

importance of these different contributions, an initial decision about the correct basis

set can be made according to Table 1.2.
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1.2.1 Case (a)

In Hund’s case (a), represented schematically in Figure 1-3, the orbital and spin

angular momenta are strongly coupled to the internuclear axis, 𝑧. Of course, since the

potential of a diatomic molecule is cylindrically rather than spherically symmetric,

𝐿 cannot be a rigorously good quantum number. However, the projection of 𝐿 (and

𝑆) on the internuclear axis are well-defined and labeled Λ (and Σ). The values of Λ

are integers 0, 1, 2, . . . , and are represented symbolically as Σ, Π, Δ, . . . . The two

orbital and spin projection quantum numbers are summed to obtain the projection

of the total electron angular momentum on the internuclear axis,

Ω = Λ + Σ (1.9)

The total angular momentum 𝐽 is then formed by addition of Ω and the rotational

angular momentum 𝑅. Since 𝑅 is, by definition, perpendicular to the internuclear

axis, Ω also represents the projection of the total angular momentum on the inter-

nuclear axis. In addition, the projection of 𝐽 on the space-fixed, or laboratory frame

axis 𝑍 is also well-defined and denoted by 𝑀 . The total wave function in case (a)

is written as the product of an electronic orbital part, |𝑛Λ⟩, an electronic spin part,

|𝑆Σ⟩, a vibrational part, |𝑣⟩, and a rotational part, |𝐽Ω𝑀⟩, where 𝑛 represents all

remaining state labels (e.g., electronic configuration). The electronic character of a

case (a) state is compactly summarized by the symbol 2𝑆+1ΛΩ. The approximately

good angular momentum quantum numbers in case (a) are 𝐽 , 𝑆, Ω, Λ, and Σ.

The real advantage of case (a) basis states is that many operators of interest are

diagonal in this basis, or in other words, they commute with the rotational Hamilto-

nian,

𝐻𝑟𝑜𝑡 = 𝐵𝑅2 (1.10)

From our vector model, we know 𝐽 = 𝑅+𝐿+ 𝑆, so we can evaluate the matrix

elements of this Hamiltonian in case (a) by,

𝐻𝑟𝑜𝑡 = 𝐵(𝐽 −𝐿− 𝑆)2 (1.11)
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Figure 1-3: Schematic representation of Hund’s case (a). 𝐿 is not defined because the
potential of a diatomic molecules is cylindrically, rather than spherically symmetric.
𝐿 and the well-defined 𝑆 are strongly coupled to the internuclear axis, and make the
projections Λ and Σ. Since 𝑅 is, by definition, perpendicular to the internuclear axis,
the total angular momentum 𝐽 makes the projection Ω = Λ + Σ on the internuclear
axis. Simultaneously, the projection of 𝐽 on the space-fixed 𝑍-axis is specified by the
quantum number 𝑀 .
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= 𝐵
[︀
𝐽2 + 𝑆2 +𝐿2 − 2𝐽 · 𝑆 − 2𝐽 ·𝐿+ 2𝑆 ·𝐿

]︀
(1.12)

= 𝐵
[︀
𝐽2 + 𝑆2 − 2𝐽𝑧𝐿𝑧 − 2𝐽𝑧𝑆𝑧 + 2𝑆𝑧𝐿𝑧 + 𝐿2

𝑧

]︀
−𝐵 [𝐽+𝑆− + 𝐽−𝑆+]

−𝐵 [𝐽+𝐿− + 𝐽−𝐿+]

+ [𝑆+𝐿− + 𝑆−𝐿+]

+
1

2
𝐵 [𝐿+𝐿− + 𝐿−𝐿+] (1.13)

In Equation 1.13, we recognize that the terms on the first line are diagonal in

this basis. The term on the second line decreases Ω and Σ by one; it is called the

“𝑆-uncoupling” operator and operates within a case (a) 2𝑆+1Λ multiplet. The term

on the third line decreases Λ and Ω by one, and is called the “𝐿-uncoupling” operator.

The term on the fourth line connects states with the same Ω, differing in Λ and Σ

by one. These terms from the third and fourth lines are the off-diagonal elements

responsible for “perturbations” between electronic states. The last line of Equation

1.13 can be re-written as:

1

2
𝐵 [𝐿+𝐿− + 𝐿−𝐿+] = 𝐵

[︀
𝐿2
𝑥 + 𝐿2

𝑦

]︀
(1.14)

= 𝐵
[︀
𝐿2 − 𝐿2

𝑧

]︀
(1.15)

= 𝐵𝐿2
⊥ (1.16)

This 𝐿2
⊥ term, which has no dependence on 𝐽 , contributes an unknown, constant

energy shift, and is typically incorporated into the electronic part of the Hamilto-

nian.91 Neglecting this term, and re-writing Equation 1.13 using the relationship

𝐽𝑧 = 𝐿𝑧 + 𝑆𝑧, we find the case (a) rotational Hamiltonian has the form:

𝐻𝑟𝑜𝑡 = 𝐵
[︀
𝐽2 − 𝐽2

𝑧 + 𝑆2 − 𝑆2
𝑧

]︀
−𝐵 [𝐽+𝑆− + 𝐽−𝑆+]−𝐵 [𝐽+𝐿− + 𝐽−𝐿+] +𝐵 [𝑆+𝐿− + 𝑆−𝐿+] (1.17)

From Equation 1.17, the eigenvalues of the basis states are given by 𝐸𝑟𝑜𝑡 =
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𝐵 [𝐽(𝐽 + 1)− Ω2 + 𝑆(𝑆 + 1)− Σ2]. This result is obtained from the well known an-

gular momentum operators in the case (a) basis, which are summarized below in

atomic units.

⟨𝐽Ω𝑀 |𝐽2|𝐽Ω𝑀⟩ = 𝐽(𝐽 + 1) (1.18)

⟨𝐽Ω𝑀 |𝐽𝑧|𝐽Ω𝑀⟩ = Ω (1.19)

⟨𝐽Ω𝑀 |𝐽𝑍 |𝐽Ω𝑀⟩ = 𝑀 (1.20)

⟨𝐽Ω∓ 1𝑀 |𝐽±|𝐽Ω𝑀⟩ = [𝐽(𝐽 + 1)− Ω(Ω∓ 1)]1/2 (1.21)

⟨𝑆Σ|𝑆2|𝑆Σ⟩ = 𝑆(𝑆 + 1) (1.22)

⟨𝑆Σ|𝑆𝑧|𝑆Σ⟩ = Σ (1.23)

⟨𝑆Σ± 1|𝑆±|𝑆Σ⟩ = [𝑆(𝑆 + 1)− Σ(Σ± 1)]1/2 (1.24)

⟨Λ|𝐿𝑧|Λ⟩ = Λ (1.25)

The subscripted operators 𝑂𝑧 and 𝑂𝑍 give projections onto the molecule-fixed

𝑧-axis and the space-fixed 𝑍-axis, respectively, and the projections onto the two

additional axes are not simultaneously specified. This indeterminacy is represented

in the vector model as precession of the angular momentum vector about an axis;

for instance, 𝐽 precesses about the 𝑍-axis because we can only construct states that

are simultaneous eigenfunctions of 𝐽2 and any one component of 𝐽 , traditionally,

𝐽𝑍 = 𝑀 . The operators 𝑂± = 𝑂𝑥 ± 𝑖𝑂𝑦 are ladder operators, which connect states

with the same value of angular momentum, but different projections. Note the phase

convention that gives different forms for 𝐽± and 𝑆±. This can be traced back to the

anomalous commutation relations of the molecule-fixed projection operators 𝐽𝑥,𝑦,𝑧:

[𝐽𝑥, 𝐽𝑦] = −𝑖𝐽𝑧 (1.26)

This feature (or flaw) arises as a result of our simultaneous specification of the eigen-

values of both 𝐽𝑧 and 𝐽𝑍 for the rotational wave function.163
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1.2.2 Case (b)

When dealing with 2𝑆+1Σ+/− states, in which there is no orbital angular momen-

tum, a case (a) treatment is unnecessary and the much simpler case (b) rotational

Hamiltonian can be used. The vector coupling model for case (b) is shown in Figure

1-4. In this case, the spin of the electron is no longer coupled to the internuclear axis.

Thus, the projection of 𝐿 on the internuclear axis, Λ𝑧, couples to the molecular frame

rotation,𝑅, to form the angular momentum𝑁 , which is the total angular momentum

neglecting spin. Since 𝑅 is perpendicular to the internuclear axis, the projection of

𝑁 on the internuclear axis is Λ. The electronic spin is coupled next to form the total

angular momentum 𝐽 = 𝑁 + 𝑆. Note that as a result of this secondary coupling,

the projection of 𝐽𝑧 is not diagonal in the case (b) basis and Ω is not specified. The

approximately good angular momentum quantum numbers in case (b) are 𝐽 , 𝑆, 𝑁 ,

and Λ.

We can evaluate the rotational Hamiltonian in case (b) exactly as before,

𝐻𝑟𝑜𝑡 = 𝐵𝑅2 (1.27)

= 𝐵(𝑁 −𝐿)2 (1.28)

= 𝐵
[︀
𝑁 2 +𝐿2 − 2𝑁 ·𝐿

]︀
(1.29)

= 𝐵
[︀
𝑁 2 − 2𝑁𝑧𝐿𝑧 + 𝐿2

𝑧

]︀
−𝐵 [𝑁+𝐿− +𝑁−𝐿+]

+
1

2
𝐵 [𝐿+𝐿− + 𝐿−𝐿+] (1.30)

=
[︀
𝑁 2 −𝑁2

𝑧

]︀
−𝐵 [𝑁+𝐿− +𝑁−𝐿+] (1.31)

We recognize the third line of Equation 1.30 as the constant term, 𝐿2
⊥, defined

in Equation 1.16, and neglect it in the rotational Hamiltonian. In the last step, we

use the fact that 𝑁𝑧 = 𝐿𝑧 = Λ. The first term of Equation 1.31 is diagonal in

the case (b) basis and allows us to find the zeroth-order rotational energy, 𝐸𝑟𝑜𝑡 =

𝐵 [𝑁(𝑁 + 1)− Λ2]. Note as well that Equation 1.31 has no 𝑆 dependence and so,

to zeroth order, every rotational state in case (b) is 2𝑆 + 1 degenerate. In fact, this
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Figure 1-4: Schematic representation of Hund’s case (b). Again, 𝐿 is not well-defined
because the molecular potential is not spherically symmetric, but 𝐿 precesses rapidly
around the internuclear axis, making the projection Λ. The total angular momentum
neglecting spin, 𝑁 , is defined by the coupling of Λ𝑧 and the molecular frame rotation,
𝑅. Lastly, the spin, 𝑆, couples with 𝑁 to form the total angular momentum, 𝐽 . The
nutation of 𝑁 and 𝑆 about 𝐽 averages out the direction of these component vectors
so that only 𝐽 makes a well-defined projection on the space-fixed axis, 𝐽𝑍 = 𝑀 .
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degeneracy is often lifted by terms in the molecular Hamiltonian other than 𝐻𝑟𝑜𝑡,

such as spin-rotation coupling. This will be dealt with in a following chapter on the A
2Σ+ state of NO. The cost for the simplicity of the rotational Hamiltonian in Hund’s

case (b) is the loss of 𝑆𝑧 as a diagonal operator.

1.2.3 Case (d)

Hund’s case (d) is perhaps the most important of the angular momentum coupling

cases for the work presented in this thesis. The reason for this is simply that it is

an excellent basis set with which to calculate properties of Rydberg states. When an

electron is excited to some high-𝑛, high-ℓ Rydberg level, it does not closely approach

the ion-core and so it experiences an approximately spherical potential. In other

words, 𝐻𝑒𝑙 is weak, while the rotation of the ion-core strongly affects the level struc-

ture. The vector coupling scheme is shown in Figure 1-5. Since, the electron does not

strongly “feel” the cylindrical symmetry of the ion-core, the orbital angular momen-

tum is coupled instead to the axis of rotation. Similar to case (b), we first form the

total angular momentum neglecting spin, 𝑁 = 𝑅+𝐿. The total angular momentum

𝐽 is then formed by coupling 𝑆 to 𝑁 . It should be pointed out that, in general, one

should choose an appropriate Hund’s coupling case to describe the ion-core as well as

the state of the Rydberg electron. There may be electronic spin and orbital angular

momentum, 𝑆+ and 𝐿+, associated with the ion-core that require explicit treatment.

Considering the goal of describing Rydberg states of NO, we restrict the discussion

to ion-cores with 1Σ+ ground states, in which 𝐽+ = 𝑅. This means we will discuss

only the simplest form of Hund’s case (d), which has approximately good quantum

numbers 𝐽 , 𝑆, 𝑁 , 𝑅, and 𝐿. In the limit of high rotation, 𝐿𝑅 also becomes a good

quantum number, specifying the projection of 𝐿 on 𝑅. At all times, however, 𝐿𝑅 can

be used as a state index that exactly specifies the value 𝐿𝑅 = 𝑁 −𝑅.91 As promised,

it is useful at this point to slightly modify our notation for the orbital angular mo-

mentum. Our discussion of case (d) has focused almost exclusively on Rydberg states,

where a single electron is excited to a high energy orbital. As such, we should switch

from the multi-electron 𝑆, 𝐿, and 𝐿𝑅 to the single-electron 𝑠, ℓ, and ℓ𝑅. This is the
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notation that will be used throughout the remainder of this thesis.

Figure 1-5: Schematic representation of Hund’s case (d). Unlike case (a) and case
(b), the weak interaction between the Rydberg electron and the ion-core leads to the
coupling of 𝐿 with the ion-core rotation, 𝑅, to form 𝑁 . This re-coupling means the
projection of 𝐿 on the internuclear axis, Λ, is no longer defined. The projection of
𝐿 on 𝑅, called 𝐿𝑅, is only well-defined in the limit of high rotation. The spin, 𝑆,
is lastly coupled with 𝑁 to give the total angular momentum, 𝐽 , with space-fixed
projection, 𝐽𝑍 = 𝑀 . The vector nutation indicated by circles results in an averaging
out of the direction of the angular momentum vectors relative to the internuclear axis
so that no body-fixed projection quantum numbers are defined.

The rotational Hamiltonian in case (d) is trivial to evaluate:

𝐻𝑟𝑜𝑡 = 𝐵+𝑅2 (1.32)

where 𝐵+ is the rotational constant of the ion-core rather than the neutral molecule.

This expression immediately gives the zeroth-order rotational energy, 𝐸𝑟𝑜𝑡 = 𝐵+𝑅(𝑅+

1). If we can specify ℓ𝑅 = 𝑁 −𝑅, then we can re-write the rotational energy as

𝐸𝑟𝑜𝑡 = 𝐵+
[︀
𝑁(𝑁 + 1)− 2𝑁ℓ𝑅 − ℓ𝑅 + ℓ2𝑅

]︀
(1.33)

This expression is practically useful because rotational combination differences, the

energy difference of two spectroscopic lines originating or terminating on the same
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energy level, rigorously determine 𝑁 rather than 𝑅. When placed on a reduced term

value plot,a the assigned levels fall along a line with slope −2ℓ𝑅, thus allowing the

assignment of 𝑅 as well.

For Rydberg states that obey Hund’s case (d) coupling, we use a compact notation

to uniquely label every state: 𝑛ℓ𝑅𝑁 . In this Rydberg “term symbol,” 𝑛 is the principal

quantum number, ℓ is the orbital angular momentum of the Rydberg electron, 𝑅 is

the rotational quantum number of the ion-core, and 𝑁 is the spinless total angular

momentum. This notation exactly specifies one Rydberg state (neglecting spin),

which, for 1Σ+ ion-cores, has parity 𝑝 = 𝑅 + ℓ, and allowed values of 𝑁 given by:

|𝑅− ℓ| ≤ 𝑁 ≤ 𝑅 + ℓ (1.34)

1.2.4 Transforming between Hund’s cases

Having chosen one Hund’s case for the description of a particular electronic state,

we are not doomed to live in that basis set forever. The coupling cases can be

inter-related to one another by a unitary transformation of the particular basis. The

transformation from a coupling case (𝛽) to a coupling case (𝛼) is written as

𝑈𝛼
𝛽 = ⟨𝛼|𝛽⟩ (1.35)

where the braket represents the projection of the initial basis function |𝛼⟩ in coupling

case (𝛼) on the final basis function |𝛽⟩ in the coupling case (𝛽). For two coupling

cases, which differ by the coupling of only two angular momentum vectors, such

as (a)→(b) or (b)→(d), this projection is naively given by a Clebsch-Gordan (C-G)

coefficient ⟨𝑗1𝑚1𝑗2𝑚2|𝑗3𝑚3⟩, as in atomic cases. Thus, it is straightforward to perform

the transformation (a)→(d) in two steps by first converting to case (b).

aA reduced term value plot is generated by subtracting the zeroth-order rotational energy from the
total energy of an observed level and plotting this value against a rigorously good quantum number.
These plots are extremely useful for identifying the quantum numbers that are pattern-forming.
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Case (a) to case (b)

The transformation between cases (a) and (b) is frequently encountered since the

transition dipole matrix element for a molecule is most conveniently written in a case

(a) basis. The important angular momenta in this transformation are 𝑁 , 𝑆, and 𝐽 ,

which are related by

𝐽 = 𝑁 + 𝑆 (1.36)

We immediately encounter a problem in writing down the transformation matrix as a

result, once again, of the anomalous commutation relations of 𝐽 in the molecule-fixed

frame. In fact, all operators that describe rotations of the molecule-fixed coordinate

system relative to the lab frame (e.g., 𝑅, 𝑁 , 𝐽 ,. . . ) obey anomalous commutation

rules. Thus, our problem is with 𝑆. Following Van Vleck’s procedure, we can find a

consistent coupling scheme by writing the relationship as

𝐽 − 𝑆 = 𝑁 (1.37)

𝐽 + 𝑆 = 𝑁 (1.38)

where 𝑆 = −𝑆 is the reversed spin angular momentum with projection −Σ. This

corrects the inconsistency because 𝑆 now obeys the same anomalous commutation

rules,

[︁
𝑆𝑖, 𝑆𝑗

]︁
= [−𝑆𝑖,−𝑆𝑗] (1.39)

= (−𝑆𝑖)(−𝑆𝑗)− (−𝑆𝑗)(−𝑆𝑖) (1.40)

= 𝑆𝑖𝑆𝑗 − 𝑆𝑗𝑆𝑖 (1.41)

= 𝑖𝑆𝑘 (1.42)

= −𝑖𝑆𝑘 (1.43)

Now we can write out the transformation matrix as previously described.

𝑈𝑁
ΩΣ = ⟨𝑁 |ΩΣ⟩ (1.44)
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= ⟨𝐽Ω𝑆 − Σ|𝑁Λ⟩ (1.45)

= (−1)𝐽−𝑆+Λ [2𝑁 + 1]1/2

⎛⎝𝐽 𝑆 𝑁

Ω −Σ −Λ

⎞⎠ (1.46)

In the second step, we have re-expressed the C-G coefficient in terms of the more

convenient 3j symbol.

This procedure represents just one approach in addressing the anomalous commu-

tation of molecule-fixed operators, which act on the rotational degree of freedom of

the molecule. Another approach, championed by Brown and Howard,22 is to evaluate

all operators in a space-fixed frame. The magnitude of the transformation matrix

elements will end up essentially identical, except for a phase factor.b We start this

procedure by writing out the case (b) wavefunction in the decoupled space-fixed rep-

resentation.

|𝑁Λ𝑆𝐽𝑀⟩ =
∑︁

𝑀𝑁 ,𝑀𝑆

(−1)𝑁−𝑆+𝑀 [2𝐽 + 1]1/2

⎛⎝ 𝑁 𝑆 𝐽

𝑀𝑁 𝑀𝑆 −𝑀

⎞⎠ |𝑁𝑀𝑁Λ⟩ |𝑆𝑀𝑆⟩

(1.47)

where 𝑀𝑃 is the space-fixed projection (𝑍-axis) of the operator 𝑃 . The lab frame

spin wavefunction |𝑆𝑀𝑆⟩ can be related to the body frame wavefunction |𝑆Σ⟩ by

|𝑆𝑀𝑆⟩ =
∑︁
Σ

[︁
𝒟(𝑆)

𝑀𝑆Σ

]︁*
|𝑆Σ⟩ (1.48)

where 𝒟𝐽
𝑀 ′𝑀(𝜑, 𝜃, 𝜒) is the general symbol for a Wigner rotation matrix. The Euler

angles will be supressed throughout the remainder of the derivation. Now, our task is

to find the coupling element ⟨𝑆𝑀𝑆| ⟨𝑁Λ𝑀𝑁 |𝐽Ω𝑀⟩ |𝑆Σ⟩. Each rotational wavefunc-

bThe following may seem like a lot of work for “just” a phase convention, since the phase is
essentially arbitrary anyway. Zare cutely points out that a daily encounter with phase conventions
is the decision to drive on the right or left side of the road. “As long as you and everyone else are
consistent in this choice, it certainly does not matter, but inconsistency can be detrimental to your
health!”163 By being rigorous in our initial choice of phase, the results presented here can more
easily be applied to other situations and compared with the literature.
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tion can also be written in terms of a Wigner rotation matrix:

|𝐽𝐾𝑀⟩ =
[︂
2𝐽 + 1

8𝜋2

]︂1/2 [︁
𝒟(𝐽)

𝑀𝐾

]︁*
= (−1)𝑀−𝐾

[︂
2𝐽 + 1

8𝜋2

]︂1/2
𝒟(𝐽)

−𝑀−𝐾 (1.49)

where the angular momentum 𝐽 makes the projections 𝑀 and 𝐾 on the lab frame

Z-axis and body frame z-axis, respectively. The coupling element is then written as

⟨𝑆𝑀𝑆| ⟨𝑁Λ𝑀𝑁 |𝐽Ω𝑀⟩ |𝑆Σ⟩

=

√︀
(2𝑁 + 1)(2𝐽 + 1)

8𝜋2

∫︁
𝒟(𝑆)

𝑀𝑆Σ
𝒟(𝑁)

𝑀𝑁Λ

[︁
𝒟(𝐽)

𝑀Ω

]︁*
d(𝜑, 𝜃, 𝜒) (1.50)

= (−1)𝑀−Ω

√︀
(2𝑁 + 1)(2𝐽 + 1)

8𝜋2

∫︁
𝒟(𝑆)

𝑀𝑆Σ
𝒟(𝑁)

𝑀𝑁Λ𝒟
(𝐽)
−𝑀−Ωd(𝜑, 𝜃, 𝜒) (1.51)

= (−1)𝑀−Ω
√︀

(2𝑁 + 1)(2𝐽 + 1)

⎛⎝ 𝑆 𝑁 𝐽

𝑀𝑆 𝑀𝑁 −𝑀

⎞⎠⎛⎝𝑆 𝑁 𝐽

Σ Λ −Ω

⎞⎠ (1.52)

Now that we have determined the projection of the space-fixed case (b) wavefunction

on the molecule-fixed case (a) wavefunction, we can use this coupling element to

determine the projection of the molecule-fixed case (b) wavefunction on the molecule-

fixed case (a) wavefunction:

⟨𝑁 |ΩΣ⟩ =
∑︁

𝑀𝑆 ,𝑀𝑁

(−1)𝑁−𝑆+𝑀+𝑀−Ω
√
2𝑁 + 1(2𝐽 + 1)

⎛⎝ 𝑁 𝑆 𝐽

𝑀𝑁 𝑀𝑆 −𝑀

⎞⎠
× (−1)𝑁+𝑆+𝐽

⎛⎝ 𝑁 𝑆 𝐽

𝑀𝑁 𝑀𝑆 −𝑀

⎞⎠ (−1)𝑁+𝑆+𝐽

⎛⎝𝑁 𝑆 𝐽

Λ Σ −Ω

⎞⎠ (1.53)

= (−1)𝑁+𝑆−Ω [2𝑁 + 1]1/2

⎛⎝𝐽 𝑆 𝑁

Ω −Σ −Λ

⎞⎠
×

∑︁
𝑀𝑆 ,𝑀𝑁

(2𝐽 + 1)

⎛⎝ 𝑁 𝑆 𝐽

𝑀𝑁 𝑀𝑆 −𝑀

⎞⎠⎛⎝ 𝑁 𝑆 𝐽

𝑀𝑁 𝑀𝑆 −𝑀

⎞⎠ (1.54)

= (−1)𝑁−𝑆+Ω [2𝑁 + 1]1/2

⎛⎝𝐽 𝑆 𝑁

Ω −Σ −Λ

⎞⎠ (1.55)

= (−1)𝑁−𝐽+Σ ⟨𝐽Ω𝑆 − Σ|𝑁Λ⟩ (1.56)
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where, in the second-to-last step, we have used the orthonormality of 3j symbols to

simplify the result. In the final step, the coupling element is written in terms of a

C-G coefficient and it becomes obvious that this result is identical to our previous

result in Equation 1.45, obtained by the reversed angular momentum method, with

the exception of the phase factor.

Case (b) to case (d)

We encounter the same difficulty in this basis set transformation as dealt with in

the previous section. The relevant angular momentum vectors are given by𝑁 = 𝑅+ℓ,

and we are faced with the ambiguity of the anomalous commutation of 𝑁 and 𝑅 in

the molecule-fixed frame. Van Vleck’s reversed angular momentum method could be

applied again:

𝑁 − ℓ = 𝑅 (1.57)

𝑁 + ℓ̃ = 𝑅 (1.58)

where ℓ̃ is the reversed orbital angular momentum with projection quantum number

−Λ. The transformation matrix element is then just the C-G coefficient ⟨𝑁Λℓ̃− Λ|𝑅0⟩.

Instead, we take the more rigorous approach outlined above by explicitly evaluating

the matrix element in the lab frame where all operators obey normal commutation

rules. The decoupled space-fixed case (d) wavefunction is written as

|𝑅ℓ𝑁𝑀⟩ =
∑︁

𝑀ℓ,𝑀𝑅

(−1)ℓ−𝑅+𝑀 [2𝑁 + 1]1/2

⎛⎝ ℓ 𝑅 𝑁

𝑀ℓ 𝑀𝑅 −𝑀

⎞⎠ |𝑅0𝑀𝑅⟩ |ℓ𝑀ℓ⟩ (1.59)

Again, we can connect the lab frame electronic wavefunction |ℓ𝑀ℓ⟩ to the body frame

wavefunction |ℓΛ⟩ by

|ℓ𝑀ℓ⟩ =
∑︁
Λ

[︁
𝒟(ℓ)

𝑀ℓΛ

]︁*
|ℓΛ⟩ (1.60)
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Now, we can evaluate a matrix element similar to the case(a)-case(b) transformation:

⟨ℓ𝑀ℓ| ⟨𝑅0𝑀𝑅|𝑁Λ𝑀⟩ |ℓΛ⟩

=

√︀
(2𝑅 + 1)(2𝑁 + 1)

8𝜋2

∫︁
𝒟(ℓ)

𝑀ℓΛ
𝒟(𝑅)

𝑀𝑅0

[︁
𝒟(𝑁)

𝑀Λ

]︁*
d(𝜑, 𝜃, 𝜒) (1.61)

= (−1)𝑀−Λ

√︀
(2𝑅 + 1)(2𝑁 + 1)

8𝜋2

∫︁
𝒟(ℓ)

𝑀ℓΛ
𝒟(𝑅)

𝑀𝑅0𝒟
(𝑁)
−𝑀−Λd(𝜑, 𝜃, 𝜒) (1.62)

= (−1)𝑀−Λ
√︀

(2𝑅 + 1)(2𝑁 + 1)

⎛⎝ ℓ 𝑅 𝑁

𝑀ℓ 𝑀𝑅 −𝑀

⎞⎠⎛⎝ ℓ 𝑅 𝑁

Λ 0 −Λ

⎞⎠ (1.63)

This coupling element can now be used to evaluate the projection of the molecule-fixed

case (d) wavefunction on the molecule-fixed case (b) wavefunction:

⟨𝑅|Λ⟩ =
∑︁

𝑀ℓ,𝑀𝑅

(−1)ℓ−𝑅+𝑀+𝑀−Λ
√
2𝑅 + 1(2𝑁 + 1)

⎛⎝ ℓ 𝑅 𝑁

𝑀ℓ 𝑀𝑅 −𝑀

⎞⎠
×

⎛⎝ ℓ 𝑅 𝑁

𝑀ℓ 𝑀𝑅 −𝑀

⎞⎠⎛⎝ ℓ 𝑅 𝑁

Λ 0 −Λ

⎞⎠ (1.64)

= (−1)ℓ−𝑅−Λ [2𝑅 + 1]1/2 (−1)ℓ+𝑅+𝑁

⎛⎝𝑅 ℓ 𝑁

0 Λ −Λ

⎞⎠
×

∑︁
𝑀ℓ,𝑀𝑅

(2𝑁 + 1)

⎛⎝ ℓ 𝑅 𝑁

𝑀ℓ 𝑀𝑅 −𝑀

⎞⎠⎛⎝ ℓ 𝑅 𝑁

𝑀ℓ 𝑀𝑅 −𝑀

⎞⎠ (1.65)

= (−1)𝑁−Λ [2𝑅 + 1]1/2

⎛⎝𝑅 ℓ 𝑁

0 Λ −Λ

⎞⎠ (1.66)

= (−1)ℓ+Λ ⟨𝑁Λℓ− Λ|𝑅0⟩ (1.67)

Again, we see that this result is only different by a phase factor from our naive

expectation of the matrix element’s value. Going one step further, we can take explicit

consideration of the parity, to write this element as:

⟨𝑅|Λ⟩ = (−1)𝑁−Λ

[︂
1 + (−1)𝑝+𝑅+ℓ

2

]︂ [︂
2(2𝑅 + 1)

1 + 𝛿Λ0

]︂1/2⎛⎝𝑅 ℓ 𝑁

0 Λ −Λ

⎞⎠ (1.68)
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where 𝑝 is the parity and 𝛿Λ0 is a Kronecker delta.

1.2.5 Transition intensities

The transition intensity between two electronic states is easily evaluated using

Hund’s case (a) basis states. The transition dipole operator in the space-fixed frame

is written in terms of the molecule-fixed components as:

𝜇(1, 𝑟) =
∑︁
𝑞

[︀
𝐷(1)

𝑟𝑞

]︀*
𝜇(1, 𝑞) (1.69)

where the number 1 indicates a rank 1 tensor, 𝑟 refers to the space-fixed component

of interest and, in the experiments described here, corresponds to the polarization of

the radiation. For two case (a) basis states, |𝐽Ω𝑀Λ𝑣𝑆Σ⟩, with vibronic part |Λ𝑣⟩

and rotational part |𝐽Ω𝑀⟩, we can now write the transition dipole matrix element,

recognizing that the electromagnetic radiation does not act directly on the spin part

of the wavefunction:

⟨𝐽Ω𝑀Λ𝑣𝑆Σ|𝜇(1, 𝑟)|𝐽 ′Ω′𝑀 ′Λ′𝑣′𝑆 ′Σ′⟩

=

⟨
𝐽Ω𝑀Λ𝑣𝑆Σ

⃒⃒⃒⃒
⃒∑︁

𝑞

[︀
𝐷(1)

𝑟𝑞

]︀*
𝜇(1, 𝑞)

⃒⃒⃒⃒
⃒ 𝐽 ′Ω′𝑀 ′Λ′𝑣′𝑆 ′Σ′

⟩
(1.70)

=
∑︁
𝑞

⟨
𝐽Ω𝑀

⃒⃒⃒⟨
Λ𝑣

⃒⃒⃒[︀
𝐷(1)

𝑟𝑞

]︀*
𝜇(1, 𝑞)

⃒⃒⃒
𝐽 ′Ω′𝑀 ′

⟩⃒⃒⃒
Λ′𝑣′

⟩
(1.71)

=
∑︁
𝑞

⟨
𝐽Ω𝑀

⃒⃒⃒[︀
𝐷(1)

𝑟𝑞

]︀* ⃒⃒⃒
𝐽 ′Ω′𝑀 ′

⟩
⟨Λ𝑣|𝜇(1, 𝑞)|Λ′𝑣′⟩ (1.72)

=
∑︁
𝑞

[(2𝐽 + 1)(2𝐽 ′ + 1)]1/2

8𝜋2

∫︁
𝐷

(𝐽)
𝑀Ω

[︀
𝐷(1)

𝑟𝑞

]︀* [︁
𝐷

(𝐽 ′)
𝑀 ′Ω′

]︁*
dΩ

× ⟨Λ|𝜇(1, 𝑞)|Λ′⟩ ⟨𝑣|𝑣′⟩ (1.73)

=
∑︁
𝑞

[(2𝐽 + 1)(2𝐽 ′ + 1)]1/2

8𝜋2
(−1)𝑀−Ω

[︂∫︁
𝐷

(𝐽)
−𝑀−Ω𝐷

(1)
𝑟𝑞 𝐷

(𝐽 ′)
𝑀 ′Ω′dΩ

]︂*
× ⟨Λ|𝜇(1, 𝑞)|Λ′⟩ ⟨𝑣|𝑣′⟩ (1.74)
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=
∑︁
𝑞

(−1)𝑀−Ω [(2𝐽 + 1)(2𝐽 ′ + 1)]
1/2

⎛⎝ 𝐽 1 𝐽 ′

𝑀 −𝑟 −𝑀 ′

⎞⎠⎛⎝𝐽 1 𝐽 ′

Ω −𝑞 −Ω′

⎞⎠
× ⟨Λ|𝜇(1, 𝑞)|Λ′⟩ ⟨𝑣|𝑣′⟩ (1.75)

In Equation 1.73, we assumed a separation of the electronic and vibrational wave-

functions, where the square of the overlap integral is the Franck-Condon factor,

𝐹𝐶 = ⟨𝑣|𝑣′⟩2. We will typically ignore this factor throughout since we are mainly

considered with rotational line intensities within a single vibronic band. The relative

polarization of the radiation fields determines 𝑟, the projection of the photon angu-

lar momentum on the laboratory 𝑍-axis: 𝑟 = ±1 for left- and right-handed circular

polarization, respectively, and 𝑟 = 0 for linear polarization along the 𝑍-axis. The

molecule-fixed component, 𝑞, is determined by 𝑞 = Λ − Λ′, where 𝑞 = 0 is a “par-

allel” transition and 𝑞 = ±1 is a “perpendicular” transition. To calculate the total

rotational line intensity, Equation 1.75 is squared and then summed over the relevant

𝑀 values. Equation 1.75 will serve as the starting point for the calculation of all

transition intensities in this work. While only the ground X 2Π1/2 state of NO is a

near case (a) state, the unpaired Rydberg electron in NO means there will be spin

doublets to consider in every electronic state that we will encounter. As pointed out

by Petrović and Field,122 a rigorous treatment of the line intensities in a multiple

resonance spectroscopic experiment requires explicit consideration of the spin dou-

blets, even if they are unresolved in the experiment. Since the dye lasers used in

most of the described experiments have only modest coherence properties, we assume

that all unresolved spin doublets are excited incoherently. Thus, just as for magnetic

sub-levels, the transition intensities for each spin component, given by the squares of

Equation 1.75, are summed to obtain the total transition line intensity.

1.3 Outline

Chapter 2 presents the experimental tools used throughout this thesis. We de-

scribe the operation of our traditional pulsed dye lasers and the construction and
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testing of a high-coherence laser source, based on pulsed amplification of a continuous-

wave laser. We discuss the theory and technical details of chirped-pulse millimeter-

wave spectroscopy, and its particular advantages in the study of Rydberg states. Fi-

nally, the physics of our atomic and molecular sources, supersonic jets and buffer-gas

cooled beams, is reviewed.

In Chapter 3, we describe the development of a coherent population transfer tech-

nique, optical-millimeter-wave stimulated Raman adiabatic passage (optical-mmW

STIRAP), to move population from a low-lying valence state to a high-ℓ Rydberg

state via a potentially lossy intermediate state. This situation describes a typical

molecule, in which optical access is usually available to predissociated, low-ℓ Rydberg

states, and one additional unit of angular momentum is needed to gain access to a

long-lived, core-nonpenetrating state. Our proof-of-principle demonstration is per-

formed on an atomic beam of Ca, which allows for quantitative characterization of

the mechanism and efficiency of population transfer. This result opens the door wide

to systematic study and control of the Rydberg states of many molecular species.

In Chapter 4, we discuss our chirped-pulse millimeter-wave spectroscopy experi-

ments on 𝑛𝑔 Rydberg states of nitric oxide, only the second molecule studied by this

method. A three-color triple-resonance laser excitation via the low-lying 4𝑓 state

is critical to populating these core-nonpenetrating states. The extreme electric field

sensitivity of high-𝑛, high-ℓ Rydberg states results in line broadening, observation

of “forbidden” transitions, and superradiant emission. We explain that all of these

observations arise due to the Stark effect. This chapter also describes a mechanisti-

cally explicit, long-range electrostatic model of Rydberg energy level structure and

the ways in which our high-ℓ mmW spectra allow new insights into this model.

Autoionization of NO Rydberg states is the subject of Chapter 5. A long-range

electrostatic model again serves as our theoretical framework. We demonstrate that

𝑛𝑔 states decay predominantly by autoionization consistent with our model predic-

tions. We interpret previous work on 𝑛𝑓 states in light of our autoionization model

and suggest that, in spite of the rapid predissociative decay of 𝑛𝑓 states, autoion-

ization is controlled mainly by long-range forces. Finally, this chapter concludes by
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prescribing specific schemes to generate state-selected molecular NO+ ions.

A brief summary of these results and outlook for new developments appears in

Chapter 6.
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Chapter 2

Experimental methods

2.1 Laser sources

Rydberg states of atoms and molecules lie 1/2𝑛2, in atomic units, below the ion-

ization limit, which is typically several eV above the ground state. As a reference,

most small organic molecules have ionization potentials of about 10 eV.34 Classical

spectroscopy of Rydberg states involved observing emission spectra from electric dis-

charge sources33 or absorption spectra from deep UV lamp sources.79 To perform

state-selective preparation of Rydberg states, narrowband laser radiation is required.

Moreover, by using a multiple step laser excitation scheme, we can exert additional

control over the choice of Rydberg state to investigate, for instance, by increasing the

value of ℓ beyond what is accessible from the ground electronic state configuration.

In this work, two types of tunable lasers are used: Nd:YAG-pumped pulsed dye lasers

and pulse-amplified CW lasers.

2.1.1 Pulsed dye lasers

Pulsed dye lasers have been the workhorse of molecular electronic spectroscopy

for decades. Using an organic dye as the lasing medium and a high-power pulsed laser

as the pump, this type of laser allows for near continuous frequency coverage across

the visible and near-infrared (NIR) spectrum, from approximately 400 to 900 nm,
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with appropriate selection of the dye and pump wavelength. The high-energy, pulsed

output of a dye laser is ideal for performing non-linear optical frequency conversion,

which further extends the operating range of these lasers into the UV and infrared

regions.

In all of our experiments, the pump laser radiation is provided by solid state

Nd:YAG lasers with a 20 Hz repetition rate (Spectra Physics, GCR-290 and PRO-

270). The second harmonic (532 nm) or third harmonic (355 nm) of the laser is used

depending on the desired dye laser frequency. The 1064, 532, and 355 nm beams have

pulse widths of approximately 10, 8, and 7 ns, respectively. In most cases, the Nd:YAG

laser is injection-seeded, meaning a CW laser locked to the cavity length seeds the

generation of the pulsed light. This process dramatically narrows the linewidth of the

fundamental from ∼ 1 cm−1 to ∼ 0.003 cm−1 by selecting a single cavity mode for

lasing. If an Nd:YAG wavelength is used in a later frequency conversion step, the ∼ 1

cm−1 linewidth would reduce the efficiency of this process and lead to an unacceptably

large bandwidth for our experiments. An additional effect of this process is to produce

a smooth temporal profile for the pulsed output. When operating without injection

seeding, many longitudinal modes of the cavity are amplified by laser operation and

the beating between these slightly different frequencies produces intensity variation

within the laser pulse. Since the temporal shape of the dye laser pulse closely matches

the pump laser pulse, this intensity variation would be evident in the dye laser output

as well.

Three types of dye lasers are used in this work: a Lambda Physik Scanmate 2E,

a Sirah Cobra-Stretch, and a Continuum ND6000. The Sirah and Continuum lasers

are dual grating systems. The use of two gratings as wavelength selectors reduces

the effective bandwidth of the laser output to ∼ 0.04 cm−1, however two to three

longitudinal cavity modes operate simultaneously. The Lambda Physik laser is a

single grating laser with a pulsed output bandwidth of ∼ 0.1 cm−1. Although not

used in the experiments described here, an intracavity etalon can be installed in this

laser to reduce the bandwidth to ∼ 0.03 cm−1. Unlike the dual-grating systems,

when operating with an intracavity etalon, each pulse of this laser typically occurs
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in a single mode with linewidth ∼ 0.008 cm−1, though this frequency will drift and

eventually mode hop within the specified bandwidth of ∼ 0.03 cm−1. Early coherent

population transfer experiments in the Field group employed the Lambda Physik

laser because of this unusual characteristic, though it was found that the coherence

properties were still too poor to achieve the desired coherent population transfer.60

2.1.2 Pulse-amplified CW lasers

The development of a pulse-amplified CW laser system was motivated by the goal

of optical-mmW STIRAP, discussed in Chapter 3. As mentioned above, pulsed dye

lasers, even the nearly single-mode operation of the Lambda Physik laser lacked the

necessary coherence properties. In order to generate near Fourier-transform limited,

high-energy laser pulses, we turned to pulsed amplification. This technique uses a

narrowband CW laser source to seed light amplification in dye cells pumped by a

pulsed Nd:YAG laser, thus producing pulse energies similar to a simple dye laser, but

with a linewidth close to the Fourier transform limit.

A schematic of the pulse amplification setup is shown in Figure 2-1. A tunable CW

Ti:Sapphire laser (MSquared Solstis) produces the seed light from ∼ 725 to ∼ 975

nm. This laser light is launched into a polarization-maintaining optical fiber and

approximately 100 mW of power is delivered to the amplifier. Optical isolators on

each end of the fiber prevent feedback from the amplification stages to the laser. Such

feedback could destabilize the single-mode operation of the laser or cause damage to

the optics due to the high pulse energy. Significantly, the fiber improves the pointing

stability of the seed laser relative to a path through free space, so realignment of the

seed laser is rarely necessary.

The amplifier setup (Lioptec, custom) is composed of two rectangular dye cells

and one Bethune (capillary) cell. Each cell is pumped in stages in the transverse

direction by progressively more power from the second harmonic of a Nd:YAG laser

(Spectra Physics, LAB-170, 10 Hz). After each of the first two cells, spatial filters

serve to transmit the desired laser radiation, while reducing the amplified spontaneous

emission (ASE), which propagates with slightly different wavevectors, from reaching
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the next amplification stage. The ratio of lasing to ASE content in the pulsed output

of each stage can be estimated by comparing, on a fast photodiode, the signal when

the seed laser is unblocked and blocked. This is not an exact measurement since the

presence of the seed radiation will certainly reduce the ASE content relative to what

is observed without any seed radiation present. However, we have found this method

useful in practice for improving the amplifier alignment.

In general, the alignment is improved when the overlap between the seed laser, the

pump laser, and the dye stream is optimized. This requires matching the seed laser

beam size to the width of the dye stream, while using cylindrical lenses to expand

the pump laser along the direction of the seed laser propagation. In addition, it is

necessary to focus the pump laser in the perpendicular direction in order to match

the size of the seed laser beam. If the pump laser beam is larger than the seed laser

beam, unseeded dye will undergo population inversion and produce exclusively ASE.

If the pump laser beam is smaller than the seed laser beam, the nonuniform pumping

intrinsic to the transversely pumped rectangular cell design is exacerbated. This

effect produces a nonuniform spatial profile of the laser intensity as well as spatially

nonuniform phase evolution of the laser frequency.54 Overlap of the two laser beams is

critical to operation of the pulsed amplifier. Small alignment drifts can have profound

effects on the output power and spectral quality. Thus, regular re-alignment of the

system is necessary.

The final amplification stage is a Bethune cell, which is a triangular prism with

a dye capillary running through the center. This configuration allows the dye to be

pumped from all sides by reflection of the pump laser off of the two angled faces. As

a result, the critical overlap of seed and pump laser is almost trivial to obtain. In

this cell it is important to adjust the beam diameter of the seed laser to be slightly

smaller than the bore of the capillary in order to maximize overlap while avoiding

diffraction rings. The dye concentration in the cell should also be chosen so that the

absorption depth of the pump laser beam matches the bore diameter to maximize the

gain in transit through the dye cell.
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Figure 2-1: Schematic diagram of the pulse-amplified CW laser system. A CW laser,
transmitted through a polarization-maintaining optical fiber, seeds the pulsed dye
amplifier. Three dye cells are transversely pumped by the second harmonic of a
Nd:YAG laser and produce up to 10 mJ per pulse of near-infrared radiation. Spatial
filtering around each dye cell serves to reduce the ASE content in the pulsed laser
output.
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2.1.3 Frequency chirping in dye amplifiers

A well-known phenomenon associated with pulsed laser amplification in a dye

solution is a broadening of the laser pulse frequency beyond the Fourier transform

limit due to time-dependent frequency variation within the pulse. In addition, this

frequency change need not be symmetric about the seed frequency, and can produce

a frequency offset in addition to broadening. Often, the use of a pulsed amplification

system is motivated by the desire to perform non-linear frequency conversion (e.g.,

second harmonic generation, four-wave mixing) and these additional steps cause fur-

ther degradation of the frequency purity of the laser. Thus, the intra-pulse phase

evolution of pulse amplified CW laser systems limits the precision and accuracy of

high-resolution laser spectroscopy experiments.

This phenomenon was investigated in detail by the Eyler group,54 who determined

that the source of these frequency deviations is predominantly due to time-varying

gain in the amplifier, rather than transient heating, which might produce a time-

varying refractive index of the solvent. A simple model of this effect gives the evolution

of the instantaneous frequency of the laser pulse at position 𝐿 and time 𝜏 in the dye

amplifier:

𝑓inst(𝐿, 𝜏) = 𝑓inst(0, 𝜏)−
𝐿

2𝑛(𝜔)𝜆
𝛼′(𝜔)

d

d𝑡
𝑁1(𝜏) (2.1)

where 𝑓inst(0, 𝜏) is the instantaneous frequency at the input of the dye amplifier, 𝑛 is

the index of refraction of the solvent at frequency 𝜔 or wavelength 𝜆, and 𝑁1(𝜏) is

the number density of dye molecules in the first excited state. The real part of the

effective polarizability, 𝛼′(𝜔), is defined as the real part of the electric susceptibility

per dye molecule per unit volume: 𝜒′(𝜔, 𝜏) = 𝛼′(𝜔)𝑁1(𝜏). Since the population in the

first excited state, 𝑁1, varies significantly over the short duration of the laser pulse,

large excursions in frequency become possible.

We have experimentally characterized the typical phase behavior of our pulsed dye

amplification system by the standard optical heterodyne technique.54 To obtain the

phase variation of a laser pulse at optical frequencies, we beat the pulsed output of

the amplifier chain against the seed CW beam, shifted by a constant radio frequency
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offset. The CW laser field can be described as

𝐸0 = 𝐸cw𝑒
−𝑖(𝜔0+𝜔RF)𝑡 + c.c. (2.2)

where 𝐸cw is the amplitude of the CW laser, 𝜔0 is the optical frequency, 𝜔𝑅𝐹 is the

offset frequency and c.c. stands for the complex conjugate. We can write a similar

expression for the pulsed laser field:

𝐸1 = 𝐸p(𝑡)𝑒
−𝑖(𝜔0𝑡+𝜑(𝑡)) + c.c. (2.3)

where 𝐸p(𝑡) is the time-varying amplitude of the pulsed laser, and 𝜑(𝑡) is the (un-

known) time-varying phase function. The photodiode is a power detector that sees

the total signal:

𝑉photodiode ∝ |𝐸0 + 𝐸1|2 (2.4)

= 𝐸2
cw + 𝐸2

p(𝑡) + 𝐸cw𝐸p(𝑡)×
(︀
𝑒𝑖(𝜑(𝑡)−𝜔RF𝑡) + 𝑒−𝑖(𝜑(𝑡)−𝜔RF𝑡)

)︀
(2.5)

The first term in Equation 2.5 produces a DC offset and can be ignored. The second

term results in amplitude variation, and the third term contains the significant in-

formation — the RF beat frequency modified by the phase fluctuations of the pulsed

laser output. Extracting that term allows the instantaneous frequency of the laser

pulse to be deduced by:

𝑓inst =
1

2𝜋

d𝜑

d𝑡
(2.6)

Most previous works have performed this phase extraction in the frequency domain by

performing a Fourier transform of the photodiode signal, applying a filter to isolate

the signal at 𝜔RF from the low frequency amplitude variation, then performing an

inverse Fourier transform to recover the complex-valued electric field of the laser

pulse, which contains the desired phase evolution.5443 Our method works entirely in

the time domain by taking advantage of the high-speed oscilloscopes available in our

lab.
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A schematic of the experimental setup appears in Figure 2-2. A fraction of the CW

beam with frequency 𝜔0, which seeds the pulsed amplification chain, is split off and

double-passed through an acousto-optic modulator (AOM) operating at frequency Ω.

The first order diffracted beam is shifted by a small angle relative to the original beam

so that a beam block can separate the two frequencies, 𝜔0 and 𝜔0 − Ω. A “cat’s eye”

retroreflector composed of a lens and mirror combination sends the frequency-shifted

beam back through the AOM, while reducing the impact of any small misalignment.

The first order diffracted beam traveling in the opposite direction, now with frequency

𝜔0 − 2Ω, is deflected back along the path of the original input beam. This defines

the beat frequency defined above as 𝜔RF = 2Ω. A Fresnel rhomb placed after the

AOM rotates the polarization of the diffracted beam by 𝜆/2 after two passes and the

frequency-shifted beam is then separated from the input beam by a polarizing beam

splitter. This frequency shifted CW radiation is combined with a portion of the pulsed

output from the amplification chain at a non-polarizing beamsplitter. The combined

radiation passes through a single mode fiber, in order to overlap the wavefronts of

the two fields, and is then detected on a fast photodiode. The output signal from the

photodiode is high-pass filtered to remove the low frequency amplitude variation and

digitized on a 12.5 GHz oscilloscope at 25 GS/s.

A typical chirp measurement signal, using LDS 798 dye at 800 nm and a 750 MHz

RF frequency, appears as the data points (red circles) in the top panel of Figure 2-3.

The 10 ns sample shown represents the signal between the ∼10% intensity limits of

the laser pulse. This data is fit directly in the time domain by a nonlinear least squares

algorithm with a sinusoidal function that includes a constant frequency term, as well

as a phase term with time dependence up to third order. The fit is shown as a black

line in the top panel of Figure 2-3. Applying Equation 2.6 to the fitted phase gives

the measured instantaneous frequency of the laser pulse, shown in the bottom panel

of Figure 2-3. We find an obvious negative frequency chirp in this pulse, spanning at

least 50 MHz and centered at ∼ 100 MHz. The negative chirp direction indicates that

the electric susceptibility of the dye at this wavelength is negative. This is typical

since most dyes are used at wavelengths red of their fluorescence maximum in order
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Figure 2-2: Experimental setup for measurement of the frequency offset and chirp in
a pulsed dye amplifier. The same CW beam that seeds the amplifier with frequency
𝜔0 is double-passed through an AOM operating at frequency Ω. This shifted beam
is combined with the pulsed output of the amplifier chain with frequency 𝜔0 + 𝜑(𝑡)
where 𝜑(𝑡) is the unknown phase function produced in the dye amplifiers. The two
beams are passed through a single mode fiber to overlap their wavefronts and then
detected on a fast photodiode.

to avoid overlap with the absorption band of the dye. This single measurement is

representative of the phase behavior in our amplification system, but every pulse is

far from identical. We observe the center frequency and chirp width to vary by several

tens of MHz in either direction.

This significant shot-to-shot variation in the phase evolution is explained by the

findings of Eyler and co-workers and is a result of the rectangular dye cells used in our

setup.54 They found that rectangular cells, as a result of the required tight focusing

of the pump beam, are extraordinarily sensitive to the alignment of the system. Small

deviations of the pump or seed laser beams result in dramatic changes in the time-

varying gain of the system and thus produce large changes in the phase evolution

of the laser pulses. In addition, the tight pump beam focus produces significant

variation of the pump intensity across the dye cell, which results in both amplitude

and phase variation in the transverse profile of the amplifier chain output. It is entirely

possible that the pointing instability in the beam path could result in sampling slightly

different portions of the output beam in the chirp measurement shot-to-shot. This

would further add to the observed variation in phase evolution.

Eyler and co-workers found that capillary-type cells did not suffer from the same
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Figure 2-3: A typical measurement of the frequency chirp in the output of the pulsed
dye amplification chain. The top panel shows data points (red circles) measured with
a high-speed photodiode and digitized on an oscilloscope at 25 GS/s. The black line
is a fit to the data, including a constant frequency term, as well as a phase term with
time dependence up to third order. The instantaneous frequency of the pulse appears
in the lower panel, which shows a chirp of about 50 MHz within the 10% intensity
limits of the pulse and with a constant offset of about 100 MHz.
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extreme sensitivity to alignment as rectangular cells. This is unsurprising since the

transverse pump beam is not tightly focused on such cells and the entire dye volume

is illuminated, reducing the spatial variation in gain. Eikema and co-workers used

longitudinally pumped dye cells,37 which should similarly reduce fluctuations in the

phase evolution since excellent overlap of the dye stream, pump laser, and seed laser,

can be achieved without tight focusing. In our setup, the use of a single capillary cell

in the last stage does not significantly improve the intensity variation in the output

laser pulse, and likely has limited impact on spatial phase variation as well.

The very large offset frequency is somewhat unusual and is a result of the phase

of the emission not returning to the same value as at the beginning of the pulse. This

type of behavior was observed by Eikema and co-workers who suggested that this is

a result of some remaining excited state population at the end of the laser pulse.37

They attributed this residual population to re-absorption of the dye laser frequency

that occurs at later points in the dye cell. This interpretation was supported by

the observation that the offset increased as the amplification wavelength was tuned

blue toward the absorption band center of the dye. We have no further experimental

observations to challenge this hypothesis and a similar mechanism may be operative

here.

There are several methods that have been explored for controlling or reducing the

chirping effect in dye amplifiers. Eikema and co-workers have employed an active

compensation scheme, which uses an electro-optic modulator (EOM) on the seed

beam to compensate for measured phase fluctuations in an active feedback loop.37

This method produced a larger frequency offset, but significantly reduced the pulsed

laser bandwidth. Another technique pursued by Eyler and co-workers allowed for

passive compensation of frequency chirps around a small wavelength range.42 The

authors noted that Equation 2.1 will only result in zero frequency chirp if the real

part of the effective polarizability is itself equal to zero. For a particular dye, this

will only occur at one wavelength in the fluorescence band. However, by mixing

two dyes with opposite signs for the real part of the electric susceptibility and no

overlap of their respective absorption and emission bands, zero susceptibility at chosen
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wavelengths could be achieved. Their method was demonstrated using a 10:1 mixture

of Rhodamine 610 and DCM, which produced a near-Fourier transform limited laser

pulse at 606 nm. This is a straightforward improvement that will be incorporated in

future work. At the time of writing, we have not obtained truly Fourier transform-

limited laser pulses with our pulsed amplification system. However, the measured

phase evolution is incorporated into the simulations presented in Chapter 3.

2.1.4 Frequency calibration

In general, high-resolution laser spectroscopy has not been the focus of this thesis

and so careful absolute frequency calibration has not been undertaken. Throughout,

a wavemeter (High Finesse, Ångstrom WS/7) has been used to monitor and set the

frequency of all lasers. This wavemeter is regularly calibrated using a frequency-

stabilized HeNe laser (Spectra Physics, 117A) and is specified to have an absolute

accuracy of 60 MHz.67 All pulsed dye lasers are measured by sending a small fraction

of the pulsed laser output directly to the wavemeter.

The pulsed dye amplification system takes further advantage of the wavemeter. A

portion of the CW seed laser is sent to the wavemeter for measurement. A Labview

program controls the frequency of the CW laser via an ethernet network, using the

wavemeter measurement in an active feedback loop. This method allowed the pulsed

amplification system to be set at a desired frequency for many hours despite the

slow (typically temperature-induced) frequency drift intrinsic to the CW laser. In

addition, this allowed for a simple method of scanning the laser by changing the

desired frequency in discrete steps and allowing the continuously operating wavemeter

lock to drag the CW laser frequency.

When absolute frequency calibration is required, it is advisable to use an additional

frequency reference, such as a frequency comb or molecular spectrum. In the near-

infrared range where the Ti:Sapphire system operates, the standard reference is a

high-temperature (ca. 500∘C) iodine cell.
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2.2 Chirped-pulse millimeter-wave spectroscopy

Chirped-pulse millimeter-wave (CPmmW) spectroscopy was first demonstrated in

the Field Lab in 2011,116 and is an extension of the chirped-pulse Fourier transform

microwave (CP-FTMW) technique pioneered in the lab of Brooks Pate.1920 As in

traditional Fourier transform microwave spectroscopy, the CP-FTMW technique uses

pulsed radiation to polarize (typically rotational) transitions in the microwave region

of the spectrum. The polarization of all emitters in the sample interferes construc-

tively to produce a macroscopic polarization, which emits radiation at the natural

frequency of the transition. This detected field, called free induction decay (FID),

gradually diminishes in amplitude as dephasing of the ensemble occurs due to mo-

tional (Doppler broadening) and collisional (pressure broadening) effects. The FID

is detected by an antenna in the apparatus and phase-coherently averaged in the

time domain. Following data collection, the FID signal, averaged over many pulses,

is Fourier transformed to obtain a frequency domain spectrum of the excited transi-

tions. In a traditional FTMW instrument, a cavity is placed around the sample to

reduce the required input power and enhance the resultant FID signal. This limits

the detection bandwidth in a single experiment, typically to ∼ 1 MHz, and requires

simultaneous tuning of the cavity length and excitation frequency to obtain a ∼ 10

GHz broadband spectrum.

In contrast to the cavity-based technique, chirped-pulse methods are truly broad-

band. The first key change is to remove the cavity from the experiment and simply

place the sample between the excitation and detection antennae. Without a cavity,

the excitation pulse can cover the entire frequency range of interest, ∼ 10 GHz, in

a single pulse experiment. To generate an excitation pulse with a very wide band-

width, one might use a pulse with a very short time duration, as is typical in optical

spectroscopy. For a Gaussian shaped pulse, the time-bandwidth product is given by:

Δ𝜈Δ𝜏 ≈ 0.44 (2.7)

Thus, to cover several GHz of spectra in a single-shot, a pulse with a 100 ps duration
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will have a FWHM in the frequency domain of about 4.4 GHz. The problem with

this strategy is that the power delivered to a single transition with a typical < 1 MHz

linewidth will be extremely small.

The alternative, made possible by the development of high-speed arbitrary wave-

form generators (AWG), is to stretch the bandwidth over a much longer duration

pulse by chirping the frequency, thereby delivering much more power per unit band-

width. Chirped pulses are typically ∼ 1 𝜇s in duration because they must be shorter

than the dephasing time of the sample, typically ∼ 10 𝜇s at 10 GHz due to Doppler

broadening. On the detection side of the experiment, a broadband, high-speed dig-

itizer is the critical piece of technology required to perform averaging in the time

domain for all signals within the bandwidth of the excitation pulse. Finally, all fre-

quency sources must be phase-locked to a common reference in order to perform the

averaging phase-coherently. If the phase of the excitation pulse were to drift from

shot to shot, the sample FID would also exhibit a shot-to-shot phase shift. Since the

detection circuit begins sampling at the same time for each experiment, the random

phases of the individual FIDs would interfere destructively and all signal would be

lost.

The main advantage of the chirped-pulse method is the time required to collect

a broadband spectrum relative to a cavity FTMW instrument. Since the cavity

instrument must be finely scanned over the entire spectrum, a large fraction of the

collection time is consumed in moving the mirrors rather than collecting data. To

obtain a spectrum with a similar signal-to-noise ratio (SNR), the Pate group reports a

typical cavity experiment time of ∼ 15 hours and a typical chirped-pulse experiment

time of ∼ 15 minutes.20 Beyond this extraordinary speed up in data acquisition, since

the chirped-pulse method collects a broadband spectrum in a single acquisition, the

experiment time and hence SNR, can be chosen independently of the bandwidth of

the desired spectrum.

One of the main disadvantages to the chirped-pulse technique is the greater power

requirement. In a cavity instrument, the power build-up due to the cavity, with a

typical 𝑄 of 104, allows the use of pulses with peak power on the order of 10 𝜇W.20
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In the chirped-pulse case, the absence of a cavity implies 𝑄 = 1 and a factor of 104

more power is required. Moreover, the ∼ 1 MHz bandwidth of the cavity instrument

relative to the ∼ 10 GHz bandwidth of a chirped pulse setup results in another

factor of approximately 104 in power required. Thus, most CP-FTMW instruments

employ high-power traveling wave tube amplifiers to reach ∼1 kW peak excitation

powers. This has additional technical implications. For example, a protection switch

is required after the receiving antenna to protect the sensitive detection circuit from

being destroyed by this enormous power input.

The physics of both pulsed excitation and chirped excitation are determined by the

time evolution of a density matrix, 𝜌, which describes the quantum states of interest

under the influence of a Hamiltonian, 𝐻, that describes the light-matter interaction.

This evolution is governed by the Liouville-von Neumann equation:

𝑖~
d𝜌

d𝑡
= [𝐻, 𝜌] (2.8)

The purpose of a density matrix approach is that the effects of decoherence can be

handled easily by including additional evolution terms in Equation 2.8. This is the

starting point for the derivation of the well-known Bloch equations used in NMR.

McGurk and co-workers have presented several analytical results that are specifically

relevant to microwave experiments.100 If we consider a chirped pulse with a linear

frequency sweep, the E-field is written as

𝐸 = 𝐸𝑚𝑎𝑥𝑒
𝑖(𝜔0𝑡+

1
2
𝛼𝑡2) (2.9)

where 𝐸𝑚𝑎𝑥 is the peak electric field, 𝜔0 is the initial frequency, and 𝛼 is the sweep

rate. The instantaneous frequency of the chirped pulse is give by

𝜔inst =
d

d𝑡

(︂
𝜔0𝑡+

1

2
𝛼𝑡2

)︂
= 𝜔0 + 𝛼𝑡 (2.10)

For a linear chirped pulse in the weak field limit, McGurk et al. showed that the
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signal scales as100

𝑃 ∝ 𝜇2𝐸𝑚𝑎𝑥Δ𝑁√
𝛼

(2.11)

where 𝜇 is the transition dipole moment and Δ𝑁 is the population difference be-

tween the two levels. This result highlights the favorable scaling with bandwidth for

a chirped pulse relative to a Fourier transform limited pulse, which we previously

discussed qualitatively. The signal for a chirped pulse with fixed duration scales in-

versely as the square root of the bandwidth. The signal for a single-frequency pulse

scales inversely with the bandwidth because the bandwidth and pulse duration are

inversely proportional.

Relative to microwave frequencies, spectrometers in the millimeter-wave region

face a number of additional technical and fundamental challenges. The first tech-

nical challenge is that CPmmW experiments are nearly always power-limited. The

high-power amplifiers typically used in CP-FTMW experiments are not readily avail-

able above frequencies of ∼50 GHz. In the spectrometers used in this work, max-

imum powers of 10 to 30 mW are typical. For a typical rotational transition with

a dipole moment of 1 Debye, this is well below the power required for optimal po-

larization. Although the current state-of-the-art cannot compete with more mature

microwave technology, the millimeter-wave and terahertz regions are currently un-

dergoing rapid development due to applications in communications, imaging, and

radio-astronomy.104 Already, Virginia Diodes is producing millimeter-wave broadcast

systems that can generate >100 mW within select bands.151 Further technological

advances, for example, fast protection switches, may be on the horizon.

Second, CPmmW spectrometers typically generate the required high frequency

signals by multiplication of a low frequency signal by a large factor, which can be

anywhere from ×8 to ×24 or more. This renders the technique more sensitive to phase

instability in the setup since a small phase jitter at low frequency can become very

large after several multiplication steps. As mentioned, phase coherence is essential to

performing averaging in the time domain. This problem reduces the effectiveness of

averaging to improve the SNR, which ideally scales as the square root of the number
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of averages. While phase jitter can arise from several sources including electrical

fluctuations, temperature fluctuations, and mechanical vibrations, there are two main

types of jitter: 𝑡-jitter and 𝜑-jitter.116 These are illustrated by Equations 2.12 and

2.13, respectively.

𝐸 ∝ sin

[︂
𝜔0(𝑡+Δ𝑡) +

1

2
𝛼(𝑡+Δ𝑡)2 + 𝜑

]︂
(2.12)

𝐸 ∝ sin

[︂
𝜔0𝑡+

1

2
𝛼𝑡2 + (𝜑+Δ𝜑(𝜔))

]︂
(2.13)

In some cases, the effect of phase jitter can be minimized by collecting many FIDs with

few averages, post-processing the data, and then averaging these results. For example,

a slow drift inΔ𝑡 could be corrected by shifting each FID in the time domain to realign

their phases. Park et al. observed jitter in Δ𝜑 that was independent of frequency.116

This allowed development of a method in which the phase of the Fourier transform

of each collection was rotated to maximize the phase coherence and hence the signal

amplitude.

The final difference between the millimeter-wave and microwave experiments that

will be discussed here is fundamental. In most rotational spectroscopy experiments,

the dephasing is dominated by Doppler broadening, both in molecular beams and in

static cells. Since the Doppler effect is proportional to the frequency of the transition,

dephasing is significantly faster in the millimeter-wave range. For example, Pate

et al. observe 10 𝜇s Doppler-limited FID lifetimes below 20 GHz in a supersonic

expansion,20 while Park et al. observe 2 𝜇s lifetimes around 90 GHz.116 This has two

major effects. First, the excitation must be performed in a shorter pulse than the

dephasing time scale in order to observe FID. This further exacerbates the problem

of limited excitation power. It also makes observation of coherent phenomena, like

Rabi flopping, more challenging. Second, it limits the resolution of the spectrometer.

Around 90 GHz, linewidths of several hundred kHz are typical in a supersonic jet.

Although Doppler broadening is a fundamental challenge, it can be reduced by careful

experimental choices. The beam type (effusive vs. supersonic), temperature, geometry

(axial vs. transverse), and choice of carrier gas will all affect the timescale for Doppler
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dephasing.

2.2.1 Spectrometer design

In this work, millimeter-wave spectrometers in the 75-110 GHz (W band) and 220-

330 GHz (high-frequency band) regions of the millimeter-wave spectrum are used.

The millimeter-wave region is generally defined as light with frequencies of 30-300

GHz or wavelengths of 10-1 mm. Microwaves occupy the lower frequency range of 3-

30 GHz (100-10 mm) and are sometimes defined as broadly as 300 MHz - 300 GHz (1

m - 1 mm). Above the millimeter-wave region is the sub-millimeter-wave or terahertz

band, which is defined to be in the range of 300 GHz - 3 THz (1 - 0.1 mm), but often

refers to frequencies as high as 30 THz in the far-infrared, and as low as 0.1 THz in

the millimeter-wave region.104 Our millimeter-wave spectrometers rely on the same

solid-state diode technology as modern microwave sources, rather than the optical

techniques used to generate far-infrared and high-frequency terahertz light. In the

millimeter-wave spectrum, light is resonant with high-frequency rotations, either low-

𝐽 transitions of small molecules or high-𝐽 transitions of large molecules, and more

rarely, some very low frequency vibrations. In this work, however, millimeter-wave

radiation will polarize “pure electronic” transitions between Rydberg states of atoms

and molecules. In general, the high-frequency band will cover Δ𝑛 = ±1 transitions

with principal quantum numbers of 27 < 𝑛 < 31, Δ𝑛 = ±2 transitions with 34 <

𝑛 < 40, and Δ𝑛 = ±3 transitions with 38 < 𝑛 < 46, etc. The W band will cover

Δ𝑛 = ±1 transitions with 39 < 𝑛 < 45, and larger Δ𝑛 transitions at higher principal

quantum number values.

A schematic diagram of the W band CPmmW spectrometer is shown in Figure

2-4. A 10 MHz Rubidium frequency standard (i) provides a reference frequency to

the fast oscilloscope (xxx) and the 9.375 GHz phase-locked oscillator (ii). This 9.375

GHz source serves as the primary frequency source for the spectrometer; it clocks

the arbitrary waveform generator and is mixed with the two output channels of the

AWG to produce the excitation pulse and the down-conversion signal. We found that

this arrangement significantly reduced phase noise in the spectrometer. It is possible
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Figure 2-4: Schematic diagram of the W band millimeter-wave spectrometer. Parts
labeled by roman numerals are described in the text.

that further improvement in the phase stability could be achieved by using the same

multiplication factor on both the broadcast and receiver arms of the microwave circuit.

One channel of the AWG outputs a chirped or single frequency pulse, or a train of

pulses, which is then mixed with the 9.375 GHz oscillator. The lower sideband from

this mixing step is selected and undergoes amplification and multiplication by a total

factor of 12 to produce W band frequencies. The filter used in this step (viii) with

a pass band from approximately 6.3 to 8.3 GHz, sets the W band frequency limits

from approximately 75.6 to 99.6 GHz. A wider bandpass filter would allow access to

higher W band frequencies, up to 12×9.17 = 110 GHz, although a notch filter may be

required to further suppress the nearby 9.375 GHz signal. A rotary attenuator (xvi)

located before the broadcast horn (xvii) allows for attenuation of the excitation pulse

to produce optimal polarization of the Rydberg-Rydberg transitions. The excitation

pulse is approximately collimated by a Teflon lens (xviii) and intersects the sample

transverse to the direction of the molecular beam propagation.

The FID signal is focused by a second teflon lens onto an identical receiver horn.

The rectangular horn antennae preserve the polarization of the microwave field, al-

lowing for polarization-sensitive diagnostics of the investigated transitions. The FID

signal is then amplified in a W band low-noise amplifier (LNA) (xix) and down-

converted in a harmonic mixer (xx). The local oscillator frequency for this step is

generated by mixing the 9.375 GHz source with a constant frequency output from the

second channel of the AWG. The upper sideband of this mixing step is selected, then

amplified and multiplied by a factor of 8. The intermediate frequency (IF) output of
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the harmonic mixer is amplified by a LNA (xxix) and then digitized on a 50 GS/s

oscilloscope. The spectrometer design follows each passive frequency conversion step

with filtering, amplification, and isolation steps. Due to the large multiplication fac-

tors involved, it is important to maintain the highest frequency purity possible for all

signals. Filtering steps remove unwanted sidebands, harmonics, and spurious signals,

while isolation steps reduce the likelihood of spurious signals generated by backward

propagating reflections through the amplifier-multiplier chain. All components of the

spectrometer are specified in detail in the list below and roman numerals correspond

to the labels in Figure 2-4.

i) 10 MHz Rubidium frequency standard (Stanford Research Systems, FS725)

ii) 9.375 GHz phase-locked dielectric resonator oscillator (Miteq, DLCRO 010-

09375-3-15P)

iii) Power Divider, -3 dB, 2-18 GHz (Anaren, 41130)

iv) Power Divider, -3 dB, 2-18 GHz (Norsal Ind., 8121)

v) Arbitrary Waveform Generator, 12 GS/s (Agilent, M8190A)

vi) Low Noise Amplifier, 6-18 GHz (Pasternack, PE1523)

vii) Triple-Balanced Mixer, 2-18 GHz, 10 dB loss (Macom, M93)

viii) Bandpass Filter, 20 dB suppression, 6.3-8.3 GHz (Spectrum Microwave, 311-

307246-001)

ix) Amplifier, 24 dB gain, +14 dBm min., 6-12 GHz (Avantek, AFT-12633-10F)

x) Isolator, 4-12 GHz (Innowave, 1090IR-549)

xi) Passive Frequency Doubler, 9.5-19 GHz, 10 dB loss (Marki, D95190)

xii) Bandpass Filter, 12-18 GHz (unknown, 0955-0553-1)

xiii) Amplifier, 20 dB gain, +13 dBm min., 6-18 GHz (ALC Microwave, ALS03-0283)
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xiv) Isolator, 15 dB, 6-18 GHz (TRW Microwave, AMF 6483)

xv) ×6 Active Multiplier Chain, 75-110 GHz (Millitech, AMC-10-RFHB0)

xvi) Rotary Attenuator, 0-50 dB, 75-110 GHz (Hitachi, W0519)

xvii) Standard gain horn, 24 dBi, WR10 (TRG Control Data, W890)

xviii) 3" Teflon Lens, 𝑓 = 150 mm at 500 GHz (Thorlabs, LAT150)

xix) Low Noise Amplifier, 20 dB gain, 75-110 GHz (Millitech, LNA-10-02150)

xx) Balanced Mixer, 75-110 GHz, 10 dB loss (Millitech, MXP-10-RFSSL)

xxi) Triple-Balanced Mixer, 4-16 GHz, 7 dB loss (Miteq, DM0416LW2)

xxii) Bandpass Filter (Reactel, AG1233-1)

xxiii) Amplifier, 30 dB gain, 7-12 GHz (Phase One Microwave, SG12-2515)

xxiv) Isolator, 15 dB, 6-18 GHz (Ditom, DM16018)

xxv) Bandpass Filter, 7-12 GHz (Time, BXF334)

xxvi) ×4 Active Frequency Multiplier, 33-50 GHz (Phase One, SX50-416)

xxvii) Fixed Attenuator, WR22, 10 dB loss (Millitech, FXA-22-R10GN)

xxviii) ×2 Active Multiplier Chain, 60-90 GHz (Millitech, AMC-12-110546)

xxix) Low Noise Amplifier, 25 dB gain, 0.1-18 GHz (Miteq, AMF-7D-00101800-24-

10P)

xxx) 50 GS/s, 12 GHz Digital Oscilloscope (Tektronix, DPO71254B)

Essentially the same spectrometer allows access to the high frequency (220-330

GHz) band as well. The schematic diagram of the high frequency configuration is

shown in Figure 2-5. All components of the broadcast arm are identical and a passive

frequency tripler (I) is added between the attenuator and the broadcast horn. This
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device has a typical efficiency of only 3%, resulting in approximately 1 mW output

power across the frequency range 226.8 to 298.8 GHz, limited by the bandpass fil-

ter (viii) as discussed above. While this extreme power loss would be unacceptable

for most rotational spectroscopy experiments, the large transition dipole moments of

Rydberg-Rydberg transitions make this low power setup still useful. In the W band

experiments at high 𝑛, we typically attenuate the broadcast by 15-20 dB to obtain

optimal polarization. For the high frequency experiments performed on Δ𝑛 > 1 tran-

sitions at high 𝑛 or Δ𝑛 = 1 transitions at lower 𝑛, the weaker transition moments

and lower broadcast power make attenuation rarely necessary. On the detection side

of the spectrometer, the multiplication chain (xxvi-xxviii), W band LNA (xix), and

harmonic mixer (xx) are replaced by the Virginia Diodes integrated detection mod-

ule MixAMC156 (II and III). All other components are the same as in the W band

spectrometer. On both the broadcast and detection arms, WR10 rectangular horn

antennae are attached via a waveguide transition to the WR3.4 ports of the high

frequency devices. The use of a larger waveguide size results in an overmoded waveg-

uide, meaning propagation modes other than the fundamental (TE10) are present.

This is generally not a problem for our spectroscopic experiments, and the use of

larger horn antennae simplifies the horn-to-horn alignment of the spectrometer. This

low power, high frequency design was adopted in order to access a wider high fre-

quency range than allowed by the Virginia Diodes AMC291 module and to simplify

conversion between W band and high frequency band experiments.

I) Passive Frequency Tripler, 220-330 GHz, 3% typical efficiency (Virginia Diodes,

WR3.4X3)

II) Subharmonic Mixer, 220-330 GHz (Virginia Diodes, component of MixAMC156)

III) ×12 Active Multiplication Chain, 110-175 GHz (Virginia Diodes, component of

MixAMC156)

A schematic diagram of the high power, high frequency CPmmW spectrometer

appears in Figure 2-6. The design of this spectrometer is similar to the W band
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Figure 2-5: Schematic diagram of the low power, high frequency millimeter-wave
spectrometer. By replacing only a few components of the W band spectrometer, the
same setup allows access to the high frequency band. Parts labeled by lower case
roman numerals are identical to those in the W band spectrometer. The additional
components, labeled by upper case roman numerals, are described in the text.

Figure 2-6: Schematic diagram of the high frequency millimeter-wave spectrometer.
Parts labeled by roman numerals are described in the text.
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spectrometer and its high frequency configuration. The biggest difference is the use

of the AMC291 integrated broadcast unit (x) and the MixAMC156 integrated receiver

unit (xiv and xix). These two units involve frequency multiplication, amplification,

filtering, and isolating steps just as in the home-built W-band system. The AMC291

unit has an operating range of approximately 260-300 GHz, and produces up to 30 mW

of output power, substantially more than is obtained by passive frequency tripling.

The MixAMC156 unit uses a subharmonic mixer (xiv) rather than a harmonic unit

so the required LO frequency is half the RF frequency. In all experiments with this

spectrometer, a larger bandwidth (20 GHz) Agilent oscilloscope (xxii) was used in

order to simultaneously monitor transitions with large frequency differences. Again,

WR3.4 to WR10 waveguide transitions and WR10 rectangular standard gain horns

are used on the broadcast and receiver arms. All parts of this spectrometer are listed

below and roman numerals correspond to the labels in Figure 2-6.

i) 10 MHz Rubidium frequency standard (Stanford Research Systems, FS725)

ii) 9.375 GHz phase-locked dielectric resonator oscillator (Miteq, DLCRO 010-

09375-3-15P)

iii) Power Divider, -3 dB, 2-18 GHz (Anaren, 41130)

iv) Power Divider, -3 dB, 2-18 GHz (Norsal Ind., 8121)

v) Arbitrary Waveform Generator, 12 GS/s (Agilent, M8190A)

vi) Triple-Balanced Mixer, 4-16 GHz, 7 dB loss (Miteq, DM0416LW2)

vii) Bandpass Filter, 10.9-12.7 GHz (Spectrum Microwave, C11800-1951-1355)

viii) Amplifier, 7-12 GHz, 25-35 dB gain (Phase One Microwave, SG12-2515)

ix) Isolator, 15 dB, 6-18 GHz (Ditom, DM16018)

x) ×24 Active Multiplier Chain (Virginia Diodes, AMC291)

xi) Micrometer Driven Variable Attenuator, WR3.4, 0-25 dB attenuation (Virginia

Diodes)
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xii) Standard gain horn, 24 dBi, WR10 (TRG Control Data, W890)

xiii) 3" Teflon Lens, 𝑓 = 150 mm at 500 GHz (Thorlabs, LAT150)

xiv) Subharmonic Mixer, 220-330 GHz (Virginia Diodes, component of MixAMC156)

xv) Triple-Balanced Mixer, 4-16 GHz, 7 dB loss (Miteq, DM0416LW2)

xvi) Bandpass Filter, 9.9-12.9 GHz (Lorch, 13EZ5-11450/A1700-S)

xvii) Amplifier, 6-18 GHz, 30-40 dB gain (Wright Technologies, ASG-183020)

xviii) Isolator, 15 dB, 6-18 GHz (Ditom, DM16018)

xix) ×12 Active Multiplication Chain, 110-175 GHz (Virginia Diodes, component of

MixAMC156)

xx) Low Noise Amplifier, 25 dB gain, 0.1-18 GHz (Miteq, AMF-7D-00101800-24-

10P)

xxi) DC Block, 0.01-18 GHz (Mini-Circuits, MCL 15542 BLK-18-S+)

xxii) 50 GS/s, 20 GHz Digital Oscilloscope (Tektronix, DPO72004)

In all of our spectrometer setups, we find that the use of flexible coaxial cable is

detrimental to the amplitude and phase stability of the down-converted FID signal.

For this reason, mostly rigid connectors are used on the receiver arm of the spec-

trometers and the flexible cable length was minimized by placing the oscilloscope as

close as possible to the detection unit. All active microwave components are cooled

by clamping water-cooled brass blocks to the devices. Temperature regulation to

approximately 20 ∘C is required to prevent damage from overheating and to improve

phase stability.

One challenge in our CPmmW experiments on Rydberg states is the need to

overlap the mmW field with one or more lasers in the interaction volume. Previous

experiments in the Field lab have used either a flat metal plate30126 or an off-axis
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parabolic mirror6061169 with a small hole drilled through the center as a beam com-

biner. The necessary lasers were overlapped upstream of the beam combiner then

focused through the drill hole. The laser radiation then expanded across the molecu-

lar beam to produce a large, but non-uniform excitation volume. The millimeter-wave

field was reflected by the metal plate or parabolic mirror and propagated in the same

direction as the laser beams. Although the hole in the beam combiner is much smaller

than the diameter of the mmW beam, it has dimensions similar to the mmW wave-

length. Thus, diffraction from the beam combiner slightly perturbs the mmW field

propagation.

In order to address the issue of mmW diffraction and non-uniform laser excita-

tion volume, we have employed a different method for combining the laser and mmW

beams. For laser wavelengths in the visible and near-infrared, we use indium tin oxide

(ITO) coated glass plates to combine the laser and mmW beams. ITO is a conductive

coating transparent in the visible and near-infrared that is often used as an electrode

when optical access is required, for instance, in solar cells. Due to its conductivity,

ITO also acts as a mirror for low frequency radiation from the far-infrared to the mi-

crowave region.11 Thus, ITO-coated glass plates are very effective shortpass dichroics

for visible and mmW radiation. Below ∼400 nm, ITO begins to absorb significantly,47

preventing its use as a beam combiner for UV radiation. Instead, we use large di-

ameter optics with a dielectric coating that reflects the UV wavelength of interest.

Dielectric coatings are extremely thin and non-conductive so they are transparent

to mmW radiation, and the large optic size prevents diffractive losses of the large

diameter mmW beam. Thus, dielectric mirrors are useful as longpass dichroics for

UV and mmW radiation. Using these two types of optics we are able to collimate the

laser beams to a desired size and avoid mmW diffraction from small diameter drill

holes. Both of these changes give us greater control over the Rydberg sample that we

prepare and interrogate.
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2.3 Cryogenic Buffer Gas-Cooled Beams

Essential to the success of the optical-mmW STIRAP experiment described in

Chapter 3, as well as several recent experiments in the Field lab,60,61,169 is the use of

a cryogenic buffer gas-cooled beam as the source of our cold atoms. The following

section discusses the physics behind the cryogenic buffer gas beam (CBGB) technique,

as well as the more traditional effusive and supersonic beam sources, which are also

employed in the experiments described in this thesis. In large part, this discussion

is adapted from the excellent review article by Hutzler et al.,72 supplemented with

results and insights from the many groups now working with CBGBs. I have made

estimates of some of the important parameters of our own buffer gas system, using

the details of our initial work169 in this area on BaF in 20 K Ne buffer gas. Many of

the technical details of our buffer gas system appear in the theses of Yan Zhou168 and

David Grimes59 and will not be repeated here. Creation of a buffer gas beam involves

four main steps: 1) A cold cell is filled with a buffer gas. 2) Hot atoms/molecules of

interest are introduced and thermalize with the buffer gas. 3) The atoms/molecules

diffuse through the cell and freeze on the cold walls or escape through the aperture.

4) Formation of a beam occurs at the aperture of the buffer gas cell with properties

determined by the conditions inside the cell. Each step is discussed in detail in the

following sections.

2.3.1 Flow rate and stagnation pressure

A schematic of a typical buffer gas cell is shown in Figure 2-7. The important

geometric parameters to consider are the cell length 𝐿cell, the cell diameter, 𝑑cell, the

cross-sectional cell area, 𝐴cell ≈ 𝑑2cell, the cell volume, 𝑉cell = 𝐴cell×𝐿cell, the aperture

diameter, 𝑑aperture, and the aperture area, 𝐴aperture ≈ 𝑑2aperture. We assume that the

cell is held at a constant temperature, 𝑇0, which in our case is 20 K. Buffer gas is

typically introduced into the cell via a mass flow controller, which indicates flow rate

in units of standard cubic centimeters per minute (SCCM). For reference, 1 SCCM

= 4.42× 1017 s−1.
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Figure 2-7: Schematic diagram of a buffer gas cell in which atoms/molecules are
loaded by laser ablation of a solid target. Windows are typically mounted on the cell
far from the ablation target to slow the collection of ablated dust. The important
geometrical parameters of the buffer gas cell are labeled.
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The flow rate out of the cell, 𝑓out is given by a standard result from gas kinetic

theory for the conductance of an aperture.

𝑓out =
1

4
𝑛0,𝑏𝑣0,𝑏𝐴aperture (2.14)

In this expression, 𝑛0,𝑏 refers to the number density of buffer gas (“𝑏”) under stagnation

or steady-state conditions (“0”). The mean velocity of the buffer gas is also a standard

result, and is equal to 145 m/s for both Ne at 20 K and He at 4 K,

𝑣 =

√︂
8𝑘𝐵𝑇

𝜋𝑚
(2.15)

At steady state, the flow rate of the buffer gas into the cell must be equivalent to the

flow rate out, 𝑓0,𝑏 = 𝑓out, so the buffer gas number density can be determined as a

function of the flow rate, controlled by the experimenter,

𝑛0,𝑏 =
4𝑓0,𝑏

𝐴aperture𝑣0,𝑏
(2.16)

According to Hutzler et al.,72 typical flow rates are 𝑓0,𝑏 = 1 − 100 SCCM, which,

for typical cell dimensions, give a stagnation density of 1015 − 1017 cm−3. For our

buffer gas cell, we estimate a stagnation density of 3.4 × 1016 cm−3 at a flow rate of

20 SCCM. This corresponds to a pressure of 70 mtorr at 20 K, as calculated from the

ideal gas law:

𝑃 =
𝑁

𝑉

𝑅

𝑁𝐴

𝑇 = 𝑛0,𝑏𝑘𝐵𝑇 (2.17)

where 𝑁 is the number of particles, 𝑅 is the gas constant, 𝑁𝐴 is Avogadro’s number,

and 𝑘𝐵 is Boltzmann’s constant. It should be noted that these estimates rest on

the initial assumption that the flow out of the cell aperture is free-molecular, rather

than fluid-like (hydrodynamic), as one might expect at high number density. The

maximum flow rate in the hydrodynamic regime is given by121

𝑓out = 𝑛0,𝑏𝑣0,𝑏

√
𝜋

2

(︂
𝛾

𝛾 + 1

)︂1/2(︂
2

𝛾 + 1

)︂1/(𝛾+1)

(2.18)
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Here, 𝛾 is the specific heat ratio and 𝛾 = 5/3 for a monatomic gas like helium. With

this value of 𝛾, the maximum hydrodynamic flow rate is 1.8 times the effusive flow rate

discussed above. Considering this relatively small difference in the two limits, we will

continue to use the effusive limit result to estimate the cell parameters throughout.

In fact, the flow rate approaches the effusive rate at low buffer gas loading rates and

approaches the hydrodynamic rate at higher buffer gas loading rates. The details

of this transition have been investigated in numerical simulations by the Imperial

College group.24,136

2.3.2 Thermalization

This section begins with the derivation of a simple thermalization model, originally

presented by Kim.83 We consider thermalization of species atoms/molecules at initial

temperature 𝑇𝑖, which reach a temperature 𝑇𝑁 after 𝑁 collisions with the buffer

gas at temperature 𝑇𝑏. We start by examining the effect of a single collision on the

temperature. Assume that the buffer gas and the species are point particles of mass𝑚

and𝑀 , respectively, with velocities 𝑣𝑖 and 𝑉𝑖 before the collision and velocities 𝑣𝑓 and

𝑉𝑓 after the collision. We switch to the center of mass frame where 𝑉𝑐𝑚 =
𝑀𝑉𝑖 +𝑚𝑣𝑖
𝑀 +𝑚

.

Let 𝑣𝑖, 𝑉𝑖, 𝑣𝑓 , and 𝑉𝑓 be the aforementioned velocities in the center of mass frame.

In this frame, the laws for conservation of momentum and energy are given by:

𝑃 tot = 0 = 𝑀𝑉𝑖 +𝑚𝑣𝑖 = 𝑀𝑉𝑓 +𝑚𝑣𝑓 (2.19)

𝐸tot =
𝑀

2
𝑉 2
𝑖 +

𝑚

2
𝑣2𝑖 =

𝑀

2
𝑉 2
𝑓 +

𝑚

2
𝑣2𝑓 (2.20)

After some rearrangement of the conservation laws, and averaging over statistical

distributions, we find

⟨𝑉 2
𝑓 ⟩ = ⟨𝑉 2

𝑖 ⟩ (2.21)

= ⟨𝑉 2
𝑖 + 𝑉 2

𝑐𝑚 − 2𝑉𝑖 · 𝑉𝑐𝑚⟩ (2.22)

= ⟨𝑉 2
𝑖 ⟩+ ⟨𝑉 2

𝑐𝑚⟩ −
2𝑀

𝑀 +𝑚
⟨𝑉 2

𝑖 ⟩ −
2𝑚

𝑀 +𝑚
⟨𝑉𝑖 · 𝑣𝑖⟩ (2.23)
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=

(︂
1− 2𝑀

𝑀 +𝑚

)︂
⟨𝑉 2

𝑖 ⟩+ ⟨𝑉 2
𝑐𝑚⟩ (2.24)

⟨𝑉 2
𝑓 ⟩ =

⟨(︁
𝑉𝑓 + 𝑉𝑐𝑚

)︁2
⟩

(2.25)

= ⟨𝑉 2
𝑓 ⟩+ ⟨𝑉 2

𝑐𝑚⟩+ 2⟨𝑉𝑓 · 𝑉𝑐𝑚⟩ (2.26)

=

(︂
1− 2𝑀

𝑀 +𝑚

)︂
⟨𝑉 2

𝑖 ⟩+ 2⟨𝑉 2
𝑐𝑚⟩ (2.27)

=

(︂
1− 2𝑀

𝑀 +𝑚

)︂
⟨𝑉 2

𝑖 ⟩+
2

(𝑀 +𝑚)2
(︀
𝑀2⟨𝑉 2

𝑖 ⟩+𝑚2⟨𝑣2𝑖 ⟩
)︀

(2.28)

=
𝑀2 +𝑚2

(𝑀 +𝑚)2
⟨𝑉 2

𝑖 ⟩+
2𝑚2

(𝑀 +𝑚)2
⟨𝑣2𝑖 ⟩ (2.29)

⟨𝑉 2
𝑓 − 𝑉 2

𝑖 ⟩ =
𝑀2 +𝑚2

(𝑀 +𝑚)2
⟨𝑉 2

𝑖 ⟩+
2𝑚2

(𝑀 +𝑚)2
⟨𝑣2𝑖 ⟩ − ⟨𝑉 2

𝑖 ⟩ (2.30)

= − 2𝑀𝑚

(𝑀 +𝑚)2
⟨𝑉 2

𝑖 ⟩+
2𝑚2

(𝑀 +𝑚)2
⟨𝑣2𝑖 ⟩ (2.31)

= − 2𝑚

(𝑀 +𝑚)2
(︀
𝑀⟨𝑉 2

𝑖 ⟩ −𝑚⟨𝑣2𝑖 ⟩
)︀

(2.32)

Note in the above derivation that the cross terms ⟨𝑉𝑖 · 𝑣𝑖⟩ and ⟨𝑉𝑓 · 𝑉𝑐𝑚⟩ must be

zero by symmetry. Finally, we recognize the definition of temperature 𝑇 =
1

2
𝑚⟨𝑣2⟩

in the above equation to arrive at the change in temperature from a single collision,

𝑇𝑓 − 𝑇𝑖 = −
1

𝜅
(𝑇𝑖 − 𝑇𝑏) (2.33)

where 𝜅 ≡ (𝑀 +𝑀)2

2𝑀𝑚
. The temperature difference between the 𝑁 th and (𝑁 − 1)th

collision can be written as

𝑇𝑁 − 𝑇𝑁−1 = −
𝑇𝑁−1 − 𝑇𝑏

𝜅
(2.34)

where 𝑇𝑁 is the temperature of the species molecule after 𝑁 collisons with the buffer

gas. We generalize this discrete equation to a differential equation and solve.

d𝑇

d𝑁
= −𝑇 − 𝑇𝑏

𝜅
(2.35)

𝑇 (𝑁) = (𝑇𝑖 − 𝑇𝑏)𝑒
−𝑁/𝜅 + 𝑇𝑏 (2.36)
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Now, we recognize 𝜅 as a characteristic (i.e., 1/𝑒) number of collisions for thermal-

ization. Perhaps more significant is the number of collisions required for a species

molecule to be within 10% of the buffer gas temperature. This typically occurs in

around 50 collisions. As a specific example, consider thermalization of 138Ba19F, ini-

tially at 1000 K after laser ablation of a solid BaF2 target, in 20 K 20Ne. For these

parameters, the characteristic constant is 5 collisions, while the temperature of the

BaF molecules would reach within 2 K of the Ne buffer gas temperature after 31

collisions.

Of more practical significance than the number of collisions required for thermal-

ization, we would like to estimate both the time and cell size required for thermaliza-

tion. We begin by considering the mean free path of the species molecule in a buffer

gas, which is defined by

𝜆𝑏,𝑠,0 =
(𝑛0,𝑏𝜎𝑏,𝑠)

−1√︀
1 +𝑚𝑠/𝑚𝑏

(2.37)

where the subscript “𝑏, 𝑠” refers to a property in which the buffer gas and species

molecule are collision partners. For a buffer gas number density of 3.4 × 1016 cm−3

and an approximate collisional cross-section, 𝜎𝑏,𝑠, of 1×10−14 cm2, the mean free path

of 138Ba19F in Ne is about 0.01 mm. Molecules produced by ablation, like BaF, are

much more massive than the buffer gas and are at elevated translational temperatures

(typically, 1000 K). Transport through the buffer gas can be assumed to be ballistic,

giving a thermalization length of 𝑁 × 𝜆𝑏,𝑠,0 rather than
√
𝑁 × 𝜆𝑏,𝑠,0 as one might

expect for a random walk model of diffusion through the buffer gas,a where N is the

number of collisions. Our earlier estimate established that thermalization occurs in <

aA cute, non-rigorous argument for the
√
𝑁 dependence goes something like this: Consider a

one-dimensional discrete random walk. By symmetry, the expected position after 𝑛 steps must be
the same as after 𝑛−1 steps, since a random walk is unbiased and motion in each direction is equally
likely.

⟨𝑥𝑛⟩ = ⟨𝑥𝑛−1⟩

Therefore, ⟨𝑥⟩, the first moment of position, is invariant. The expected position cannot change. Now
consider the second moment of position, ⟨𝑥2⟩. Suppose after several steps the particle is at position
7, i.e., 𝑥 = 7 and ⟨𝑥2⟩ = 72 = 49. After the next step, it must be at either 𝑥 = 6 or 𝑥 = 8. Then,

⟨𝑥2⟩ = 1

2

(︀
62 + 82

)︀
= 50

The expected squared position increased by 1. Consider another example. If the particle is at 𝑥 =
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50 collisions, so the thermalization length for BaF in Ne is < 50×0.01 mm = 0.5 mm.

This length establishes a minimum size for the buffer gas cooling cell in order to ensure

that thermalization occurs before the molecules freeze to the walls. The time required

for this to happen is 𝜏therm = 𝑁 × 𝜆𝑏,𝑠,0 × 𝑣−1
0,𝑏 , where 𝑣0,𝑏 is the mean velocity of the

buffer gas. Here, we assumed that the velocity of the buffer gas is the only important

parameter because the number density of buffer gas is usually orders of magnitude

larger than that of the species molecule. Plugging 145 m/s into this equation yields

the thermalization time, 𝜏therm ≈ 3 𝜇s with a mean time between collisions, 𝜏𝑏,𝑠,0 ≈ 70

ns. For lower buffer gas densities, larger cells are required for effective thermalization.

For ablation-loaded buffer gas beams, it has been noted that the time for ther-

malization is typically a few milliseconds, significantly longer than what is predicted

from the above simple model for thermalization. This is believed to be due to heat-

ing of the buffer gas itself, which must then re-thermalize with the walls of the cold

cell. The Imperial College group has performed detailed experimental studies of this

phenomenon in ablation-loaded cells of Yb atoms and YbF molecules.24,136 Their

observations suggest that translational (and rotational) thermalization occurs on a

time scale shorter than the time resolution of their experiment (. 100 𝜇𝑠), and the

observed temperature evolution can be attributed entirely to the temperature evolu-

tion of the He buffer gas. They consider a thermal diffusion model similar to matter

diffusion inside the cell.

For a cell with characteristic length 𝑎, the lowest-order thermal diffusion mode has

10, then ⟨𝑥2⟩ = 100 and, after one more step,

⟨𝑥2⟩ = 1

2

(︀
92 + 112

)︀
= 101

An increase of 1 again! Thus, we conclude that

⟨𝑥2
𝑛+1⟩ = ⟨𝑥2

𝑛⟩+ 1

which is the same as saying
⟨𝑥2

𝑛⟩ = 𝑛

Perhaps surprisingly, this result holds in three dimensions as well. If each step is the same distance,
𝑙, then the distance traveled after 𝑛 steps is

Δ𝑥𝑛 ∼ 𝑙 ×
√︀
⟨𝑥2

𝑛⟩ =
√
𝑛𝑙
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a time constant 𝜏𝐷 = 𝑎2/(3𝜋2𝛼) where 𝛼 is the thermal diffusivity given by 𝛼 = 𝑘/𝑐𝑝𝑛.

In this expression, 𝑘 is the thermal conductivity, 𝑐𝑝 is the heat capacity at constant

pressure, and 𝑛 is the number density. This calculated time constant agrees well with

that obtained by a single exponential decay fit to the data, 𝑇 (𝑡) = 𝑇𝑓+(𝑇𝑖−𝑇𝑓 )𝑒
−𝑡/𝜏𝐷 .

In this fit, 𝑇𝑖 and 𝑇𝑓 are the initial and final temperature of the buffer gas. The initial

temperature can be in the range of 10 - 50 K due to rapid heating of the buffer gas

during the ablation pulse, and generally increases with higher flow rates. The Imperial

group has also observed more complicated thermalization dynamics, in which the

temperature evolution exhibited a clear double exponential decay. The slower time

constant was consistent with the lowest-order thermal diffusion time, while the faster

decay time constant was approximately an order of magnitude smaller. This fast

time constant was attributed to a sum of higher-order diffusion modes that rapidly

conduct heat away, leaving only the small amplitude lowest-order mode operative at

long times. This model is analogous to the double exponential decay that the authors

fit to the diffusion behavior of the atoms in this experiment, further supporting their

interpretation.

Rotational cooling

Rotational relaxation cross sections for molecules in a buffer gas are typically

𝜎𝑟𝑜𝑡 ≈ 10−15−10−16 cm2, which are only one to two orders of magnitude smaller than

typical elastic collision cross sections. This implies a rotational “quench” occurs once

every 10 to 100 elastic collisions. Since this is similar to the number of elastic colli-

sions required to thermalize the translational temperature, one expects very similar

translational and rotational temperatures in a buffer gas cell. The physical intuition

behind this result is that rotational quenching is controlled by the angular anisotropy

of the interaction between the rotating molecule and the buffer gas atom, and the

timescale for a cold collision is similar to a rotational period.25
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Vibrational cooling

Collision-induced quenching of vibrations is generally much less efficient than

for rotations. The relaxation is driven by the dependence of the buffer gas-species

molecule interaction on the internuclear distance of the molecule. The vibrational

motion of nuclei, which is characterized by large energy gaps, is much faster than a

cold atom collision.25

The vibrational relaxation dynamics of a small number of molecules have been

investigated under buffer gas cooling conditions. These species are listed in Table 2.1

and the data are plotted in Figure 2-8. The dimensionless parameter 𝜁 is defined as

the ratio of the buffer gas-species molecule momentum transfer collision cross section

to the vibrational relaxation cross section, 𝜎𝑏,𝑠/𝜎vib. Under the conditions listed in

Table 2.1, all species undergo many-partial wave collisions with the buffer gas and so

it is worthwhile to attempt to draw some general conclusions. I have fit an exponential

function to the data in Figure 2-8, where the experimental value of 𝜁 is plotted as a

function of vibrational frequency. The data point for NH has been excluded because

its frequency is much higher than the other species considered, and the experimentally

determined lower bound was limited by radiative decay of the vibrationally excited

NH molecules.26 The data point for TiO was excluded due to the large uncertainty of

the value reported by the authors.161 Neglecting these specific cases, the demonstrated

strong dependence of 𝜁 on vibrational frequency agrees generally with our intuition.

Lower frequency vibrations have energy gaps closer to the energy of a cold atom-

molecule collision and thus translational-vibrational energy transfer is more efficient.

Further details of vibrational relaxation may be explored in polyatomic species,

where modes can be distinguished not only by frequency, but also by vibrational

motion, e.g., bend vs. stretch. Indeed, Piskorski points out that the fluorobenzene

mode 18b is an in-plane C-F bend, while the other two studied modes of fluorobenzene

are out-of-plane deformations of the ring.123 Fluorobenzene(18b) has the smallest

vibrational relaxation cross section (largest 𝜁) among these three vibrations, and

clearly appears above the fit line. In contrast, benzonitrile(21), an out-of-plane C-
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Table 2.1: Vibrational relaxation parameters for several molecule-buffer gas systems,
listed in the first column. For polyatomic molecules, the particular vibrational mode
is indicated in parentheses. The dimensionless parameter, 𝜁, appears in the second
column and is defined as the ratio of the buffer gas-molecule momentum transfer
collision cross section to the vibrational relaxation cross section. The third column
lists the energy (cm−1) of the vibration, and the fourth column lists the temperature
of the buffer gas in the experiment. All experiments operate at temperatures high
enough that the molecules undergo many-partial wave collisions with the buffer gas.

System 𝜁 𝜔 (cm−1) T (K) Ref.

CaH-3He > 9× 105 1258 0.5 161

NH-3He > 5× 104 3093 0.6 26

ThO-3He 2× 104 896 1.2 8

TiO-4He 130 1000 5 94

SrOH(100)-4He 700 527 2.2 87

SrOH(010)-4He < 100 364 2.2 87

Benzonitrile(21)-4He 8.33 372 6 123

Benzonitrile(22)-4He 6.25 141 6 123

Fluorobenzene(18b)-4He 280 400 6 120,123

Fluorobenzene(16a)-4He 70 414 6 120,123

Fluorobenzene(11)-4He 9.33 249 6 120,123
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C-N deformation, has a smaller 𝜁 value than might be expected from the fit line,

and is similar to the 𝜁 value of the much lower frequency benzonitrile(22) in-plane

C-N bending mode. It is therefore tempting to speculate that out-of-plane modes

of substituted benzene rings may generally have larger vibrational relaxation cross

sections than in-plane modes, since, classically, the cross section of a ring face is larger

than the cross section of a ring edge. Further investigation of these complex dynamics

is certainly warranted, and buffer gas cells are an ideal experimental tool.

Figure 2-8: Experimentally determined ratio of translational to vibrational cross sec-
tions (𝜁) for one or more vibrational modes of the molecules: benzonitrile (green),
fluorobenzene (blue), SrOH (red), ThO (magenta), CaH (cyan), TiO (orange), and
NH (purple), under experimental conditions listed in Table 2.1. The upward- and
downward-pointing triangles indicate lower and upper bounds, respectively. The
dashed line is a fit to the data, excluding the TiO and NH data points. These results
suggest an exponential relationship between vibrational relaxation cross section and
the frequency of vibration.
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2.3.3 Diffusion and extraction

To make some estimates of the diffusion behavior in the cell, we take just the first

term in a series approximation for the diffusion coefficient,

𝐷 =
3

16(𝑛0,𝑠 + 𝑛0,𝑏)𝜎𝑏,𝑠

√︃
2𝜋𝑘𝐵𝑇

𝜇
(2.38)

where 𝑛0,𝑠 is the stagnation number density of the species (“𝑠”) of interest, 𝜎𝑏,𝑠 is the

buffer gas-species molecule collisional cross section, and 𝜇 =
𝑚𝑠𝑚𝑏

𝑚𝑠 +𝑚𝑏

is the reduced

mass. If we make the approximations 𝑛0,𝑠 ≪ 𝑛0,𝑏 and 𝑚𝑠 ≫ 𝑚𝑏, then the diffusion

constant equation simplifies to

𝐷 =
3

16𝑛0,𝑏𝜎𝑏,𝑠

√︂
2𝜋𝑘𝐵𝑇

𝑚𝑏

=
3𝜋

32

𝑣0,𝑏
𝑛0,𝑏𝜎𝑏,𝑠

(2.39)

The second step follows by inserting the expression for the mean velocity from Equa-

tion 2.15. After a time, 𝑡, a species molecule will have a mean-squared displacement

from its starting point:

⟨Δ𝑥2⟩(𝑡) = 6𝐷𝑡 =
9𝜋

16

𝑣0,𝑏
𝑛0,𝑏𝜎𝑏,𝑠

(2.40)

The diffusion time scale, 𝜏diff , is determined by the characteristic length of the cell,

which is the cross-sectional length 𝑑cell. Then, we can equate ⟨Δ𝑥2⟩(𝜏diff) = 𝑑2cell ≈

𝐴cell or, after rearrangement,

𝜏diff =
16

9𝜋

𝐴cell𝑛0,𝑏𝜎𝑏,𝑠

𝑣0,𝑏
(2.41)

Hutzler et al. note that typical diffusion times are in the range of 1-10 ms.72 In

order to estimate the diffusion time in our setup, it is necessary to estimate the col-

lisional cross-section 𝜎𝑏,𝑠. To make some rough estimates, we assume 𝜎𝑏,𝑠 ≈ 𝜎𝐻𝑒,𝐻𝑒 =

1.05×10−14 cm2. This is a common assumption with some experimental justification.

Barry et al. make this approximation for the quantity 𝜎𝑆𝑟𝐹,𝐻𝑒 and obtain reasonable

estimates of their cell parameters.10 Skoff et al. calculated values of 7.1× 10−15 cm2

and 8.0 × 10−15 cm2 for 𝜎𝐿𝑖,𝐻𝑒 and 𝜎𝑌 𝑏𝐹,𝐻𝑒, respectively, and measured a value for
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𝜎𝑌 𝑏𝐹,𝐻𝑒 of 2.0× 10−14 cm2.136

Making this approximation, the diffusion time of our system is 𝜏diff = 130 ms,

somewhat longer than the “typical” values described by Hutzler et al.72 From the

expression for 𝜏diff it is clear that this value can be tuned by changing the geometry

(building a cell with a larger or smaller cross-sectional area) or the experimental con-

ditions (increasing or decreasing the input flow rate and thus the stagnation number

density).

It is worth noting here some details from the results of Skoff et al.136 By collecting

absorption images of ablated Li atoms and YbF molecules in their buffer gas cell, they

obtained an experimental measurement of the diffusion constant for these species. At

low He densities (. 3×1015 cm3), they observed the linear dependence on density that

would be predicted from Equation 2.41. Above that density, however, the diffusion

lifetime generally plateaued or increased more slowly. They interpreted these results

to mean higher-order diffusion modes, not considered in this simple model, become

increasingly important. These results also suggest that this model likely overestimates

the diffusion time in our own system.

To estimate the pump-out time for the cell, we simply re-examine the expression

for the flow rate out of the cell, 𝑓out, recognizing that 𝑓out is the number of buffer gas

atoms leaving the cell per unit time.

𝑓out =
1

4
𝑛0,𝑏𝑣0,𝑏𝐴aperture (2.42)

d𝑁𝑏

d𝑡
=

1

4
𝑁𝑏𝑣0,𝑏

𝐴aperture

𝑉cell

(2.43)

By integrating both sides of Equation 2.43, we obtain an expression for the number

of buffer gas atoms that is a simple exponential decay as a function of time. The time

constant for this process, 𝜏pump, is given by

𝜏pump =
4𝑉cell

𝑣0,𝑏𝐴aperture

(2.44)

Again, Hutzler et al. note that a typical pump-out time is 1-10 ms, similar to the
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diffusion time scale.72 Again, we calculate a longer time of 𝜏pump = 105 ms for our

buffer gas system. For pulsed introduction of species molecules, as in laser ablation,

this time should be roughly consistent with the pulse duration of the beam if the

buffer gas density is high enough that the ablated molecules follow the flow of the

buffer gas. To characterize the cell extraction, we can examine the dimensionless

parameter:

𝛾cell ≡
𝜏diff
𝜏pump

(2.45)

There are now two regimes to consider. For 𝛾cell . 1, diffusion to the walls is faster

than extraction from the cell and only a small fraction of the species molecules will

be present in the beam. By increasing the flow rate, the extraction efficiency can

be improved, although this efficiency does not have an easily guessed dependence on

𝛾cell.

For 𝛾cell & 1, many molecules are extracted from the cell into the beam before

freezing on the cell walls. The extraction efficiency typically plateaus as the flow rate

is further increased. Maximum extraction efficiencies of > 40% have been observed,10

although 10% is more typical.

2.3.4 Beam formation

Throughout this discussion on beam formation in buffer gas-cooled and other

sources, we will make use of the Reynolds number to characterize the flow. This

concept, first introduced by George Stokes,139 is defined as the ratio of inertial forces

to viscous forces in a fluid,

𝑅𝑒 =
𝜌𝑤𝑑

𝜇
(2.46)

where 𝜌 is the density of the fluid, 𝑤 is the flow velocity, 𝜇 is the dynamic viscosity of

the fluid, and 𝑑 is a characteristic length scale, which in the case of atomic/molecular

beams will refer to the aperture diameter of the source. The Reynolds number can

be related to two other dimensionless parameters common in fluid dynamics by the

approximate relation:

𝑀𝑎 ≈ 1

2
𝐾𝑛𝑅𝑒 (2.47)
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In the above equation, 𝐾𝑛 is the Knudsen number defined by 𝜆/𝑑, where 𝜆 is the

mean free path as defined in Equation 2.37. 𝑀𝑎 is the Mach number, defined by 𝑤/𝑐,

where 𝑐 is the speed of sound in a gas and is given by,

𝑐 =

√︂
𝛾𝑘𝐵𝑇

𝑚
(2.48)

for a gas with specific heat ratio, 𝛾, equal to 5/3 for a monatomic gas. Near the aper-

ture of a reservoir, gas atoms travel near the mean thermal velocity, 𝑣 =
√︀

8𝑘𝐵𝑇/𝜋𝑚.

For a monatomic gas, 𝑐 ≈ 0.8𝑣, so that near the aperture, 𝑀𝑎 ≈ 1, and 𝐾𝑛𝑅𝑒 ≈ 2.

When referring to the Reynolds number throughout the following discussion, 𝑅𝑒 has

the meaning that this relationship holds near the aperture. In this way, we can relate

𝑅𝑒 directly to the collisional environment of the beam source.

𝑅𝑒 ≈ 2

𝐾𝑛
=

2𝑑

𝜆
(2.49)

The Reynolds number is proportional to twice the number of collisions within one

aperture diameter of the aperture.

In the following, we will use the Reynolds number so specify three regimes, which

roughly correspond with the three common types of atomic/molecular beams. When

𝑅𝑒 . 1, no collisions occur near the aperture, so the beam samples the thermal

distribution of the cell. This corresponds to an effusive regime. At the opposite

extreme, when 𝑅𝑒 & 100, many collisions occur at the aperture and the gas behaves

like a fluid rather than a rarefied gas. This describes supersonic beams. Lastly, in

the intermediate regime, 1 . 𝑅𝑒 . 100, there are enough collisions at the aperture

to significantly modify the properties of the beam relative to the cell, but it is not

appropriate to treat the flow as “fluid-like.” This regime will best typify the behavior

of cryogenic buffer-gas cooled beams, although CBGBs have been demonstrated to

operate in all three regimes.
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Effusive beams

Effusive beams are characterized by 𝐾𝑛 > 1, meaning that the mean free path of

the gas is greater than the aperture diameter so no collisions occur in the vicinity of the

aperture or in the effusing flow. If the aperture area is small relative to the total wall

area of the source (as we will generally assume), the thermal equilibrium of the source

is not affected by the effusing particles. The combination of thermal equilibrium and

no collisions implies that the effusive beam will also have an equilibrium distribution

of internal states. The effusive beam extracts a representative sample of the source

reservoir. Since kinetic theory describes the source accurately, we can also predict

several beam properties in a straightforward manner. The number density from a

differential aperture area, d𝐴, is given by

𝑛eff(𝑅, 𝑣, 𝜃) = 𝑛(𝑅, 𝜃)𝑓(𝑣) (2.50)

𝑛(𝑅, 𝜃) =
𝑛0 cos 𝜃

4𝜋𝑅2
d𝐴 (2.51)

𝑓(𝑣) =
32

𝜋2𝑣3
𝑣2𝑒−4𝑣2/𝜋𝑣2 (2.52)

where 𝑅 is the distance from the aperture, 𝜃 is the angle from the aperture normal,

𝑛0 is the cell density, 𝑛(𝑅, 𝜃) is the total number density distribution integrated over

velocity, and 𝑓(𝑣) is the normalized (Maxwellian) velocity distribution in the cell. Per

unit time, d𝑡, all particles having a speed and direction with length of motion 𝑣d𝑡 will

contribute to the particle flux through the aperture. Thus, the velocity distribution

of the beam picks up an additional factor of 𝑣:

𝑓beam(𝑣) =
𝑣

𝑣
𝑓(𝑣) =

32

𝜋2𝑣4
𝑣3𝑒−4𝑣2/𝜋𝑣2 (2.53)

We can now calculate the expectation value of the velocity in order to determine the

mean forward velocity of an effusive beam:

𝑣‖ =

∫︁ ∞

0

𝑣𝑓beam(𝑣)𝑑𝑣 =
3𝜋

8
𝑣 ≈ 1.2𝑣 (2.54)
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Next, we might wish to determine the full width at half maximum (FWHM) of the

angular spread, Δ𝜃, by considering the velocity integrated number density function.

The distribution has a cosine functional dependence as seen from Equation 2.51.

Using the definition of FWHM, we find:

𝑛(𝑅,Δ𝜃/2) =
1

2
𝑛(𝑅, 0) (2.55)

Δ𝜃 =
2𝜋

3
= 120∘ (2.56)

The FWHM solid angle is related to the angular spread, Δ𝜃, by

ΔΩ = 2𝜋

(︂
1− cos

Δ𝜃

2

)︂
= 𝜋 (2.57)

The angular spread can be determined spectroscopically through knowledge of the

beam’s forward velocity, 𝑣‖, and its transverse velocity spread, Δ𝑣⊥. The former is

determined by measuring the longitudinal Doppler shift of a transition, and the latter

by measuring the transverse Doppler broadening.

Δ𝜃 = 2 tan−1

(︂
Δ𝑣⊥/2

𝑣‖

)︂
(2.58)

Supersonic beams

Supersonic beams represent the opposite limiting behavior from that of effusive

beams. Many collisions occur near the aperture and 𝐾𝑛≪ 1. Kinetic gas theory no

longer applies and the gas flow must be treated as a fluid. Usually, supersonic beams

are composed of a small fraction, ∼ 1%, of the molecule of interest seeded in a carrier

gas, like He or Ar. Thus, the temperature and flow lines of the carrier gas expansion

are considered representative of the molecule of interest. We start by reviewing some

fundamentals of thermodynamics in order to understand the important features of

supersonic beams.

We start by writing the first law of thermodynamics, using the unit volume, 1/𝑛,
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as

d𝑞 = d𝑢+ 𝑃d(1/𝑛) (2.59)

Similarly, the enthalpy, ℎ, can be written as

ℎ = 𝑢+ 𝑃𝑉 = 𝑢+
𝑃

𝑛
= 𝑢+ 𝑘𝐵𝑇 (2.60)

Since the internal energy of an ideal gas depends only on temperature, the enthalpy

is determined entirely by the temperature of the gas. Inserting this expression for the

enthalpy into the first law yields

d𝑞 = dℎ− 1

𝑛
d𝑃 (2.61)

The constant-volume and constant-pressure specific heats, 𝑐𝑉 and 𝑐𝑃 , are defined by:

𝑐𝑉 =

(︂
d𝑢

d𝑇

)︂
𝑉

(2.62)

𝑐𝑃 =

(︂
dℎ

d𝑇

)︂
𝑃

(2.63)

By differentiating Equation 2.60 with respect to temperature and using the specific

heat definitions, we find

𝑐𝑃 = 𝑐𝑉 + 𝑘𝐵 (2.64)

The specific heat ratio, 𝛾 = 𝑐𝑃/𝑐𝑉 , has been referred to previously and can be used

to re-write Equations 2.62 and 2.63 as

𝑐𝑉 =
1

𝛾 − 1
𝑘𝐵 (2.65)

𝑐𝑃 =
𝛾

𝛾 − 1
𝑘𝐵 (2.66)

By the equipartition theorem, the constant-volume specific heat of a monatomic gas

is equal to 1.5𝑘𝐵𝑇 , where 0.5𝑘𝐵𝑇 comes from each degree of translational freedom

for a gas in thermal equilibrium. Thus, the constant-pressure specific heat is equal
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to 2.5𝑘𝐵𝑇 and we obtain the ratio 𝛾 = 5/3. Although the specific heats do vary with

temperature, we will make the assumption that they are constant for the temperature

range of interest. In other words, our ideal gases are also calorically ideal gases.

To continue the examination of supersonic beams, we will neglect the viscosity of

the gas, which is equivalent to neglecting friction and assuming a reversible process.

In addition, we will neglect all heat conduction and assume adiabaticity, that is to

say, no heat is exchanged between the gas and the surroundings (d𝑞 = 0). For this

reversible and adiabatic, or isentropic process, we can write

d𝑢+ 𝑃d

(︂
1

𝑛

)︂
= 0 (2.67)

dℎ+
1

𝑛
d𝑃 = 0 (2.68)

Plugging in the specific heat expressions (Equations 2.62 and 2.63) and the equation

of state (Equation 2.17), we can rewrite these equations as

1

𝛾 − 1

d𝑇

𝑇
− d𝑛

𝑛
= 0 (2.69)

𝛾

𝛾 − 1

d𝑇

𝑇
− d𝑃

𝑃
= 0 (2.70)

𝛾
d𝑛

𝑛
− d𝑃

𝑃
= 0 (2.71)

where the last relation is obtained by combining the first two equations. Finally, we

obtain the results for an isentropic expansion for constant 𝛾 by integrating the above

three equations with initial and final conditions, (𝑛1, 𝑃1, 𝑇1) and (𝑛2, 𝑃2, 𝑇2).

𝑃2

𝑃1

=

(︂
𝑇2

𝑇1

)︂𝛾/(𝛾−1)

(2.72)

𝑛2

𝑛1

=

(︂
𝑇2

𝑇1

)︂1/(𝛾−1)

(2.73)

𝑃2

𝑃1

=

(︂
𝑛2

𝑛1

)︂𝛾

(2.74)

In the far field, several aperture diameters away from the aperture, the density de-
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creases as a point source, 𝑛(𝑅) ∝ 𝑅−2, so according to Equation 2.73, the temperature

also decreases as the gas expands.

𝑇 (𝑅) ∝ 𝑅−4/3 (2.75)

We have walked through the thermodynamic argument for cooling of a supersonic

beam, but there is an equally appealing intuitive argument. Near the aperture, gas

atoms receive collisions mostly in the forward direction. As a result, the forward ve-

locity, 𝑣‖, increases as the gas expands into vacuum. Since there is no heat exchange

with the environment, the increase in 𝑣‖ must come at the expense of random thermal

energy (temperature) in order to conserve energy. Thus, the beam cools as it expands

and accelerates. This cooling continues in the beam until the density becomes too

low and the atoms fly ballistically. This “freezing” or “quitting” occurs when the mean

number of collisions is fewer than the number required to achieve thermalization. As

discussed in Section 2.3.2, the collision number required for thermalization is . 1

for translational degrees of freedom and > 1 for internal degrees of freedom . As

a result, the internal degrees of freedom of a molecule will fall out of equilibrium

before the translational temperature reaches its final minimum value. Since vibra-

tional relaxation cross sections are so much smaller than cross sections for rotational

relaxation and momentum transfer, the vibrational temperature of supersonic beams

is often significantly higher than the rotational or translational temperatures, which

are typically quite similar. Quantitative predictions of the vibrational temperature

are challenging and require numerical modeling of the expansion to fully characterize

the number and energy of collisions throughout the expansion.

One can also see from Equation 2.72 that we can increase the cooling in the super-

sonic beam by increasing the pressure behind the aperture. In practice, increasing the

backing pressure comes at the expense of producing clusters via three-body collisions

in the beam, which can substantially reduce the concentration of the species of inter-

est. Special pulsed nozzle designs, like the Evan-Lavie valve, have been developed to

address this limitation.38
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Beyond the “quitting surface,” where the number of collisions approaches zero,

the molecules continue to flow nearly collision-free. This region of the expansion is

called the “zone of silence,” since the local speed of sound is nearly zero, and is typ-

ically of greatest interest to the experimentalist because the molecules have reached

their coldest temperatures and no collisional broadening of spectral lines occurs. In

this region, the temperature parallel to the flow direction has reached a minimum

since there are no additional collisions to change the velocity distribution. The per-

pendicular temperature, however, continues to decrease because molecules with large

velocity components perpendicular to the flow continue to leave the expansion region

as the flow moves downstream. This is a purely geometric effect that produces lower

perpendicular temperatures further downstream.121

The “sudden freeze” model, which we qualitatively discussed above, has been quan-

titatively investigated by several authors.7,121 In this model, the supersonic expansion

is divided by the quitting surface into two regions: a region of isentropic fluid-like

flow and a region of collision-less molecular flow. According to this model, which will

not be re-derived here in detail, the number density in the far-field region decreases

as a point source, with the explicit functional form:121

𝑛(𝑅) = 0.154𝑛0

(︂
𝑅

𝑑

)︂−2

(2.76)

where 𝑅 is the distance from the nozzle, 𝑑 is the aperture diameter, and 𝑛0 is the

source number density. Similarly, the temperature as a function of distance is found

to be121

𝑇 (𝑅) = 0.287𝑇0

(︂
𝑅

𝑑

)︂−4/3

(2.77)

The important feature of this model is that, beyond a certain distance from the

nozzle, the properties of the beam become “frozen” because there are too few collisions

to maintain thermal equilibrium. In other words, the quitting surface is located at

the point where the collision rate is reduced to 1, the approximate collision number

required for translational equilibrium to be maintained. Assuming a hard sphere
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model for collisons, it can be shown that the quitting surface is located at121

𝑅𝑞 ≈ 𝑑× (0.1𝜎𝑛0𝑑)
3/5 (2.78)

where 𝜎 is the collisional cross section. This sudden freeze model will be useful in the

discussion of cryogenic buffer-gas cooled beams to follow.

We can further use our thermodynamic results to analyze the maximum forward

velocity of a supersonic beam. First, we will employ conservation of energy for a

flowing gas. Any change in the kinetic energy of the flow must be compensated for by

a commensurate change in enthalpy. For 1-D flow, this can be written in differential

form as121

𝑚𝑤d𝑤 + dℎ = 0 (2.79)

where 𝑤 is the flow velocity and𝑚 is the mass of the gas particles. Integrating between

two points in the flow, for example, at the source and a point far downstream, we

obtain
1

2
𝑚

(︀
𝑤2

2 − 𝑤2
1

)︀
= ℎ1 − ℎ2 =

∫︁ 𝑇1

𝑇2

𝑐𝑃d𝑇 (2.80)

where the last step is a result of assuming isentropic flow. We can now perform the

integration and substitute pressure for temperature by Equation 2.72.

𝑤2
2 − 𝑤2

1 =
2𝑐𝑃𝑇1

𝑚

(︂
1− 𝑇2

𝑇1

)︂
(2.81)

=
2𝑐𝑃𝑇1

𝑚

[︃
1−

(︂
𝑃2

𝑃1

)︂(𝛾−1)/𝛾
]︃

(2.82)

The initial point is inside the source, where the flow velocity is negligible, 𝑤1 ≈ 0.

We recognize the flow velocity downstream, 𝑤2, as the forward velocity of the beam,

𝑣‖, and solve.

𝑣‖ =

⎯⎸⎸⎷2𝑐𝑃𝑇1

𝑚

[︃
1−

(︂
𝑃2

𝑃1

)︂(𝛾−1)/𝛾
]︃

(2.83)

This equation is known as the St. Venant-Wantzel equation.121 For a given source

temperature, 𝑇1 = 𝑇 , the maximum forward velocity, 𝑣‖,max, is obtained when the
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monatomic gas is expanded into a perfect vacuum, 𝑃2 = 0.

𝑣‖,max =

√︂
5𝑘𝐵𝑇

𝑚
= 𝑣

√︂
5𝜋

8
≈ 1.4𝑣 (2.84)

The terminal velocities of rare gas supersonic beams are readily obtained in experi-

ments and correspond to 1765 m/s for He, 786 m/s for Ne, 559 m/s for Ar, 386 m/s

for Kr, and 308 m/s for Xe, all expanding from a 300 K source.

An analytic expression for the angular dependence of the density has been obtained

by Ashkenas and Sherman:7

𝑛(𝑅, 𝜃) = 𝑛(𝑅, 0) cos2
(︂
𝜋𝜃

2𝜑

)︂
(2.85)

where 𝜑 is a parameter, independent of 𝛾, that is equal to 1.365 for a monatomic gas.

By equating 𝑛(𝑅,Δ𝜃/2) = 1/2𝑛(𝑅, 0), we can obtain a prediction for the angular

FWHM and the solid angle FWHM of the beam.

Δ𝜃 = 𝜑 = 1.365 ≈ 78∘ (2.86)

ΔΩ ≈ 1.4 (2.87)

Finally, it is useful to revisit the meaning of the Mach number, 𝑀𝑎, in order to

describe some further aspects of the supersonic expansion. Again, the Mach number is

defined as 𝑀𝑎 = 𝑤/𝑐, where 𝑐 is the speed of sound. The speed of sound (or acoustic

speed or sonic speed) is the velocity of a sound wave, or small pressure disturbance,

in a medium. In general, the speed of sound can be written for any medium as

𝑐 =

√︃
d𝑃

d𝜌
(2.88)

where 𝜌 is the (mass) density of the medium. Recognizing that 𝜌 = 𝑚𝑛, where 𝑚

is the particle mass, and using Equation 2.71, we can recover the expression for the

speed of sound introduced in Equation 2.48.

Now, we will consider the meaning of 𝑐 for subsonic (𝑤/𝑐 < 1) and supersonic
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(𝑤/𝑐 > 1) flows. In the frame of reference moving at the flow speed, 𝑤, the propaga-

tion speed of a pressure disturbance is identical to that in a medium at rest, 𝑐. In the

space fixed frame, however, the propagation is at the relative velocity c+w, which is

𝑐 − 𝑤 in the upstream direction and 𝑐 + 𝑤 in the downstream direction. Consider a

pressure disturbance occurring at some instant in time. The disturbance propagates

at the speed of sound as a spherical wave, the center of which travels at the flow

velocity, 𝑤. For subsonic flow, the sound wave will propagate in all directions, but at

different velocities. For supersonic flow, the center moves faster than the propagation

of the pressure disturbance, producing two important results: 1) All sound waves are

confined within a cone about the propagation direction. Outside of the cone there

are no pressure disturbances. This conical separating surface represents a wave front,

called a Mach wave. The angle, 𝛼, between the Mach wave and the propagation

direction is defined geometrically:

sin𝛼 =
𝑐

𝑤
=

1

𝑀𝑎
(2.89)

2) There is no propagation of sound in the backward (upstream) direction. This

clearly follows from the definition of the relative speed, 𝑐−𝑤, in the upstream direc-

tion, and has important implications for the “termination” of the supersonic expan-

sion. We have so far considered the supersonic beam to be formed in some idealized

environment with perfect vacuum and no walls. In reality, the expansion eventu-

ally terminates in both the transverse and longitudinal directions with the formation

of shock waves. One way to understand the presence of shock waves is that some

boundary conditions exist that the expansion must satisfy. Information about down-

stream boundary conditions can only travel at the speed of sound. Thus, the speed

of the flow is faster than the speed of information transfer. A sudden discontinuity

in pressure, in the form of a shock wave, is the only way that the flow can satisfy the

boundary conditions. A more microscopic view of these shock waves is that the vac-

uum is not perfect and some background pressure exists in the chamber. The number

density along the expansion will decrease until it approaches the number density of
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the background gas. At that point, collisions between the atoms in the flow and

atoms of the background gas result in randomization of the flow atoms’ velocities and

adjustment to the downstream boundary conditions. At the edges of the expansion,

the “jet boundary,” the collisions between atoms in the expansion and the background

typically produce compression waves that are reflected from this boundary and act

to re-compress the expansion, thereby forming the transverse shock region called the

“barrel shock.” At some distance downstream these compression waves intersect to

form the “Mach disk,” which is a shock wave normal to the propagation direction,

and the expansion terminates. The location of the Mach disk has been determined

empirically:7

𝑥𝑀𝑎 = 0.67

√︃
𝑃0

𝑃𝑏𝑔

(2.90)

where 𝑃0 is the source pressure and 𝑃𝑏𝑔 is the background pressure in the chamber.

Cryogenic Buffer Gas Cooled Beams

Buffer gas beams have been demonstrated to operate over a wide range of flow

conditions. We will revisit the results derived for both effusive and supersonic beams,

while also addressing the physics of the intermediate flow regime that is unique to

buffer gas beams.

Forward velocity For low flow, 𝑅𝑒 . 1, the forward velocity of the beam is iden-

tical to an effusive beam

𝑣‖,𝑠 =
3𝜋

8
𝑣0,𝑠 (2.91)

Note that the low source temperatures of buffer gas cells (4-20 K) relative to oven

sources (> 1000 K) means that buffer gas cooled beams in the effusive regime have

much slower forward velocities than traditional oven sources. Practically, operat-

ing buffer gas sources in the effusive regime can be challenging and often requires

modification of the buffer gas cell to include additional slowing cells.65

As the flow is increased, 𝑅𝑒 & 1, the species molecules will begin to experience

collisions with buffer gas atoms near the aperture. The average velocity of buffer gas
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atoms, 𝑣0,𝑏, is typically larger than that of the more massive species molecules, 𝑣0,𝑠, by

the factor
√︀

𝑚𝑠/𝑚𝑏. The species molecules near the aperture will experience collisions

primarily in the forward direction and be “boosted” to a larger forward velocity, as

in a supersonic beam source. A simple model can be used to estimate the forward

velocity 𝑣‖ as a function of 𝑅𝑒.73 From Equation 2.49, we know that the number of

collisions near the aperture is approximately 𝑅𝑒/2. Each collision imparts the species

molecule with momentum 𝑚𝑏𝑣𝑏, giving a net velocity change of 𝑣𝑏𝑚𝑏𝑅𝑒/2𝑚𝑠. If there

are relatively few collisions, the forward velocity of the buffer gas is approximately

equal to the forward velocity of an effusive beam, 𝑣‖,𝑏 = 3𝜋
8
𝑣0,𝑏. Thus, over some range

of small 𝑅𝑒, the forward velocity of the species molecules is given by

𝑣‖,𝑠 =
3𝜋

8
𝑣0,𝑠 +

3𝜋

16
𝑣0,𝑏𝑅𝑒

𝑚𝑏

𝑚𝑠

(2.92)

This linear relationship between forward velocity and 𝑅𝑒 has been observed by several

authors7399 for low values of 𝑅𝑒. Of course, the maximum possible forward velocity

is 5𝜋
8
𝑣0,𝑏, as in a supersonic beam, therefore this linear model must break down as 𝑣‖,𝑠

approaches 𝑣0,𝑏.

Hutzler et al.73 used the sudden freeze model in order to describe the dynamics

in this higher flow regime. We want to rewrite the St. Venant-Wantzel equation

(Equation 2.83) in terms of the Reynolds number at the position of the quitting

surface. This is accomplished by using the isentropic relation in Equation 2.74, and

replacing the number density with the far-field functional form of Equation 2.76.

Next, Equation 2.78 is substituted for the position of the quitting surface. Finally,

from Equation 2.49 and the definition of the mean free path in Equation 2.37, we

recognize that the Reynolds number near the aperture is given by 𝑅𝑒 ≈ 2
√
2𝜎𝑛0𝑑.

This procedure yields the desired relation between forward velocity and Reynolds

number:

𝑣‖,𝑠 =

√︂
5𝜋

8
𝑣0,𝑏

√︃
1−

(︂
𝑛(𝑅𝑞)

𝑛0

)︂2/3

(2.93)
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≈
√︂

5𝜋

8
𝑣0,𝑏

√︃
1− 0.3

(︂
𝑅𝑞

𝑑

)︂−4/3

(2.94)

≈
√︂

5𝜋

8
𝑣0,𝑏

√︁
1− 2 (𝜎𝑛0𝑑)

−4/5 (2.95)

≈
√︂

5𝜋

8
𝑣0,𝑏

√︀
1− 4𝑅𝑒−4/5 (2.96)

By inspection of Equation 2.96, we can see that the sudden freeze model is only valid

for 𝑅𝑒 & 10, which corresponds with flow rates that produce collisions in the beam

at downstream distances beyond about one aperture diameter.

In the limit of very high flow rate, or large 𝑅𝑒, the beam is fully boosted to the

terminal velocity of the buffer gas

𝑣‖,𝑠 ≈ 𝑣‖,𝑏 =

√︂
5𝜋

8
𝑣0,𝑏 (2.97)

This approximation is valid for 𝑅𝑒 & 100, where, according to the sudden freeze

model, 𝑣‖,𝑠 ≈ 0.95× 𝑣‖,𝑏. These four different regimes and their functional forms are

summarized in Figure 2-9, where the calculated forward velocity of a buffer gas beam

of 138Ba19F in 20Ne (20 K cell temperature) is plotted on a semilog scale. Although

the two functional forms in the intermediate regime do not overlap, note the similar

slopes around the transition region, 𝑅𝑒 ∼ 10. In our BaF buffer gas experiments, the

forward velocity was measured by observing Doppler doublets of a Rydberg-Rydberg

transition in a longitudinal CPmmW experiment.169 The measured velocity of ∼ 200

m/s suggests that our beam was operating in a regime of significant “hydrodynamic

enhancement.” This agrees with our additional observation that the BaF molecules

have a rotational temperature, 𝑇rot ≈ 3 K, well below the cell temperature, 𝑇cell = 20

K.

Velocity spread In the effusive regime, the longitudinal velocity spread is given

by the FWHM of a 1-D Maxwell-Boltzmann velocity distribution:

Δ𝑣‖,𝑠 =
√
8 ln 2×

√︂
𝑘𝐵𝑇0

𝑚𝑠

= 𝑣0,𝑠
√
𝜋 ln 2 ≈ 1.5𝑣0,𝑠 (2.98)
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Figure 2-9: Theoretical forward velocity of a cryogenic buffer gas beam of BaF
molecules in Ne with a 20 K source. The Reynolds number on the x-axis is scaled
logarithmically to display the four flow regimes: effusive, 𝑅𝑒 . 1, dashed black; linear
intermediate, 1 . 𝑅𝑒 . 10, dashed red; “sudden freeze” intermediate, 10 . 𝑅𝑒 . 100,
solid red; fully hydrodynamic, 𝑅𝑒 & 100, solid black. The four models for beam ve-
locity are described in the text.
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As the Reynolds number is increased, the forward velocity spread will decrease as the

gas isentropically expands into vacuum. This is the same physics that produces a

translationally cold supersonic beam. As a result, the beam can exhibit translational

temperatures below the cell temperature.

The transverse velocity spread in the effusive regime is expected to be identical

to the longitudinal velocity spread.

Δ𝑣⊥,𝑠 ≈ 1.5𝑣0,𝑠 (2.99)

For low 𝑅𝑒, collisions near the aperture result in an increase in the FWHM of the

transverse velocity distribution. Hutzler et al.73 developed a model that accounts for

the increasing transverse velocity spread with increasing 𝑅𝑒. As the flow increases,

buffer gas-species molecule collisions, which are transverse to the forward beam direc-

tion at the aperture, increase the beam divergence. There will be a significant number

of perpendicular collisions since the flow must be convergent due to the significant

difference between 𝑑aperture and 𝑑cell. If the flow velocity at the aperture is approxi-

mated as 𝑣0,𝑏, then the flow velocity in the cell should be reduced by approximately

the ratio of cross sectional areas

𝑣𝑐𝑒𝑙𝑙 ≈ 𝑣0,𝑏
𝑑2aperture
𝑑2cell

(2.100)

Previously, we assumed that the in-cell dynamics are gas kinetic and there is no net

flow inside the cell. The above equation gives a much smaller “flow” velocity inside

the cell than at the aperture, in accord with this earlier intuition. Proceeding as

before, we recall that there are around 𝑅𝑒/2 collisions near the aperture, and that

the relative velocities are scaled by 𝑚𝑏/𝑚𝑠, to yield

Δ𝑣⊥,𝑠 = 𝑣0,𝑠
√
𝜋 ln 2 + 𝑣0,𝑏

𝑅𝑒

2

𝑑2aperture
𝑑2cell

𝑚𝑏

𝑚𝑠

(2.101)

Note that there is a typo in this formula in both the original paper73 and the later

review article,72 but the numerical values are correct. This linear scaling of the
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transverse velocity spread was observed near the aperture, while further downstream,

linear scaling behavior was observed, but with a slightly different proportionality

factor.73 When 𝑅𝑒 is increased further, the transverse velocity spread will approach

that of the buffer gas.

Note that different experiments have produced different results for the change

in transverse velocity spread with Reynolds number. In some cases,7399 there is

a region of low 𝑅𝑒 where the transverse spread is relatively constant at ∼ 1.5𝑣0,𝑠

before increasing linearly as described. Others have observed a constant increase in

transverse velocity spread as a function of flow rate.10 This discrepancy suggests

that the transverse velocity spread is particularly sensitive to the geometry of the cell

and the in-cell gas dynamics. Although there might be qualitatively similar features

of the Δ𝑣⊥ vs. 𝑅𝑒 relationship among different buffer gas set-ups, the quantitative

relationship is unique to every set-up.

Divergence As a reminder, we found that for an effusive beam the angular spread

is Δ𝜃 = 2𝜋/3 and the solid angle spread is ΔΩ = 𝜋, while for a supersonic beam,

Δ𝜃 = ΔΩ ≈ 1.4. Consider first a buffer gas beam that displays a region of constant

Δ𝑣⊥,𝑠 ≈ 1.5𝑣0,𝑠 as described above in the low 𝑅𝑒 range, 1 . 𝑅𝑒 . 10. Over this same

range, the forward velocity of the beam increases as described above. As a result

of these two factors, over some range, the angular spread, or beam divergence, will

decrease. If we make the gross simplification that the forward velocity of the species

molecules approaches the mean velocity of the buffer gas in the cell, 𝑣‖,𝑠 ≈ 𝑣0,𝑏, then

the divergence will approach

Δ𝜃 = 2arctan

(︂
Δ𝑣⊥,𝑠/2

𝑣‖,𝑠

)︂
≈ 2

√︂
𝑚𝑏

𝑚𝑠

(2.102)

where we assumed that 𝑚𝑠 ≫ 𝑚𝑏 in order to make the small angle approximation.

Then, we can approximate the solid angle spread by

ΔΩ = 2𝜋
(︁
1− cos

(︁
2
√︀
𝑚𝑏/𝑚𝑠

)︁)︁
≈ 𝜋

𝑚𝑏

𝑚𝑠

(2.103)
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where we have used the small angle approximation once again. It is significant that

this solid angle spread can be much smaller than that of effusive or supersonic beams.

For example, using the example of 138Ba19F in 20Ne again, we findΔ𝜃 ≈ 0.7 andΔΩ ≈

0.4. Although the regime of linearly decreasing divergence has only been observed in

a few experimental setups, the reduced divergence of buffer gas beams is consistently

noted in the literature.10,73 This contributes to the typically enhanced “brightness”

of buffer gas beams relative to more traditional sources, since more molecules will

complete the transit from the source to the observation area of the apparatus, which

is usually located many aperture diameters downstream.

Choice of buffer gas The final topic of relevance to our buffer gas beam apparatus

is the choice of a species for the buffer gas. To maintain many of the important

features of the buffer gas beam, this decision is a choice between helium and neon.

By far, helium has been the first choice of experimentalists working with buffer gas

cells. Helium has a very high vapor pressure at 4 K, a temperature which can be

reached with standard refrigerators or even a simple liquid helium cryostat. Of course,

helium continues to be an effective buffer gas at even lower temperatures. At lower

temperatures, even slower and colder beams may be accessible. For this reason,

experiments that are based on spectroscopy inside the buffer gas cell or the use of

very slow beams will likely require the use of helium.

In contrast, neon can only be used as a buffer gas down to a temperature of

∼ 14 K, where the vapor pressure decreases substantially. Nevertheless, the beam

properties with He and Ne sources can be quite comparable. Throughout this chapter

the various characteristics of buffer gas beams have been referenced to the thermal

buffer gas velocity in the cell, 𝑣0,𝑏. For a cell of 20Ne at 20 K or 4He at 4 K, this velocity

is about 145 m/s since the temperature to mass ratios are the same. Thus, many

properties of these two beams will be similar, especially when the beams are boosted to

a partially hydrodynamic regime. Indeed, Hutzler et al.73 made a direct comparison

of ThO in He and Ne buffer gas beams boosted to experience isentropic cooling. The

molecules were found to have rotational temperatures of ∼ 2 K in both cases, despite
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a 13 K difference in the two cell temperatures in that experiment. As a result, there

is little difference in the choice of helium or neon when spectroscopy in the beam is

the goal, particularly when operating beams with hydrodynamic enhancement.

The most significant difference between helium and neon set-ups is primarily tech-

nical. Any surface below ∼ 10 K will act as an effective and virtually unlimited ca-

pacity cryopump for neon. In our experiments, no additional pumping of the chamber

is required while the refrigerator is running and the experiment can be run continu-

ously for days. In contrast, one requires a large surface area adsorbent like activated

charcoal at 4 K in order to efficiently cryopump helium. These charcoal sorbs have a

limited capacity and require periodic warming up to release the stored helium in order

to become effective again. Moreover, the pumping speed of sorbs slows down as they

become full and the beam properties are affected even before the sorbs “crash” and

completely stop adsorbing buffer gas. Perhaps related to this less effective pumping,

experiments have found that ablation-loaded beams operating with helium display

large variation in forward and transverse velocity profiles as a function of the time

after ablation. Experiments with neon result in generally more reproducible beam

characteristics.73
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Chapter 3

Access to high-ℓ Rydberg states by

Optical-mmW STIRAP

3.1 Introduction

The most significant limitation in the application of CPmmW spectroscopy to

Rydberg states of molecules is the presence of fast non-radiative decay pathways.

In particular, predissociation occurs due to the interaction of a quasibound excited

state with one or more dissociation continua.91 A form of electronic predissociation is

illustrated schematically in Figure 3-1. A repulsive state interacts with an otherwise

bound excited state, leading to dissociation of the molecule at an energy below the

dissociation limit of the excited state curve. Our first demonstration of CPmmW

spectroscopy on molecular Rydberg states169 was performed on barium monofluoride,

BaF, a rare molecule in which the first ionization potential lies below the lowest disso-

ciation threshold. BaF and a few other lanthanide monofluorides81 are the exception

to the rule that all highly excited molecules suffer from predissociation. Despite this

dire situation, the impact of predissociation can be reduced by excitation of particular

Rydberg states. The rate of predissociation scales as 𝑛−3, where 𝑛 is the principal

quantum number. This scaling occurs because the amplitude of the inner lobe of

a hydrogenic wavefunction scales as 𝑛−3/2, and the repulsive states responsible for

predissociation are valence electronic states with wavefunction amplitude localized
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near the ion-core. Increasing the orbital angular momentum, ℓ, of the Rydberg elec-

tron similarly limits the interaction with repulsive valence states. In a semi-classical

picture, the point of closest approach of the Rydberg electron to the ion-core in a

Keplerian orbit occurs at 𝑟𝑚𝑖𝑛 = 𝑛2−𝑛
√︀

𝑛2 − ℓ(ℓ+ 1).a Thus, high-ℓ Rydberg states

are more weakly perturbed by valence states and are therefore more weakly predis-

sociated. The exact ℓ-scaling behavior for predissociation rates is not easily obtained

by simple models. In general, states with ℓ . 3 are all core-penetrating and, since the

valence states also have low-ℓ characters, they all exhibit fast predissociation rates.

Meanwhile, states with ℓ & 3 are all core-nonpenetrating and predissociation rates

decrease rapidly with each increase of ℓ.

Access to high-angular momentum Rydberg states is challenging due to effective

Δℓ = ±1 selection rules for dipole-allowed transitions and the short predissociation-

limited lifetimes of low-ℓ Rydberg states. One technique particularly well-suited

to population transfer in the presence of short-lived intermediate states is Stimu-

aThe solutions of the Kepler problem in classical physics approximately describe the Rydberg
electron’s orbit. Keplerian orbits are elliptical, with inner and outer turning points given by the
perihelion and aphelion of the ellipse:

𝑟𝑚𝑖𝑛 = 𝑎(1− 𝑒)

𝑟𝑚𝑎𝑥 = 𝑎(1 + 𝑒)

where 𝑎 is the semi-major axis, and 𝑒 is the eccentricity. The eccentricity parameter can be related
to the energy and angular momentum of the system by:

𝑒 =
√︀

1 + 2𝐸𝐿2

where 𝐸 is the energy and 𝐿 is the angular momentum. Now, we can use the quantum mechanical
values for the Rydberg energy, orbital angular momentum, and mean radius to derive the semi-
classical results:

𝑎 = 𝑛2

𝑒 =

√︂
1− ℓ(ℓ+ 1)

𝑛2

𝑟𝑚𝑖𝑛 = 𝑛2 − 𝑛
√︀
𝑛2 − ℓ(ℓ+ 1) =

ℓ(ℓ+ 1)

1 + 𝑒

𝑟𝑚𝑎𝑥 = 𝑛2 + 𝑛
√︀
𝑛2 − ℓ(ℓ+ 1) = 𝑛2(1 + 𝑒)

Note that |𝑒| ≤ 1 for bound states. To a good approximation, the inner turning point is thus
determined only by ℓ and the outer turning point is determined only by 𝑛. Since the inner turning
point controls the strength of the Rydberg electron↔ion-core interaction, raising the value of ℓ is a
more productive strategy to reduce predissociation than raising the value of 𝑛.
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Figure 3-1: A repulsive curve (red) crosses a nominally bound excited state. When
a level at an energy above the dissociation asymptote of the repulsive curve is ex-
cited, the population decays non-radiatively by tunneling through the barrier and
dissociating along the repulsive curve.

lated Raman Adiabatic Passage (STIRAP). STIRAP has been extensively discussed

in the literature and successfully applied to many systems in atomic and chemical

physics.12,64,89,110 In a three-level system, a “dark” population-trapping superposi-

tion of the initial and final states is prepared by two coherent time-varying fields.

The amplitudes of the two coupling fields are smoothly changed in time to adiabati-

cally evolve the dark state, transferring population from the field-free initial state to

the final state.

We have demonstrated for the first time an implementation of optical-mmW STI-

RAP that relies on the combination of an optical Pump field and a millimeter-wave

Stokes field. As a first test of this technique, we have coherently transferred & 50%

of the total population between the 4s5p and 4s28f states of atomic Ca. Our choice

of an atomic system for this initial demonstration was motivated by the ability to

quantitatively characterize the populations of the involved levels in the absence of

non-radiative decay mechanisms. We discuss the particular challenges of STIRAP

applied to our experiment and prospects for application to molecular systems.
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3.2 Theoretical Background

The STIRAP technique is based on the physics of a three-level system. In this

section, we will briefly review the theory underpinning population transfer by STI-

RAP, and discuss some of the characteristic features of STIRAP that will appear in

our experimental observations.

Many authors have reviewed the STIRAP process12,13,152in the nearly 30 years

since it was first introduced in the laboratory of Klaas Bergmann.55 In many ways, it

resembles the Stimulated Emission Pumping (SEP) technique developed in the Field

lab a decade earlier.85 In SEP, the goal is to populate some desired final state by using

a carefully chosen intermediate state. One laser transfers population from the initial

to the intermediate state and is followed by a second laser that transfers population

from the intermediate to the final state. This technique has been most widely applied

to access highly vibrationally excited states of a ground electronic state molecule

via an excited electronic state with significant geometric distortion relative to the

ground state. Since SEP is typically performed with pulsed dye lasers, which are only

partially coherent, no more than 25% of the initial population can be transferred to

the final state since each step saturates at 50% population transfer.

STIRAP improves on this limited population transfer by employing more highly

coherent radiation sources and by switching to the “counter-intuitive” pulse sequence.

In analogy to Raman processes, the initial-to-intermediate pulse is the “Pump” and

the intermediate-to-final pulse is the “Stokes.” By applying the Stokes pulse before

the Pump pulse, with an appropriate time delay, near unity population transfer can

be achieved. To illustrate how this process works, one can examine a generic time-

dependent Hamiltonian for a three-level system. In the dressed state picture,12 this

Hamiltonian has the form

𝐻 =
~
2

⎡⎢⎢⎢⎣
0 Ω𝑃 (𝑡) 0

Ω𝑃 (𝑡) 2Δ𝑃 Ω𝑆(𝑡)

0 Ω𝑆(𝑡) 2 (Δ𝑃 −Δ𝑆)

⎤⎥⎥⎥⎦ (3.1)
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where Ω𝑃 (𝑡) and Ω𝑆(𝑡) are the time-dependent Rabi frequencies of the Pump and

Stokes transitions, respectively. The Rabi frequency is the key quantity for describing

coherent radiation, and, in effect, parameterizes the interaction energy between the

two involved levels,

Ω(𝑡) =
𝜇𝐸(𝑡)

~
(3.2)

where 𝐸(𝑡) is the amplitude envelope function of the electric field and 𝜇 is the tran-

sition dipole moment. Δ𝑃 and Δ𝑆 are the “one-photon detunings” of the Pump and

Stokes radiation, respectively, and are defined by: ~Δ𝑃 = (𝐸2 − 𝐸1) − ~𝜔𝑃 and

~Δ𝑆 = (𝐸2 − 𝐸3) − ~𝜔𝑆. The difference, Δ𝑃 − Δ𝑆, represents the “two-photon de-

tuning” of the system. It will become clear later that, although STIRAP is relatively

insensitive to one-photon detuning, maintaining two-photon resonance is essential for

efficient population transfer. This requirement, also called the “Raman resonance con-

dition,” can be expressed as Δ𝑃 −Δ𝑆 = (𝐸3−𝐸1)−~(𝜔𝑆−𝜔𝑃 ) = 0. The eigenstates

of this Hamiltonian, |𝑎+⟩, |𝑎0⟩, |𝑎−⟩, written in the basis of field-free states, |1⟩, |2⟩,

and |3⟩, are

|𝑎+⟩ = sinΘ sinΦ |1⟩+ cosΦ |2⟩+ cosΘ sinΦ] |3⟩ (3.3)

|𝑎0⟩ = cosΘ |1⟩ − sinΘ |3⟩ (3.4)

|𝑎−⟩ = sinΘ cosΦ |1⟩ − sinΦ |2⟩+ cosΘ cosΦ |3⟩ (3.5)

where the mixing angle Θ is defined by

tanΘ =
Ω𝑃 (𝑡)

Ω𝑆(𝑡)
(3.6)

and the angle Φ is an explicit function of the Rabi frequencies and detunings, but is not

important to the physics discussed here. The eigenvalues are similarly straightforward

to obtain:

𝜔+ = Δ𝑃 +
√︁

Δ2
𝑃 + Ω2

𝑃 (𝑡) + Ω2
𝑆(𝑡) (3.7)

𝜔0 = 0 (3.8)
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𝜔− = Δ𝑃 −
√︁
Δ2

𝑃 + Ω2
𝑃 (𝑡) + Ω2

𝑆(𝑡) (3.9)

The special state |𝑎0⟩ has a constant eigenvalue and contains no contribution

from the basis state |2⟩. This is the characteristic feature of a coherent population

trapping state or “dark” state. It is referred to as “dark” because even if the two

radiation fields are on continuously, any atoms in the dark state will remain in the

dark state indefinitely without absorbing any photons. To demonstrate that this

must be true, consider the absorption amplitude between the eigenstate |𝑎0⟩ and the

field-free state |2⟩,

⟨𝑎0| �⃗� · �⃗� |2⟩ = (cosΘ ⟨1| − sinΘ ⟨3|) �⃗� · �⃗� |2⟩ (3.10)

= (cosΘ)Ω𝑃 − (sinΘ)Ω𝑆 (3.11)

=
Ω𝑆Ω𝑃√︀
Ω2

𝑃 + Ω2
𝑆

− Ω𝑃Ω𝑆√︀
Ω2

𝑃 + Ω2
𝑆

(3.12)

= 0 (3.13)

Thus, no light is absorbed.

This derivation demonstrates that the state is dark at 𝑡 = 0, but this does not

guarantee that it will be dark at some later time, 𝑡. As time passes, the state acquires

phase factors, exp(−𝑖𝐸𝑖𝑡/~), where 𝐸𝑖 is the energy of the basis state |𝑖⟩, and the

radiation field acquires phase factors, exp(−𝑖𝜔𝑖𝑡), where 𝜔𝑖 is the laser frequency. We

can set this modified absorption amplitude to zero:

Ω𝑆𝑒
−𝑖𝐸1𝑡/~Ω𝑃 𝑒

−𝑖𝜔𝑃 𝑡√︀
Ω2

𝑃 + Ω2
𝑆

− Ω𝑃 𝑒
−𝑖𝐸3𝑡/~Ω𝑆𝑒

−𝑖𝜔𝑆𝑡√︀
Ω2

𝑃 + Ω2
𝑆

= 0 (3.14)

Clearly, the absorption amplitude will vanish only if the phase factors are identical,

𝐸1/~+ 𝜔𝑃 = 𝐸3/~+ 𝜔𝑆 (3.15)
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or, after rearrangement,

(𝐸3 − 𝐸1)− ~(𝜔𝑃 − 𝜔𝑆) = 0 (3.16)

This is exactly the Raman resonance condition. The dark state only remains dark

as long as the two-photon detuning is zero. This is the first characteristic feature

of the STIRAP process: the population transfer should be relatively insensitive to

one-photon detuning as long as two-photon resonance is maintained.

Now, to examine how STIRAP is accomplished, we allow the Pump and Stokes

Rabi frequencies to vary in time. One can see by examining the eigenstate |𝑎0⟩ that

before any radiation fields are turned on this eigenstate is identical to the field-free

state |1⟩. If the angle Θ can be tuned “slowly” from 0 to 𝜋/2, then the eigenstate

|𝑎0⟩ can be made to evolve from the pure basis state |1⟩ to the pure basis state |3⟩.

This means that unity population transfer from the initial to final state is achieved

without ever populating the intermediate state. By examining the functional form of

Θ, the use of the “counter-intuitive” pulse sequence, where the Stokes pulse arrives

before the Pump pulse becomes evident. When the Stokes Rabi frequency is large

relative to the Pump Rabi frequency, the mixing angle is close to zero. By smoothly

reducing the Stokes Rabi frequency and increasing the Pump Rabi frequency, this

mixing angle increases until it approaches 𝜋/2. This is the second characteristic

feature of the STIRAP process: enhanced population transfer must occur when the

Stokes pulse occurs at a small negative delay relative to the Pump pulse. Figure 3-2

shows the time dependence of the Rabi frequencies, populations, and mixing angle

over the course of a STIRAP process.

Alternatively, one can envision the Hilbert space for the STIRAP problem as

shown in Figure 3-3, where the state vector, Ψ, is initially parallel to both the field-

free state |1⟩ and the eigenstate |𝑎0⟩, while the other two basis states and eigenstates

occupy the perpendicular |2⟩ − |3⟩ plane. As the mixing angle Θ is changed from 0

to 𝜋/2 the angle between |𝑎0⟩ and |1⟩ is increased until |𝑎0⟩ is finally anti-parallel

to |3⟩. This motion occurs in the |1⟩ − |3⟩ plane, perpendicular to basis state |2⟩.
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Figure 3-2: (a) Pump and Stokes Rabi frequencies as a function of time. The vertical
dashed lines in all panels shows the timing of the peak Rabi frequency, Ω0, and the
approximate overlap period, Δ𝜏 between the two pulses. (b) The mixing angle Θ
evolves smoothly from 0 to 𝜋/2. (c) The population of state |1⟩ is moved entirely
to state |3⟩, while no population enter state |2⟩ – note the sum of the |1⟩ and |3⟩
populations is 1 at all times. (d) Time dependence of the amplitudes of all three
eigenvalues. The dark state eigenvalue, 𝜔0, is constant and equal to zero throughout
the STIRAP process.
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In order for the population transfer to be successful, the state vector must closely

follow the eigenvector |𝑎0⟩ during its evolution. If the coupling is too weak, meaning

the Rabi frequencies are too small or the rate of change of |𝑎0⟩ is too fast, the state

vector will lag behind this motion, while precessing about |𝑎0⟩. When the radiation

fields are abruptly turned off, the time-evolving state vector will be projected onto

all three basis states. In order to achieve efficient population transfer, the evolution

of the state vector must be adiabatic.

The nonadiabatic coupling of the dark state |𝑎0⟩ with either of the other eigen-

states is expressed as ⟨𝑎±|�̇�0⟩. Thus, the condition for adiabatic following is that

this matrix element must be small relative to the splitting |𝜔± − 𝜔0| induced by the

radiation fields.

| ⟨𝑎±|�̇�0⟩ | ≪ |𝜔± − 𝜔0| (3.17)

Let’s define this mean matrix element by the expression | ⟨𝑎±|�̇�0⟩ |2 = | ⟨𝑎+|�̇�0⟩ |2 +

| ⟨𝑎−|�̇�0⟩ |2 and use our previously derived expressions to calculate the value of the

matrix element.

⟨𝑎+|�̇�0⟩

=
(︀
sinΘ sinΦ ⟨1|+ cosΦ ⟨2|+ cosΘ sinΦ ⟨3|

)︀(︀
− Θ̇ sinΘ |1⟩ − Θ̇ cosΘ |3⟩

)︀
(3.18)

= −Θ̇ sin2ΘsinΦ− Θ̇ cos2ΘsinΦ (3.19)

= −Θ̇ sinΦ (3.20)

⟨𝑎−|�̇�0⟩

=
(︀
sinΘ cosΦ ⟨1|+ cosΦ ⟨2|+ cosΘ cosΦ ⟨3|

)︀(︀
− Θ̇ sinΘ |1⟩ − Θ̇ cosΘ |3⟩

)︀
(3.21)

= −Θ̇ sin2ΘcosΦ− Θ̇ cos2ΘcosΦ (3.22)

= −Θ̇ cosΦ (3.23)

| ⟨𝑎±|�̇�0⟩ | =
√︂⃒⃒⃒
−Θ̇ sinΦ

⃒⃒⃒2
+
⃒⃒⃒
−Θ̇ cosΦ

⃒⃒⃒2
(3.24)

=
⃒⃒⃒
Θ̇
⃒⃒⃒ √︀

sin2Φ + cos2Φ (3.25)
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Figure 3-3: Hilbert space representation of the STIRAP process. (Left) Initially, when
only the Stokes field is present, the state vector |Ψ⟩ is identical to the basis state |1⟩
and to the eigenstate |𝑎0⟩. (Center) As the Stokes field turns off and the Pump field
turns on, the eigenstates evolve in the space of the basis states. If the Rabi frequencies
are high enough and the rate of change slow enough, the state vector will precess
tightly about the eigenvector |𝑎0⟩ during this change. If the adiabaticity criterion of
Equation 3.31 is not satisfied, the state vector will lag behind the eigenvector |𝑎0⟩ and
end up in a superposition of all three basis states. (Right) At the end of a successful
STIRAP process, when only the Pump field is present, the state vector has followed
the eigenvector |𝑎0⟩ through its entire evolution and is now identical to the basis state
|3⟩.
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=
⃒⃒⃒
Θ̇
⃒⃒⃒

(3.26)

In the last step, we have assumed that sinΦ is of order unity to simplify the following

results. The adiabaticity constraint is written as

|Θ̇| ≪ |𝜔± − 𝜔0| (3.27)

From here, we recognize

Θ̇ =
d

d𝑡
arctan

(︂
Ω𝑃

Ω𝑆

)︂
(3.28)

=
1

1 + (Ω𝑃/Ω𝑆)
2

Ω̇𝑃Ω𝑆 − Ω𝑃 Ω̇𝑆

Ω2
𝑆

(3.29)

=
Ω̇𝑃Ω𝑆 − Ω𝑃 Ω̇𝑆

Ω2
𝑆 + Ω2

𝑃

(3.30)

Thus, we arrive at the requirement that⃒⃒⃒⃒
⃒Ω̇𝑃Ω𝑆 − Ω𝑃 Ω̇𝑆

Ω2
𝑆 + Ω2

𝑃

⃒⃒⃒⃒
⃒≪ |𝜔± − 𝜔0| (3.31)

which is considered the “local” adiabaticity criterion.12 For any given time dependence

of the radiation fields, this expression can be evaluated at any time 𝑡. This inequality

must be satisfied at all times to ensure that the nonadiabatic coupling is “small

enough.”

If the radiation fields evolve smoothly in time, it is also useful to derive a “global”

adiabaticity criterion, which will give approximate constraints on a STIRAP process

without the need to specify the detailed time dependence of the Rabi frequencies.

First, we take a time average of Θ̇, which, referring to Figure 3-2, is approximately

given by ⟨Θ̇⟩ ≈ 𝜋/(2Δ𝜏), whereΔ𝜏 is the time period during which the pulses overlap.

The other side of the inequality is approximated by

|𝜔± − 𝜔0| ≈
√︁

Ω2
𝑃 + Ω2

𝑆 = Ω𝑒𝑓𝑓 (3.32)
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This effective Rabi frequency, Ω𝑒𝑓𝑓 , is simply the RMS Rabi frequency and the approx-

imation is exact for zero one-photon detuning. This leads to the global adiabaticity

criterion:

Ω𝑒𝑓𝑓Δ𝜏 > 10 (3.33)

where the value of 10, larger than the expected 𝜋/2, is a rule-of-thumb developed

through numerical simulations and experimental evidence.12 For pulsed lasers, it is

often convenient to square this expression to yield

Ω2
𝑒𝑓𝑓Δ𝜏 >

100

Δ𝜏
(3.34)

where the left hand side of the equation is proportional to the mean pulse energy.

Now that we have established the counterintuitive ordering as the optimum STI-

RAP pulse sequence and defined the adiabaticity criterion, we can address the ques-

tion of optimal pulse delay. This question can be qualitatively understood by consid-

ering the two limiting cases: perfectly overlapped pulses and very long pulse delay.

When the pulses are overlapped, of course, Θ̇ = 0 and the adiabaticity criterion is

fulfilled in a trivial way. However, the initial state, |1⟩, will end up with projections

along all three eigenstates because the Pump pulse is present from the start of the

experiment. In the long-pulse-delay experiment, the projection | ⟨1|𝑎0⟩ | approaches

1 as desired. However, the mixing angle, Θ, will be changing when Ω𝑒𝑓𝑓 is less than

its maximum, or in other words, the coupling of the state vector to |𝑎0⟩ will be weak.

This weak coupling is also undesirable for an adiabatic process. Thus, the optimum

pulse delay should produce the maximum value of Ω𝑒𝑓𝑓 while the mixing angle is

changing fastest, namely Θ ≈ 𝜋/4. For two identical Gaussian pulses, a pulse delay

equal to the FWHM pulsewidth, results in a long period of high Ω𝑒𝑓𝑓 as Θ changes

rapidly, and, in experiments, this typically maximizes the population transfer.12

Thus far, we have assumed coherent radiation, which for pulsed light means radi-

ation with a Fourier transform-limited bandwidth, i.e.,

Δ𝜈Δ𝑡 = 𝛼 (3.35)
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where Δ𝜈 is the FWHM (linear) frequency bandwidth, Δ𝑡 is the pulse duration, and

𝛼 is a pulse shape-dependent value. The minimum time-bandwidth product for a

Gaussian pulse, for example, is 𝛼 ≈ 0.44. However, pulsed laser sources, particularly

dye lasers, frequently exhibit phase fluctuations that increase the bandwidth beyond

the transform limit. Kuhn et al. studied the effects of phase fluctuations in detail88

and derived a simple extension to the adiabaticity criterion:

Ω2
𝑒𝑓𝑓Δ𝜏 >

100

Δ𝜏

[︂
1 +

Δ𝜔

Δ𝜔𝐹𝑇

]︂
Γ (3.36)

where Δ𝜔 and Δ𝜔𝐹𝑇 are the (angular) frequency bandwidths of the real pulse and a

transform-limited pulse, respectively, and Γ is a factor depending on the pulse shape.

Clearly, pulsed radiation with a bandwidth that is close to the Fourier transform

limit is ideal for implementation of STIRAP. The study by Kuhn et al.,88 as well as

the work of David Grimes in the Field group,60 included an explicit model for the

phase noise, in which the Rabi frequency is modified by a time-dependent pseudo-

random phase factor, which dramatically changes the population transfer efficiency

from pulse to pulse. Similarly, pulsed lasers also exhibit pronounced intensity fluctua-

tions, frequently as large as ±15%. As a result, every laser pulse will result in slightly

different population transfer for a given delay time. These two results demonstrate an

important consideration for simulation of the STIRAP process. Any fluctuations in

an experiment due to phase fluctuations, intensity fluctuations, Doppler shifts, beam

profile effects, etc., must be explicitly simulated to obtain a realistic representation of

the experiment. In other words, although the global adiabaticity requirement serves

as a convenient rule of thumb, there is in fact no “average” STIRAP process in an

ensemble measurement. The experimental measurement is the average population

transfer experienced by all atoms that make up the sample. If STIRAP works for

the atom that experiences the lowest Rabi frequency, it works for every atom. The

average Rabi frequency experienced by the sample is meaningless because there is no

“average” atom.
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3.3 Experimental

An atomic Ca beam was generated in our ablation-loaded cryogenic buffer-gas

cooled beam source. This apparatus has been described in detail previously168 and

we describe only the characteristics relevant to this experiment. Calcium atoms are

produced by ablation of a calcium metal target by ∼ 10 mJ pulses of the 532 nm

second harmonic of a nanosecond Nd:YAG laser (Spectra Physics, GCR-130), focused

to a ∼ 1 mm2 spot. The ablated Ca atoms thermalize in the 20 K neon buffer

gas and undergo a mild hydrodynamic expansion through the output orifice of the

cell. The laser and mmW radiation intersect the atomic beam transversely 30 cm

downstream from the buffer gas cell. In the interaction region, the atomic beam

exhibits a transverse velocity distribution with full width at half maximum (FWHM)

of about 250 m/s. The density of Ca atoms is estimated to be ∼ 1010 cm−3 from

laser induced fluorescence (LIF) measurements.168 Figure 3-4 shows the relevant

Ca energy levels and radiation sources for the experiment. The initial state in the

STIRAP three-level system is populated by pumping the 4s5p←4s2 transition at 272

nm with a frequency-doubled dye laser (SIRAH Cobra Stretch), referred to as the

“Prep” laser hereafter. No attempt is made to characterize the absolute number of

atoms in this initial state.

The Pump photon couples the initial 4s5p and intermediate 4s30d states at 804

nm and is generated by pulsed amplification of a CW laser. The seed laser is a com-

mercial Ti:Sapphire laser (M Squared SolsTiS) locked to a high-resolution wavemeter

(Angstrom WS/7) which allows for reproducible tuning of the laser frequency during

the course of an experiment. Approximately 100 mW of radiation is fiber coupled

to the input of a three-stage dye amplifier pumped by the second harmonic of an

injection-seeded, pulsed Nd:YAG laser (Spectra Physics, LAB-170). Spatial filter-

ing after each amplification stage reduces the amplified spontaneous emission (ASE)

in the output laser beam. We obtain 10 mJ, 7 ns FWHM pulses of near-infrared

radiation.

A well-known problem in pulsed amplification in a dye solution is frequency chirp-
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ing in the amplified laser pulse.43,54 We characterize this phenomenon by the usual

self-heterodyne measurement. A portion of the seed laser is frequency shifted by

double-passing an acousto-optic modulator (Gooch and Housego, AOMO 3350-125)

operating at 375 MHz. This frequency-shifted radiation, along with the output of the

pulsed amplification chain, are coupled into a single mode fiber to effectively over-

lap the wavefronts of the two laser beams. The beat note between the two lasers is

monitored on a fast photodiode and digitized on a high-speed oscilloscope. By using

a large frequency offset of 750 MHz, we can fit the resultant beat pattern directly

in the time-domain and extract the frequency chirp. We typically observe a chirp of

approximately -50 MHz between the 10% intensity limits of the pulse, which broadens

the pulsed output beyond the Fourier transform limit. This effect is directly included

in our numerical simulations as a time-dependent one-photon detuning.

The intermediate 4s30d and final 4s28f states are coupled by a mmW field pro-

duced by a 260-300 GHz chirped-pulse spectrometer, which has been described in

detail by the Pate group138 and is briefly summarized here. The output of a 12.0

GS/s arbitrary waveform generator (AWG, Agilent M8150) is mixed with a phase-

locked 9.375 GHz local oscillator (Miteq, DLCRO 0101-09375-3-15P), and filtered to

select the upper sideband. This low frequency waveform is sent to an active multi-

plier chain (AMC, Virginia Diodes AMC291), which multiplies the frequency by 24

to produce the required mmW excitation pulses. The radiation is broadcast into the

chamber by a standard gain horn antenna. The residual excitation pulses as well

as the mmW FID from the sample are received on the opposite side of the sample

volume by an identical horn antenna and down-converted. The local oscillator for

down-conversion is generated by a second channel of the AWG that is mixed with

the same phase-locked oscillator and multiplied by a factor of 12 in a second AMC

(Virginia Diodes MixAMC156). Down-conversion is accomplished in a subharmonic

mixer and the intermediate frequency (IF) signal is digitized directly on a 50 GS/s,

20 GHz digital oscilloscope (Tektronix DPO72004). The ability to create tailored

sequences of mmW pulses with an AWG allows us to interrogate, on every experi-

mental cycle, the populations of the intermediate and final states of our three-level
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system by two linked “probe” transitions. Note that all pulses from the CPmmW

spectrometer are constrained to have square temporal profiles. This non-ideal pulse

shape is explicitly included in the numerical simulations and profoundly influences

the population transfer.

Figure 3-4: Level scheme in Ca for STIRAP demonstration. The three-level system
for coherent population transfer is composed of the 4s5p, 4s30d, and 4s28f singlet
states, which are the initial, intermediate, and final states, respectively.

The population transfer efficiency and the capability for numerical characteriza-

tion of our STIRAP scheme require a sample volume in which the multiple radiation

fields have a well-known spatial profile. The sample volume is defined by the Prep and

Pump laser fields, which are collimated to 1/𝑒2 beam diameters of approximately 7

and 10 mm, respectively, while the mmW radiation is approximately collimated by a

Teflon lens to a cross-sectional area of 10 cm2. The mmW radiation is first overlapped

with the 804 nm laser beam at an ITO-coated glass plate, which acts as a mirror at

mmW frequencies. These two radiation fields are then overlapped with the 272 nm

laser beam by transmission through a large-diameter backside-polished mirror coated

for reflectivity near 266 nm (CVI, Y4-3037-45-UNP).
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3.4 Results

3.4.1 Doppler Broadening

The Doppler broadening present in the atomic sample is a critical parameter in

the STIRAP experiment. A Doppler shift of the relevant transitions can create a

two-photon detuning, which significantly reduces the population transfer efficiency.

The geometry of the experiment can be chosen to reduce this effect. If the Pump

and Stokes radiation fields have similar frequencies, the Doppler shift will be similar

for a given velocity sub-group. For a Λ arrangement of energy levels, the Pump and

Stokes pulses should co-propagate across the sample, while for a ladder arrangement,

the two pulses should counter-propagate. The nearly equal Doppler shifts produce a

simple one-photon detuning and permit maintenance of the all-important two-photon

resonance. Unfortunately, as the frequency difference between the two photons in-

creases, the cancellation of the Doppler shifts is reduced. In the case of optical-mmW

STIRAP, the optical and mmW photons differ in frequency by approximately three

orders of magnitude. As a result, there is negligible cancellation of the Doppler

shifts for the two photons. Therefore, the Doppler shift of the Pump (near-infrared)

photon across the sample represents a range of two-photon detunings. In this exper-

iment, a cryogenic buffer-gas beam, with its typically small divergence, reduces the

transverse Doppler broadening, while also allowing for the large interaction regions

necessary for chirped pulse experiments on Rydberg states. Figure 3-5 shows the

Doppler-broadened lineshape for the Pump 4s30d←4s5p transition. This spectrum is

collected by monitoring the CPmmW signal at the Stokes transition frequency while

scanning the Pump laser frequency. The observed 310 MHz linewidth corresponds

to a transverse velocity spread of 249 m/s FWHM. This velocity spread produces a

Doppler width of appoximately 215 kHz for the Stokes transition at 263 GHz. For

simulations of the STIRAP experiment, we will neglect this <1% cancellation between

the 310 MHz and 215 kHz Doppler shifts.
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Figure 3-5: Spectrum of the 4s30d←4s5p transition, which is excited with the pulsed
dye amplified CW laser. The signal is monitored by probing the 4s30d population
with the 4s30d→4s28f mmW transition.
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3.4.2 Population Calibration

In order to quantify the population distribution among the three STIRAP in-

volved levels, we switch between the STIRAP experiment and a sequential, adiabatic

rapid passage (ARP) excitation scheme. A schematic timing diagram of the two

experimental sequences appears in Figure 3-6. For the calibration experiment, we

have observed saturation of the 4s30d←4s5p transition as a function of Pump laser

power (Figure 3-7). The pulse energy is monitored simultaneously with the signal

from the 4s30d→4s28f mmW transition. The black solid line is a fit to the data by

the saturation function:
𝑆

𝑆sat

=
𝐹/𝐹sat

1 + 𝐹/𝐹sat

(3.37)

where 𝑆 is the signal, 𝑆sat is the signal in the limit of saturation, 𝐹 is the laser fluence,

and 𝐹sat is the characteristic saturation laser fluence. As a result of the large number

of Rabi oscillations induced by the laser pulse and moderate pulse-to-pulse energy

fluctuations, an average 50% population transfer between the two levels is achieved.

Following laser excitation, we apply a mmW field with a cubic frequency chirp (𝑓inst ∝

𝑡3) of 800 MHz over 300 ns centered at the Stokes transition frequency. This produces

a complete population transfer (& 95%) to the final state. Probe pulses of identical

power and duration are used in the ARP and STIRAP experiments, allowing for

direct comparison of the signal from the intermediate and final state transitions.

We switch between the calibration and experimental sequences after every choice

of time delay for the STIRAP experiment. Thus, we have a 50% total population

transfer signal with which to calibrate the STIRAP transfer. This calibration scheme

additionally corrects for the slow fluctuations in the total signal due to ablation source

and Prep laser fluctuations. This somewhat complicated calibration procedure was

developed because of the challenge of being able to apply Probe pulses with well-

defined pulse areas. The full output power of the mmW spectrometer is used to

perform the STIRAP experiment, but this power is much greater than needed to

perform a 𝜋/2 pulse on the Probe transitions within the Doppler dephasing time. As

a result, each Probe pulse overdrives the Rydberg-Rydberg transition. We found it
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Figure 3-6: Schematic timing diagram for the time delay and calibration experiments
as described in the text. Each timing sequence concludes with polarization of the two
probe transitions and subsequent FID detection.

difficult to characterize the exact pulse area of these high-power probes because any

inhomogeneity in polarization or power in the mmW field washes out the coherent

Rabi oscillations, which must be observed in order to determine the pulse area. This

challenge was the impetus for developing the described calibration procedure based

instead on the more robust technique of adiabatic rapid passage.

3.4.3 Time Dependence

A typical STIRAP experiment involves scanning the time delay between the Pump

pulse and Stokes pulse, while monitoring the populations of the intermediate and final

levels. At large negative delay, the laser pulse arrives well after the mmW pulse, and

thus only the intermediate level will be populated. At large positive delay the laser

pulse arrives well before the mmW pulse and corresponds to the regime of sequential

excitation of the three-level system. Between these limits, we anticipate enhanced

144



Figure 3-7: Saturation of the 4s30d←4s5p 804 nm transition signal as a function of
laser fluence. For low laser fluence, a nearly linear signal dependence is observed,
while at high laser fluence, the signal changes minimally with changes in the laser
power.
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population transfer to the final level at short negative delays, when the pulses are in

the “counter-intuitive timing” that is a key requirement of the STIRAP process. The

result of a typical such experiment is shown in Figure 3-8. At short negative delay we

observe an enhanced population transfer to the final state of &50%. Concurrently,

the population in the intermediate state exhibits a pronounced dip. As the delay

becomes positive but while the two pulses are still overlapped, the population transfer

to both the final and intermediate levels show variation with pulse delay that is

generally enhanced relative to the sequential excitation regime. The intermediate

state population reaches a maximum at the point where the final state population

dips, after which the final state population increases slightly as the intermediate state

population begins decreasing. This type of population transfer has been observed in

other systems60,89,114 and we interpret this as further evidence for strong two-photon

coupling.

3.4.4 Frequency Dependence

The other signature of STIRAP-mediated population transfer is insensitivity to

one-photon detuning while two-photon resonance is maintained. This characteris-

tic, which arises from the two-photon nature of the population transfer, produces a

“STIRAP ridge” of enhanced population transfer at zero two-photon detuning as the

Pump and Stokes detunings are varied.

Figure 3-9 shows the final state population transfer at the STIRAP timing as

a function of Pump laser detuning for several fixed values of the Stokes microwave

frequency. The spectra are obtained by scanning the Pump detuning at fixed values

of the Stokes detuning. The right plot shows positive detunings from 600 MHz (dark

blue) to 0 MHz (dark red) in steps of 50 MHz, and the right plot shows negative

Stokes detunings from -600 MHz (dark blue) to 0 MHz (dark red) in 50 MHz steps.

All spectra were scaled by the population transfer measured at the STIRAP timing

in the time delay experiment.

The solid line for each spectrum is a fit to the data with a skew Gaussian function
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Figure 3-8: Population measured in the intermediate (red) and final (blue) states
as a function of delay time between the Pump and Stokes pulses. At short nega-
tive delay times, enhanced population transfer to the final state is evident, while a
dip in the population of the intermediate state occurs simultaneously. A schematic
representation of the Pump and Stokes pulse timing appears above the main figure.
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Figure 3-9: Detuning dependence of final state population. The left plot shows
population transfer as a function of laser detuning for fixed microwave detunings
from -600 MHz (dark blue) to 0 MHz (dark red) in steps of 50 MHz. The right
plots correspond to microwave detunings from +600 MHz (dark blue) to 0 MHz
(dark red). The solid lines are fits to the data with a skew Gaussian function. The
STIRAP ridge appears as the peak population transfer along the approximate zero
two-photon detuning line.

of the form:

𝑓(𝜈) = 𝐴

[︂
1 + erf

(︂
𝛼(𝜈 − 𝜇)

𝜎
√
2

)︂]︂
exp

(︀
−(𝜈 − 𝜇)2/2𝜎2

)︀
(3.38)

where 𝐴 is a scaling factor, 𝜇 is the center of the distribution, 𝜎 is the variance, and

𝛼 is the skewness parameter. This choice of lineshape is not motivated by the physics

of the system, but rather, it has a simple functional form that can represent the

asymmetry, width, and shift of the observed lines. In fact, the physics that produces

the observed population transfer profiles includes many contributions and likely will

not have a simple analytical form for the particular experiment described here. More

details of the lineshape are discussed in the next section.

In Figure 3-9, the Pump detuning that produces peak population transfer shifts

as a function of the Stokes detuning. The shift is symmetric about zero detuning

and approaches 400 MHz for Stokes detunings of 600 MHz, and -400 MHz for Stokes

detunings of -600 MHz. The peak population transfer along this line of approxi-

mate zero two-photon detunings is the characteristic STIRAP ridge. In addition, the
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linewidth for all detuning values is substantially larger than the 310 MHz Doppler

width, which was measured in an experiment at low laser power and with sequen-

tial excitation. Lastly, as the microwave detuning is increased, the shape of the line

becomes increasingly asymmetric, with the tail pointing toward zero Pump detun-

ing. These characteristic features are interpreted and compared to the results of our

numerical simulations in the next section.

3.4.5 Numerical Simulations

We have simulated the population transfer in this experiment by numerical inte-

gration of the Liouville equation using properties for the atomic ensemble and the

two photons consistent with the experiment:

𝑖~
d𝜌

d𝑡
= [𝐻, 𝜌] + Γ (3.39)

where 𝜌 is the density matrix for the three-level system, 𝐻 is the total Hamiltonian for

the atom-radiation system, which is given by Equation 3.1, written in a dressed state

picture, with parameters as defined in Section 3.2. In Equation 3.39, the operator

Γ is a phenomenological decay matrix, which, considering only predissociation of the

intermediate level, has the form:

Γ =

⎛⎜⎜⎜⎜⎝
0 −𝛾

2
𝜌12 0

−𝛾

2
𝜌21 −𝛾𝜌22 −

𝛾

2
𝜌23

0
−𝛾
2

𝜌32 0

⎞⎟⎟⎟⎟⎠ (3.40)

where 𝛾 is the predissociation rate of the intermediate state (State 2). By substi-

tuting the explicit forms of the total Hamiltonian (Equation 3.1) and decay operator

(Equation 3.40) into Equation 3.39, we obtain a system of nine coupled differential

equations. These equations describe all populations and coherences in the system.

Noting that 𝜌𝑥𝑦 = 𝜌*𝑦𝑥, we obtain the following six Optical Bloch equations, which
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completely describe the system of interest:

�̇�11 =
𝑖Ω𝑃

2
(𝜌12 − 𝜌21) (3.41)

�̇�22 =
𝑖Ω𝑃

2
(𝜌21 − 𝜌12) +

𝑖Ω𝑆

2
(𝜌23 − 𝜌32)− 𝛾𝜌22 (3.42)

�̇�33 =
𝑖Ω𝑆

2
(𝜌32 − 𝜌23) (3.43)

�̇�12 =
𝑖Ω𝑃

2
(𝜌11 − 𝜌22) +

𝑖Ω𝑆

2
𝜌13 +

(︁
−𝛾

2
+ 𝑖Δ𝑃

)︁
𝜌12 (3.44)

�̇�13 =
𝑖Ω𝑆

2
𝜌12 −

𝑖Ω𝑃

2
𝜌23 + 𝑖 (Δ𝑃 −Δ𝑆) 𝜌13 (3.45)

�̇�23 =
𝑖Ω𝑆

2
(𝜌22 − 𝜌33)−

𝑖Ω𝑃

2
𝜌13 +

(︁
−𝛾

2
− 𝑖Δ𝑆

)︁
𝜌23 (3.46)

In our simulations we find that the relevant Rabi frequencies, Ω𝑃 = 2𝜋 × 115

MHz, and Ω𝑆 = 2𝜋 × 68 MHz, best reproduce the experimental observations. The

population transfer is integrated over the observed Doppler width of the Pump laser

transition of 310 MHz FWHM and the Gaussian variation of pump laser intensity

across the laser beam profile. Both Gaussian-distributed fluctuations of the Pump

laser intensity and fluctuations in the magnitude of the Pump laser chirp are included.

We average 100 simulations in order to compare the simulated time and frequency

dependence with the experimental results.

3.5 Discussion

3.5.1 Adiabaticity

We begin this discussion by noting that the Rabi frequencies used in our simulation

should be considered effective Rabi frequencies. While a number of the experimental

imperfections have been explicitly modeled in the simulations, all neglected imperfec-

tions will have the general effect of reducing the Rabi frequencies that describe the

experiment. Based on our measurement of the pulse energies and durations, both

the Stokes and Pump Rabi frequencies used in the simulations are about 40% smaller

than our initial estimates. Simulations that use the initially estimated Rabi frequen-
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cies show significantly worse agreement with all experimental data. In the following

sections of this discussion, we will address in detail the experimental imperfections

that could give rise to some of the discrepancies between the simulations and exper-

iment. All such imperfections have the effect of additionally reducing the effective

Rabi frequency below our initial estimate.

As discussed in Section 3.2, STIRAP requires an adiabatic evolution of the dark

state in order to coherently move population from the initial to the final state. The

global adiabaticity requirement in Equation 3.33 provides an approximate benchmark

for determining the effectiveness of STIRAP. Our effective Rabi frequencies and pulse

overlap time result in Ω𝑒𝑓𝑓Δ𝜏 ≈ 5. While the detailed pulse shape and other param-

eters will impact the final population transfer as well, this simple Ω𝑒𝑓𝑓Δ𝜏 metric

indicates that our experiment is operating near to but not deeply in the adiabatic

regime. This fact is primarily responsible for the less than perfect population transfer

to the final state of approximately 50%.

The second major impediment to adiabatic following in our experiment is our

use of a nearly square mmW pulse. The very sharp turn-off of the Stokes pulse is

antithetical to the required slow, smooth change in Rabi frequencies. As a result,

the peak population transfer occurs at a smaller negative pulse delay than might be

expected from the naive picture presented in Figure 3-2, where the pulse delay was

equal to the duration of the two identical, smooth Gaussian pulses. In other words,

our pulse overlap time must be long in order to “make up for” the poor adiabatic

following that results from the pulse shape. This is true in both the experimental data

and the simulation results discussed in the next section. If one arbitrarily increases

the Rabi frequencies in our simulation, the pulse delay timing for peak population

transfer shifts to longer negative pulse delays as the adiabatic following improves.

3.5.2 Time Dependence

Our simulations qualitatively capture many of the features of the time delay ex-

periment. In Figure 3-10, the experimental data are shown as points, the solid lines

are the average of 100 simulations, and the shaded area represents the standard devi-
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ation of the 100 simulations. As before, red denotes the intermediate state and blue

denotes the final state. Population transfer of at least 50%, though not much larger,

is observed in both experimental and simulation results. This enhanced population

transfer to the final state is, as expected, accompanied by a pronounced decrease in

the population transfer to the intermediate state. While the calculation yields near

quantitative agreement with the final state population, the observed intermediate

state population is about 10% larger than in the calculation. As the pulse delay

increases beyond the STIRAP timing, the final state population transfer is reduced

and a peak in the intermediate state population transfer appears. This is the point

of most significant quantitative discrepancy. The simulation suggests that the in-

termediate state population should approach nearly the same value as the STIRAP

transfer and the final state population should decrease dramatically. However, the

experimental data show similar changes of less than 10% in both values of the abso-

lute population transfer. A second dip in intermediate state population and peak in

final state population occurs when the two radiation pulses partially overlap at short

positive delays. This simulated final oscillation in the populations is even weaker than

the preceding one in our experimental results. The population transfer at long delay

times is quantitatively reproduced. At long negative delays, the simulation captures

the ∼50% population transfer expected from our measurement of saturation of the

4s30d←4s5p transition. At long positive delays, the Pump and Stokes pulses interact

with the system sequentially, and the final and intermediate state populations are

simply dependent on the ratio of Stokes and Pump Rabi frequencies.

We will turn next to some speculation regarding the poor agreement between the

simulation and experiment during the overlap timing, but first we will discuss the

significance of why the agreement is poor. This overlap period represents a time

when the atoms simultaneously experience both laser and millimeter-wave fields. As

a result, the atoms will undergo two-photon Rabi flopping among the initial, inter-

mediate, and final levels. This is not an adiabatic process like STIRAP, but rather

depends entirely on maintaining high coherence among the three levels for long times.

If coherence is lost over time, the oscillations will be “washed out” and some sort of
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Figure 3-10: Simulation results for the intermediate (red) and final (blue) state pop-
ulation transfer as a function of pulse delay. The solid lines are the mean population
and the standard deviation of the 100 simulations is shown as a shaded area. For
comparison, the experimental data points appear as circle markers in matching colors.
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average population will be measured in the three levels. This process is precisely the

type of “delicate” population transfer that STIRAP aims to avoid, because exquisite

experimental control is required. A host of experimental imperfections, which are not

included in our simulations because they are difficult to control and/or quantify, will

reduce the contrast of the two-photon Rabi oscillations, in agreement with what we

observe in the experimental data.

The reduced contrast in the population transfer ratio during the pulse overlap

could have several experimental explanations. Many of these explanations are linked

to the very long beam path and, hence, to the large number of optics in our set-up

required to direct the Pump laser into the experimental chamber. This can produce

imperfections in the laser beam at the entrance to the chamber, which have not been

accounted for in our simulation, including variations or fluctuations in phase, am-

plitude, and polarization. The importance of high coherence radiation and Fourier

transform-limited pulses has already been discussed here and in our previous work,60

where, in the presence of very large Pump pulse phase fluctuations, all coherent

oscillations became averaged out. Amplitude variations in the form of uneven illumi-

nation or hot spots in the beam profile would also have significant impacts. Although

STIRAP is relatively insensitive to power fluctuations, hot spots in the beam pro-

file can enhance the local electric field by orders of magnitude, making this type of

imperfection problematic. Lastly, polarization plays an important role that we have

not yet addressed. These experiments were performed with all three radiation fields

nominally having linear polarizations aligned in the same direction. The polarization

arrangement matters because every state in the excitation scheme is (2ℓ + 1)-fold

degenerate due to the presence of magnetic sub-levels. The ground state of Ca is a

non-degenerate 1S0 state with one 𝑚 = 0 sub-level. By using linear, parallel polariza-

tion for each step, only one magnetic sub-level is involved for every electronic state,

even though the total number of magnetic sub-levels increases for every step along

the STIRAP path. If the polarization is corrupted, then transitions to other 𝑚 lev-

els become allowed and the many possible excitation paths can produce interference

effects in the population transfer. This effect has been previously investigated, and
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both constructive and destructive interference are possible, depending on the chosen

polarization arrangement.84,89 At a more basic level, the transition dipole moment is

𝑚-dependent so the presence of more than one magnetic sub-level and more than one

transition path produces several sets of alternate three-level systems each with a dif-

ferent effective Rabi frequency. The sum of these many contributions will significantly

reduce the contrast of the two-photon Rabi flopping. The STIRAP process is much

more robust with respect to variations in the Rabi frequencies as long as the Rabi

frequencies are large enough, so the population transfer at the STIRAP timing is not

significantly affected. This highlights the importance of controlling the polarization

of the radiation field to produce the desired effect. Again, while we have attempted

to clean up the polarization of the laser fields, corruption is possible and the beam

combining optics are the leading suspect.

Regarding the magnetic sub-levels, it is also important to point out that the

degeneracy of these levels can be lifted, producing transitions to additional 𝑚 levels.

The presence of a small magnetic field, due to nearby electrical equipment or the

Earth, can produce 𝑚 level splittings in the Rydberg states of interest. While passive

shielding (for instance, with 𝜇-metal) is the standard method for eliminating this

effect,63 this type of shielding is incompatible with our CPmmW experiments, because

the experiments require optical access across a large volume for laser and microwave

fields. Instead, we have pursued active compensation by placing Helmholtz coils

around the apparatus in three dimensions.168 When a magnetic field is present,

we observe line splittings in the Rydberg-Rydberg mmW spectra. By tuning the

currents in each pair of coils, we can compensate for the magnetic field and reduce

these splittings. Importantly, we cannot claim to “eliminate” the Zeeman splitting,

but we can only state that it is reduced below the largest line broadening, the Doppler

width. Thus, transitions to additional 𝑚 sub-levels may still be possible, though the

energy splittings and transition amplitudes are reduced to the best of our ability.

An additional complication in the STIRAP experiment is the possibility of mmW

reflections inside the chamber. The mmW radiation can experience significant re-

flections from the window surfaces and, especially, from the receiver horn, where the
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impedance mismatch between the waveguide and free space is significant. While the

intensities of these reflected beams would only be a small fraction of the intensity of

the incident mmW radiation, additional population transfer after the STIRAP timing

would be possible due to the large (∼kiloDebye) Rydberg-Rydberg transition dipole

moments. This would lead to a loss of contrast in the Rabi flopping region since these

weak pulses could only cause a reduction in the population difference between the

two levels. In many CP-FTMW experiments, in which the low frequency microwaves

are much less “beam-like,” the interior of the experimental chamber is coated with

microwave-absorbing foam or paint to reduce reflections. Such a modification may be

beneficial for future mmW experiments as well.

3.5.3 Frequency Dependence

The simulation of the frequency detuning experiment, shown in the bottom panels

of Figure 3-11, also captures many of the features observed in our experiment. For

ease of comparison, the fit lines to the experimental data are presented in the top

panels of Figure 3-11, and the dashed arrow is a guide to the eye, highlighting the

frequency shift of the peak population transfer. In both experiment and simulation,

as the Stokes detuning is increased, the Pump detuning spectra show a clear frequency

shift in the peak population transfer along with a pronounced increase in lineshape

asymmetry. In order to make a more quantitative comparison, Figure 3-12 shows

the maximum of the fits to the experimental data (red circles) and the maximum

of the simulated population transfer (black circles) as a function of Stokes detuning.

The black dashed line is the naive expectation for a STIRAP process in which the

peak population transfer occurs at exactly Δ𝑃 = Δ𝑆. Both the experiment and

simulation deviate from this naive expectation and the change in peak transfer is

much flatter near resonance. As the detuning increases, the rate of change of the

peak Pump detuning increases and the value of peak Pump detuning approaches

the two-photon resonance line. The experimental results show a similar trend in the

detuning dependence, although the magnitude of the observed shift, particularly at

large detunings, is smaller than expected from the simulations.
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Figure 3-11: Top: Fitted skew Gaussian lineshapes to the experimental data presented
in Figure 3-9. The dashed arrow is a guide to the eye, indicating the frequency shift
in peak population transfer as the Stokes detuning is changed. Bottom: Simulation
results for the population transfer as a function of Pump detuning for fixed values of
the Stokes detuning. Left: -600 MHz (dark blue) to 0 MHz (dark red) in steps of 50
MHz. Right: 600 MHz (dark blue) to 0 MHz (dark red) in steps of -50 MHz.
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Next, we turn to an examination of the lineshape. The simulation clearly shows

that in the STIRAP timing, the linewidth of the two-photon process is broader than

the one-photon Doppler linewidth of 310 MHz, which is explicitly included in the

simulation. The large Rabi frequencies in the STIRAP experiment allow for enhanced

population transfer even in the presence of a one-photon detuning. Clearly, the

experimental broadening is significantly larger than the simulated broadening. As

mentioned in the above discussion, the effective Rabi frequencies in our simulations

are smaller than expected for the measured pulse energies and durations of the Pump

and Stokes pulses. This suggested to us that fluctuations in phase or amplitude,

or significant ASE in the Pump laser beam degrade the overall coherence. These

imperfections can increase the observed linewidth by broadening the laser or mmW

bandwidth, or increasing the effect of power broadening.153

Both the simulation and the experiment show lineshapes which grow increas-

ingly asymmetric as the detuning is increased. We can quantitatively compare this

asymmetry by examining the skewness and kurtosis of the fitted and simulated lines.

Skewness is defined as the third standardized moment, given by the expression:

�̃�3 =
𝜇3

𝜎3
=

𝐸 [(𝑋 − 𝜇)3]

(𝐸 [(𝑋 − 𝜇)2])3/2
(3.47)

where 𝜇3 is the third moment about the mean defined by the expectation value

𝐸 [(𝑋 − 𝜇)3], and 𝜎 is the standard deviation defined as the square root of the second

moment about the mean, (𝐸 [(𝑋 − 𝜇)2])1/2. This skewness is a valuable measure for

comparing the shapes of two distributions because it is scale invariant. Even though

two lineshapes may look quite different because the mean and/or standard deviation

are different, the skewness of the two lineshapes can be quantitatively compared.

Qualitatively, the skewness describes the asymmetry of a distribution and can be

positive or negative depending on the direction of the tail. For comparison, a Gaussian

distribution is perfectly symmetric and has a skewness of zero. Similarly, the kurtosis
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Figure 3-12: Pump detuning that produces the peak population transfer as a function
of Stokes detuing. The experimental data is shown as red circles and the simulated
data as black circles. The dashed black line is the two-photon resonance line, Δ𝑃 =
Δ𝑆. The experiment and simulation deviate from the two-photon resonance line in
the same way.
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Figure 3-13: Skewness (left) and kurtosis (right) of the observed (red) and simulated
(black) lineshapes for each value of the Stokes detuning.

is defined as the fourth standardized moment and given by,

�̃�4 =
𝜇4

𝜎4
=

𝐸 [(𝑋 − 𝜇)4]

(𝐸 [(𝑋 − 𝜇)2])2
(3.48)

This quantity is also scale invariant and describes the “tailedness” of a distribution,

or, in other words, how much weight appears in both tails relative to the center of

the distribution. For reference, values of the kurtosis for a Gaussian distribution, a

hyperbolic secant distribution, and a uniform distribution are 3, 5, and 1.8, respec-

tively. The skewness and kurtosis of the simulated (black) and fitted (red) lines are

shown in the left and right panels of Figure 3-13, respectively. The calculated skew-

ness quantitatively agrees for small negative and all positive Stokes detuned spectra.

There is greater deviation for the negative Stokes detuned spectra, though the direc-

tion and order of magnitude are correct. The values of kurtosis for both the simulated

and calculated lines are very close to the Gaussian value of 3. Again, there is better

agreement for the positive Stokes detuned spectra than the negative Stokes spectra.

The generally flat trend across the experimental data set agrees qualitatively with

the simulation. We interpret the similar lineshapes between the simulation and ex-

periment to mean that our simulation is likely capturing most of the physics, though

estimates for the particular parameters (e.g., Rabi frequencies, frequency/amplitude

fluctuations, etc.) may not be exactly correct.
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The reason for the observed asymmetry in the population transfer is the presence

of diabatic transitions from the initial to final state caused by the frequency fluctua-

tions in the Pump field and the sharp turn-off of the Stokes field. As a result, there

is enhanced population transfer as the Pump frequency is tuned toward one-photon

resonance relative to away from one-photon resonance. This effect is enhanced by

the presence of Doppler broadening in our sample because a Doppler subgroup with

significant population will be one-photon resonant with the Pump transition even

at detunings of several hundred MHz. At some specific values of the pulse overlap

and detuning, we have observed simulated spectra that are double-peaked, with a

second local maximum in the population transfer near zero Pump detuning. This

suggests that the population transfer in the tail is due to diabatic transitions, or,

in other words, step-wise transitions from the initial to intermediate to final state

caused mainly by the sharp turn-on of the mmW pulse. This is in contrast to the

STIRAP process, in which population is adiabatically transferred by the smooth

change of Pump and Stokes Rabi frequencies. These step-wise, diabatic transitions

are significantly more sensitive to one-photon detuning than STIRAP. Furthermore,

we observe in simulations that when the Stokes detuning is increased beyond the ±600

MHz region investigated experimentally, the intensity in the tail rapidly decreases and

eventually the lineshape becomes symmetric again when only the adiabatic process

contributes.

We have generally discussed that the result of diabatic transitions is to cause

greater population transfer to the final state. However, this is not always true. If the

excitation is partly incoherent or substantially modified by pulse-to-pulse intensity

fluctuations, then saturation occurs, limiting the population transfer to maximally

50%. The STIRAP process has no such limitation and can transfer up to 100% of

the population from the inital to final states. This means it is possible for diabatic

transitions to actually reduce the total population transfer by moving population

from the final state back to the intermediate state. In both the experimental data

and simulations, there is a small dip in the population transfer when both Pump and

Stokes fields are on one-photon resonance. At small detunings above and below one-
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photon resonance, we observe slightly enhanced population transfer to the final state.

This is expected behavior because the maximum adiabatic and diabatic population

transfers occur near one-photon resonance, but the adiabatic transfer efficiency is

much less sensitive to one-photon detuning. Thus, the balance of these diabatic and

adiabatic mechanisms controls where the peak transfer occurs in the detuning space.

In both experimental and simulation results, the difference in population transfer at

small detunings is subtle and merits further investigation. However, previous STIRAP

experiments have reported this effect, especially when fast intermediate state decay is

involved, because diabatic transitions into the intermediate state lead to irreversible

loss of that population.114

3.5.4 Lossy Intermediate State

It is informative to examine how our system behaves in the presence of a hypothet-

ical lossy intermediate state. All simulation parameters are the same as previously

described, but the intermediate state is assumed to have a 1 ns non-radiative lifetime.

This represents a typical predissociation lifetime for a low-ℓ Rydberg state in a di-

atomic molecule. Figure 3-14 shows the population transfer to the intermediate (red)

and final (blue) states as a function of pulse delay. In the presence of this rapid decay

channel, significant population transfer to the final state only occurs at the STIRAP

timing. At all other times, either through sequential excitation or two-photon Rabi

flopping, population is moved into the intermediate state and immediately lost. The

very modest population transfer of just over 10% is a reflection of the previously

described experimental imperfections in our system.

Figure 3-15 shows the same simulated population transfer as a function of detuning

as Figure 3-11 with a 1 ns intermediate state lifetime. As observed in the time delay

simulation, the peak transfer on resonance is just over 10% for this hypothetical

system. Unlike the simulations with no intermediate state decay, there is significant

variation in the population transfer for different values of the pump detuning even

at very large detunings. We believe this is an artifact of the fluctuating parameters

in the simulation. Even with 100 simulations, the fluctuations are not averaged out

162



Figure 3-14: Simulation results for the intermediate (red) and final (blue) state pop-
ulation transfer as a function of pulse delay when the intermediate state has non-
radiative lifetime of 1 ns. The solid lines are the mean population and the standard
deviation of the 100 simulations is shown as a shaded area.
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when zoomed in to this level. As a result, it is difficult to interpret the slightly lower

population transfer observed when both fields are on one-photon resonance. It is likely

that strong diabatic transitions on one-photon resonance increase the population loss

relative to small one-photon detunings, as discussed in the case with no decay. This

would also be consistent with previous investigations.114 However, this difference is

similar to the observed population differences due to fluctuations.

As the one-photon detuning is increased, the population transfer appears to be

much more robust than in the case with no decay, varying from a peak of &10% to

about 7% at the largest detunings. This is about half the population transfer observed

at the extreme detunings for the case of no decay, while the transfer on resonance is

about five times lower. In addition, the lines are significantly more symmetric for the

simulation with decay, and are missing the long tails in the direction of zero Pump

detuning. Both of these observations point to the fact that only adiabatic popula-

tion transfer can move significant population from the initial to the final state in the

presence of a very lossy intermediate state. The lineshape is more symmetric because

diabatic population transfer near zero Pump detuning is not operative. This is also

why the population transfer is similar for all detunings. STIRAP is characteristi-

cally insensitive to the one-photon detuning and so the adiabatic population transfer

does not decrease substantially across the detuning range. In contrast, for the case

with no decay, the diabatic population transfer is strongly one-photon dependent and

dramatically increases the population transfer only near zero Pump detuning.

In a sense, this hypothetical lossy state is the true test of STIRAP. The defining

feature of STIRAP is that the intermediate state is not substantially populated en

route to the final state. By simulating a fast intermediate state decay, the sequential

excitation path is turned off and only STIRAP transfer can produce a signal. In

our previous work, this test was the clear indication that STIRAP had not been

achieved.60 These positive simulation results further bolster our interpretation that

optical-mmW STIRAP is operative, though not ideal, in our experiment, and that

implementation of this technique in a molecule under similar conditions would be

feasible.
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Figure 3-15: Simulation results for the population transfer as a function of Pump
detuning for fixed values of the Stokes detuning for a system with a 1 ns intermediate
state lifetime. Left: -600 MHz (dark blue) to 0 MHz (dark red) in steps of 50 MHz.
Right: 600 MHz (dark blue) to 0 MHz (dark red) in steps of -50 MHz.

3.5.5 Future Improvements

Obviously, the final state population transfer of just over 50% for this proof-of-

principle system is far below the near-unity population transfer typically associated

with STIRAP. Beyond simply increasing the Rabi frequencies or eliminating the pos-

sible experimental imperfections discussed in Section 3.5.2, our simulations suggest a

number of specific areas for improvement in experimental design.

First, the mmW pulse with a nearly square temporal profile immediately hinders

the adiabatic following necessary for STIRAP. The sharp turn-on and turn-off produce

non-adiabatic transitions between the intermediate and final states, corrupting the

purity of the desired dark state. In the mmW frequency range, temporal pulse shap-

ing on nanosecond time scales is technically inaccessible. In some spectral regions,

electrically tuned variable attenuators exist, which can produce some pulse shaping

although not in an arbitrary manner. Both David Grimes and Holger Herburger

in the Field group have computationally explored some simplified pulse shapes that

can be achieved with variable attenuators and demonstrated that population transfer

efficiencies similar to smooth Gaussian pulses are possible.59,60,66 Another strategy

is to take advantage of the arbitrary pulse shapes available with an AWG and up-

convert these shaped low-frequency pulses to the mmW range in a harmonic mixer.
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Figure 3-16: Simulated population transfer to the intermediate (red) and final (blue)
state at the STIRAP timing as a function of the radial coordinate of the Pump laser.
The Gaussian variation in the Pump laser intensity (HWHM 5 mm) gives rise to
pronounced variation in the population transfer across the Pump beam profile.

We demonstrated the ability to generate a Gaussian-shaped, 10 ns, ∼90 GHz pulse,

however, the pulse power following mixing and filtering of the undesired sideband was

found to be too low for STIRAP experiments. With higher power mmW sources, this

may be a fruitful strategy.

Figure 3-16 shows the simulated population transfer in the STIRAP timing as a

function of the radial dimension of the Pump laser pulse. For this simulation, we

have made the simplifying assumption that the Stokes Rabi frequency is constant

due to the large beam profile of the mmW radiation. The Pump laser has a near-

Gaussian transverse beam profile; as a result, the Rabi frequency varies dramatically

as a function of the radial dimension of the laser spot. Near the center of the Pump
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beam, where the laser intensity is greatest, the simulated transfer plateaus around

65% and the intermediate state population is just 20%. Moving out toward the edge

of the beam profile, the population transfer efficiency decreases precipitously, while

the intermediate state population actually increases. This indicates that the Pump

laser does move significant population out of the initial state, but the Rabi frequency

is too low to ensure adiabatic following. Eventually, the laser power decreases to zero

and no population is transferred out of the initial state. This issue of radial variation

in laser intensity has been identified in other STIRAP experiments.32 By re-shaping

the beam, for instance to a top-hat profile, it should be possible to achieve uniform

population transfer efficiency across the width of the laser beam.

One of the most significant challenges in optical-mmW STIRAP relative to pre-

vious STIRAP implementations is the very large frequency difference that leads to

negligible cancellation in Doppler shifts for the two photons. The use of a buffer gas

cooled beam, with its relatively low beam divergence, certainly improved the popu-

lation transfer efficiency relative to what would be possible with a high divergence

supersonic jet. Figure 3-17 shows the simulated population transfer as a function of

the Pump detuning. On this plot, the Doppler width would be represented by a Gaus-

sian distribution centered at 0 MHz with HWHM of 155 MHz. The advantage of the

narrow Doppler width from the buffer gas beam is evident. The majority of velocity

sub-groups that contribute to the total population transfer have population transfer

efficiencies of more than 50%. By skimming the beam, the transverse Doppler width

could be further reduced at the expense of the total number of atoms/molecules.

While this would make chirped-pulse experiments very challenging, a more sensitive

detection technique like pulsed field ionization would be entirely compatible with this

strategy. Moreover, the smaller molecular beam size would allow use of more tightly

focused laser and microwave fields and thus a dramatic increase of the achievable

Rabi frequencies.
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Figure 3-17: Simulated population transfer to the intermediate (red) and final (blue)
state at the STIRAP timing as a function of the Pump laser detuning. This represents
the effect of Doppler broadening on the total population transfer. For reference, the
Pump transition was measured to have a HWHM of 155 MHz.
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3.6 Conclusion

We have demonstrated, for the first time, population of high-ℓ Rydberg states by

optical-mmW STIRAP. Population transfer occurs from a low-lying excited state of

Ca atoms to an nf Rydberg state via an optically accessible lower-ℓ Rydberg state

and involves coherent coupling of a laser and a mmW photon, differing by three

orders of magnitude in frequency. This technique represents a new and widely ap-

plicable method for efficient population transfer into high-ℓ Rydberg states of atoms

and molecules. In molecular systems, in which optically accessible low-ℓ Rydberg

states often suffer from fast non-radiative decay, our method offers significant advan-

tages over sequential excitation schemes. High-resolution spectroscopy of the Rydberg

states of many molecules will be made possible by optical-mmW STIRAP.
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Chapter 4

Spectroscopy of NO

4.1 Introduction

Since the early days of molecular spectroscopy, the nitric oxide molecule (NO) has

occupied a special position for both theorists and experimentalists. It is, uniquely,

a free radical in a bottle, making it a convenient system for high-resolution spec-

troscopic studies of Rydberg and valence states and their perturbations. Miescher

performed much of the foundational spectroscopic analysis of NO, including the first

detailed study of a high-ℓ Rydberg state of any molecule.79 Intense study of NO has

continued to the present day and touched on such diverse areas as combustion anal-

ysis,90 collision dynamics,82,172 atmospheric pollution,31 and even biology.1 In 1992,

NO was declared “Molecule of the Year.”86

In spite of this exalted position, there remain unexplored facets of NO. In partic-

ular, the high-ℓ Rydberg states of NO represent a vast state space that has eluded

detailed investigation. The 𝑛𝑓 states, of course, have been studied by many au-

thors,4,15,27,39,49–51,58,79,107,117,118,165 and while the energy level structure is generally

believed to follow the pattern of a core-nonpenetrating Rydberg state, the intramolec-

ular dynamics (predissociation and autoionization) of 𝑛𝑓 states involve multi-state

interactions and unusually rapid non-radiative decay. Some progress toward under-

standing the strangeness in the dynamics of the 𝑛𝑓 states is presented in Chapter 5.

Rydberg states with ℓ > 3 have been examined in just a handful of studies. Most
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of these have examined the 5𝑔-4𝑓 transition, which occurs in the infrared region, by

emission3,35 or absorption97 spectroscopy. However, to expand the boundaries of the

current level of understanding for these high-ℓ states, a data set covering a wide range

of quantum numbers at high resolution is necessary. This motivated our approach,

in the investigation of high-ℓ Rydberg-Rydberg transitions, to use CPmmW spec-

troscopy, which allows for high resolution data collection in an efficient multiplexed

scheme with accurate relative transition intensities.

In this chapter, we begin by describing the basic theoretical framework for un-

derstanding high-ℓ Rydberg state energy level structure. Following a brief summary

of some experimental details, each electronic state and transition in our excitation

scheme is described. Finally, we discuss details of CPmmW spectroscopy experi-

ments on NO, including unique assignment methods, surprising electric field effects,

linewidth analysis, and a preliminary fit of the long-range electrostatic model.

4.2 Theory of molecular Rydberg states

A number of theoretical models exist for the description of molecular Rydberg

states. These include approaches based on effective Hamiltonians,75 multichannel

quantum defect theory,28 and, as will be used extensively in this work, long-range

electrostatic interactions.41 This final approach is particularly well suited for the

description of high-ℓ, core-nonpenetrating Rydberg states of molecules, because the

basic energy level structure is that of a hydrogen atom. Deviations from hydrogenic-

ity are due to the fact that the ion at the center of the Rydberg state is not a point

charge, but a collection of electron and nuclear charges. As its name implies, the

long-range electrostatic model attempts to account for these non-hydrogenic interac-

tions between the Rydberg electron and core using the long-range forces of classical

electrostatics. Unlike other theoretical approaches for studying molecular Rydberg

states, this means the model inputs are physically meaningful, rather than effective

parameters. As will be discussed, this also requires careful application of the model

only to states that satisfy the assumption of weak of core-penetration if the fit param-
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eters are to be interpreted as “measurements” of the ion-core properties. A basic goal

of our spectroscopy on NO is an improved understanding of the electrostatic model,

generally, and of the electric structure of the NO+ ion, specifically. In addition to the

basic long-range electrostatic model, in this section we will also discuss the influence

of magnetic interactions, specifically nuclear spin, on Rydberg states. Although hy-

perfine structure is not resolved in our experimental data, it can lead to broadening

of the observed lines and so this discussion is included for completeness.

4.2.1 Long-range electrostatic model

The key to the long-range model of Rydberg states is the recognition of explicit

physical mechanisms that perturb the Rydberg energy level structure from a purely

hydrogenic form. This model was first considered by Jungen and Miescher,79 and

rigorously derived by Lundeen and co-workers.142 However, we will generally follow

the method of Eyler and Pipkin41 using modern angular momentum algebra. The

operations are most conveniently performed in a case (d) basis and we will begin by

slightly augmenting the space-fixed case (d) wavefunction of Equation 1.59 by adding

the vibrational and principal quantum numbers. The case (d) wavefunction now has

the form:

|𝑛𝑣𝑅ℓ𝑁𝑀⟩ =
∑︁

𝑀ℓ,𝑀𝑅

(−1)ℓ−𝑅+𝑀 [2𝑁 + 1]1/2

⎛⎝ ℓ 𝑅 𝑁

𝑀ℓ 𝑀𝑅 −𝑀

⎞⎠ |𝑣𝑅0𝑀𝑅⟩ |𝑛ℓ𝑀ℓ⟩

(4.1)

We can explicitly write the electronic wavefunction for a hydrogenic Rydberg electron

as

|𝑛ℓ𝑀ℓ⟩ = |ℓ𝑀ℓ⟩ |𝑛ℓ⟩ = 𝑌 ℓ
𝑀ℓ

(𝜃, 𝜑)𝑅𝑛,ℓ(𝑟) (4.2)

where 𝑌 ℓ
𝑀ℓ

is a spherical harmonic with angles referenced to the space-fixed axis, and

𝑅𝑛,ℓ is a radial hydrogenic wavefunction. We will also invoke a separation of the

rotational and vibrational degrees of freedom to write the nuclear wavefunction as

|𝑣𝑅0𝑀𝑅⟩ = |𝑅𝑀𝑅⟩ |𝑣𝑅⟩ = 𝑌 𝑅
𝑀𝑅

(𝜃𝑧, 𝜑𝑧) |𝑣𝑅⟩ (4.3)
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where the rotational wavefunction of a linear molecule is simply the spherical har-

monic, 𝑌 𝑅
𝑀𝑅

, and the vibrational wavefunction, |𝑣𝑅⟩, will depend on the rotational

quantum number due to the 𝑅-dependent centrifugal barrier on the potential energy

curve. The subscript 𝑧 designates the angles that describe the internuclear axis in

the space-fixed frame. Having carefully laid out the basis states to be used, we can

now turn to consideration of the Hamiltonian:

𝐻𝑡𝑜𝑡 =
𝑒2

𝑟Ryd

+
∑︁
𝑎

𝑒2

𝑟Ryd,𝑎

−
∑︁
𝐴

𝑞𝐴𝑒
2

𝑟Ryd,𝐴

(4.4)

where the subscript “Ryd” refers to the Rydberg electron, 𝑎 refers to all other elec-

trons in the ion-core, 𝐴 refers to all nuclei, and 𝑞𝐴 is the integer (positive) charge of

the 𝐴th nucleus. The first term is simply the hydrogenic potential, which will deter-

mine the zeroth-order energies. The second term describes interactions between the

Rydberg electron and all other electrons, and the third term accounts for the finite

internuclear separation. The zeroth-order Hamiltonian is equivalent to assuming that

the second and third terms will perfectly cancel each other, or that the core electrons

and nuclei occupy a negligible volume at the center of mass. We will handle these

complicated many-body interactions by considering the two largest effects. First, the

potential experienced by the Rydberg electron is modified by the non-sphericity of

the ion-core, or in other words, the ion-core will generally possess an electric dipole,

quadrupole, etc. Second, the field of the Rydberg electron can mix the ion-core states

as a second-order effect. This will be handled by considering the simplest second-order

electrostatic property of the ion-core, namely the dipole polarizability. The first-order

electrostatic interactions are given by a multipole expansion:

𝐻𝑒𝑙 =
∑︁
core

𝑒Ryd𝑒core
|𝑟 − 𝑟core|

(4.5)

=
∑︁
core,𝑘

𝑒Ryd𝑒core
𝑟𝑘core
𝑟𝑘+1
Ryd

𝑃𝑘(cos𝜔Ryd,core) (4.6)

where 𝜔Ryd,core is the angle between the Rydberg electron and each of the core par-

ticles. Throughout this derivation, the subscript “core” refers to any core electron
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or nucleus. We will re-write this expression using the spherical harmonic addition

theorem, which takes several common forms:

𝑃𝑘(cos 𝜃𝑖𝑗) =
4𝜋

2𝑘 + 1

∑︁
𝑞

𝑌𝑘𝑞(𝜃𝑖, 𝜑𝑖)𝑌
*
𝑘𝑞(𝜃𝑗, 𝜑𝑗) (4.7)

=
∑︁
𝑞

(−1)𝑞𝐶𝑘𝑞(𝜃𝑖, 𝜑𝑖)𝐶𝑘,−𝑞(𝜃𝑗, 𝜑𝑗) (4.8)

= 𝐶𝑘(𝜃𝑖, 𝜑𝑖) · 𝐶𝑘(𝜃𝑗, 𝜑𝑗) (4.9)

where 𝐶𝑘𝑞 are the modified spherical harmonics, or, equivalently, the 𝑞 components

of the spherical tensor operator 𝐶𝑘. This allows us to write an expression for the 𝑘th

multipole moment operator as

𝐻𝑘 =
∑︁
core,𝑞

(−1)𝑞𝑒Ryd𝑒core
𝑟𝑘core
𝑟𝑘+1
Ryd

× 𝐶𝑘𝑞(𝜔Ryd, 𝜈Ryd)𝐶𝑘−𝑞(𝜔core, 𝜈core) (4.10)

When averaged over the motion of the core electrons, the charge distribution of the

core has cylindrical symmetry about the molecular axis, thus only the 𝑞 = 0 term

contributes. This yields the body-frame result:

𝐻𝑘 =
∑︁
core

𝑒Ryd𝑒core
𝑟𝑘core
𝑟𝑘+1
Ryd

𝐶𝑘0(𝜔Ryd, 𝜈Ryd)𝐶𝑘0(𝜔core, 𝜈core) (4.11)

=
𝑒Ryd

𝑟𝑘+1
Ryd

𝐶𝑘0(𝜔Ryd, 𝜈Ryd)𝑄𝑘 (4.12)

where we have defined the 𝑘th multipole moment by

𝑄𝑘 =
∑︁
core

𝑒core𝑟
𝑘
core𝐶𝑘0(𝜔core, 𝜈core) (4.13)

As the final step in deriving the multipole operator, we need to transform from the

molecular frame to the laboratory frame in order to evaluate matrix elements. This is

accomplished by recognizing that the (0,0) direction in the body frame refers to the
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internuclear axis, and using the spherical harmonic addition theorem one more time.

𝐻𝑘 =
𝑒Ryd

𝑟𝑘+1
Ryd

𝑄𝑘𝐶𝑘0(𝜔Ryd, 𝜈Ryd) (4.14)

=
𝑒Ryd

𝑟𝑘+1
Ryd

𝑄𝑘𝐶𝑘0(𝜔Ryd, 𝜈Ryd)𝐶𝑘0(0, 0) (4.15)

=
𝑒Ryd

𝑟𝑘+1
Ryd

𝑄𝑘𝑃𝑘(cosΘ) (4.16)

= − 𝑒

𝑟𝑘+1
𝑄𝑘𝐶

𝑘(𝜃, 𝜑) · 𝐶𝑘(𝜃𝑧, 𝜑𝑧) (4.17)

In the last step, 𝑒 is no longer a signed quantity, and the explicit Rydberg subscript

has been dropped. Now, we would like to evaluate the matrix element of the multipole

moment operator 𝐻𝑘 in the case (d) basis. Using Equations 4.1 and 4.17, we find:

⟨𝑛′𝑣′𝑅′ℓ′𝑁 ′𝑀 ′|𝐻𝑘|𝑛𝑣𝑅ℓ𝑁𝑀⟩

= −𝑒 ⟨𝑣′𝑅′|𝑄𝑘|𝑣𝑅⟩
⟨︀
𝑛′ℓ′|𝑟−𝑘|𝑛ℓ

⟩︀
×

∑︁
𝑀ℓ,𝑀𝑅,𝑀 ′

ℓ,𝑀
′
𝑅

(−1)ℓ′+ℓ−𝑅′−𝑅+𝑀 ′+𝑀 [(2𝑁 ′ + 1)(2𝑁 + 1)]
1/2

×

⎛⎝ ℓ′ 𝑅′ 𝑁 ′

𝑀 ′
ℓ 𝑀 ′

𝑅 −𝑀 ′

⎞⎠⎛⎝ ℓ 𝑅 𝑁

𝑀ℓ 𝑀𝑅 −𝑀

⎞⎠
×

⟨︀
ℓ′𝑀 ′

ℓ|𝐶(𝑘)(𝜃, 𝜑)|ℓ𝑀ℓ

⟩︀ ⟨︀
𝑅′𝑀 ′

𝑅|𝐶(𝑘)(𝜃𝑧, 𝜑𝑧)|𝑅𝑀𝑅

⟩︀
(4.18)

= −𝑒 ⟨𝑣′𝑅′|𝑄𝑘|𝑣𝑅⟩
⟨︀
𝑛′ℓ′|𝑟−𝑘|𝑛ℓ

⟩︀
×

∑︁
𝑀ℓ,𝑀𝑅,𝑀 ′

ℓ,𝑀
′
𝑅

(−1)ℓ′+ℓ−𝑅′−𝑅+𝑀 ′+𝑀 [(2𝑁 ′ + 1)(2𝑁 + 1)]
1/2

×

⎛⎝ ℓ′ 𝑅′ 𝑁 ′

𝑀 ′
ℓ 𝑀 ′

𝑅 −𝑀 ′

⎞⎠⎛⎝ ℓ 𝑅 𝑁

𝑀ℓ 𝑀𝑅 −𝑀

⎞⎠
× (−1)ℓ′−𝑀 ′

ℓ

⎛⎝ ℓ′ 𝑘 ℓ

−𝑀 ′
ℓ 0 𝑀ℓ

⎞⎠⟨︀
ℓ′||𝐶(𝑘)(𝜃, 𝜑)||ℓ

⟩︀

× (−1)𝑅′−𝑀 ′
𝑅

⎛⎝ 𝑅′ 𝑘 𝑅

−𝑀 ′
𝑅 0 𝑀𝑅

⎞⎠⟨︀
𝑅′||𝐶(𝑘)(𝜃𝑧, 𝜑𝑧)|𝑅

⟩︀
(4.19)

= −𝑒 ⟨𝑣′𝑅′|𝑄𝑘|𝑣𝑅⟩
⟨︀
𝑛′ℓ′|𝑟−𝑘|𝑛ℓ

⟩︀
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× 𝛿𝑁 ′,𝑁𝛿𝑀 ′,𝑀(−1)ℓ−𝑅′+𝑁

⎧⎨⎩ℓ′ 𝑅′ 𝑁

𝑅 ℓ 𝑘

⎫⎬⎭
×

⟨︀
ℓ′||𝐶𝑘(𝜃, 𝜑)||ℓ

⟩︀ ⟨︀
𝑅′||𝐶𝑘(𝜃𝑧, 𝜑𝑧)||𝑅

⟩︀
(4.20)

= −𝑒 ⟨𝑣′𝑅′|𝑄𝑘|𝑣𝑅⟩
⟨︀
𝑛′ℓ′|𝑟−𝑘|𝑛ℓ

⟩︀
× 𝛿𝑁 ′,𝑁𝛿𝑀 ′,𝑀(−1)ℓ−𝑅′+𝑁

⎧⎨⎩𝑁 𝑅′ ℓ′

𝑘 ℓ 𝑅

⎫⎬⎭
× (−1)ℓ′ [(2ℓ′ + 1)(2ℓ+ 1)]

1/2

⎛⎝ℓ′ 𝑘 ℓ

0 0 0

⎞⎠
× (−1)𝑅′

[(2𝑅′ + 1)(2𝑅 + 1)]
1/2

⎛⎝𝑅′ 𝑘 𝑅

0 0 0

⎞⎠ (4.21)

= −𝑒 ⟨𝑣′𝑅′|𝑄𝑘|𝑣𝑅⟩
⟨︀
𝑛′ℓ′|𝑟−𝑘|𝑛ℓ

⟩︀
𝛿𝑁 ′,𝑁𝛿𝑀 ′,𝑀(−1)ℓ+ℓ′+𝑁

× [(2ℓ′ + 1)(2ℓ+ 1)(2𝑅′ + 1)(2𝑅 + 1)]
1/2

×

⎧⎨⎩𝑁 𝑅′ ℓ′

𝑘 ℓ 𝑅

⎫⎬⎭
⎛⎝ℓ′ 𝑘 ℓ

0 0 0

⎞⎠⎛⎝𝑅′ 𝑘 𝑅

0 0 0

⎞⎠ (4.22)

In the first step, we separated the angular components of the case (d) wavefunction

from the vibrational and radial electronic components. The second step requires

recalling that only the 𝑞 = 0 component of the spherical tensor 𝐶(𝑘) is non-zero and

application of the Wigner-Eckart theorem. Condensing the sum of 3j symbols into the

6j symbol of Equation 4.20 necessitates conservation of the total angular momentum

and its space-fixed projection. Finally, the Wigner-Eckart theorem is applied again

and the result simplified to obtain Equation 4.22. This result could have also been

derived with the use of a coupled case (d) wavefunction and the application of Formula

5.71 of Zare163 for the matrix element of the product of spherical tensor operators,

although that perhaps obscures the origin of this important result. The selection

rules for this type of perturbation are given immediately by the Kronecker deltas and

the form of the 3j symbols:

Δ𝑁 = 0
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Δ𝑀 = 0

Δℓ = ±𝑘,±(𝑘 − 2), . . . ,±𝑘 mod 2

Δ𝑅 = ±𝑘,±(𝑘 − 2), . . . ,±𝑘 mod 2

Our discussion of the polarizability operator will be less detailed, since much of the

same machinery is used. The dipole polarizability of the ground electronic state is

obtained from second-order perturbation theory of the dipole term as:

𝛼𝑖𝑗 = 2
∑︁
�̸�=0

⟨0|𝜇𝑖|𝑛⟩ ⟨𝑛|𝜇𝑗|0⟩
𝑊𝑛 −𝑊0

(4.23)

where 𝑊𝑛 is the energy of the 𝑛th excited electronic state and 𝑊0 is the ground

state energy. The dipole polarizability generally has 9 components, but for a linear

molecule it is simplified dramatically to a form with just two unique contributions.

𝛼𝑖𝑗 =

⎛⎜⎜⎜⎝
𝛼⊥ 0 0

0 𝛼⊥ 0

0 0 𝛼‖

⎞⎟⎟⎟⎠ (4.24)

We re-write these molecule-fixed polarizabilities into the isotropic (mean), 𝛼, and

anisotropic, 𝛾, components of the polarizability:

𝛼 =
1

3

(︀
2𝛼⊥ + 𝛼‖

)︀
(4.25)

𝛾 = 𝛼‖ − 𝛼⊥ (4.26)

Buckingham first showed that the contribution of the polarizability to the energy

can be written in a simple form using the isotropic and anisotropic terms,23 and we

choose to write that result in the angular momentum terminology used throughout

this work:

𝐻𝑝𝑜𝑙 = −
1

2
𝛼𝐸2 − 1

3
𝛾𝐸2𝑃2(cosΘ) (4.27)
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= −1

2
𝛼
𝑒2

𝑟4
− 1

3
𝛾
𝑒2

𝑟4
𝐶(2)(𝜃, 𝜑) · 𝐶(2)(𝜃𝑧, 𝜑𝑧) (4.28)

where in the second step we have substituted an explicit expression for the electric

field due to the Rydberg electron, and used the spherical harmonic addition theorem

in exactly the same way as in the multipole derivation. Since the dipole polarizability

is a sum of products of dipole operators, which are each rank 1 tensors, the polar-

izability must transform under rotation as a rank 2 tensor. This is the origin of the

angular dependence of the anisotropic polarizability, which looks identical to that of

the quadrupole moment. As a result, no additional work is required to evaluate the

matrix elements of this operator:

⟨𝑛′𝑣′𝑅′ℓ′𝑁 ′𝑀 ′|𝐻𝑘|𝑛𝑣𝑅ℓ𝑁𝑀⟩

= −𝑒2
⟨︀
𝑛′ℓ′|𝑟−4|𝑛ℓ

⟩︀ [︃1
2
⟨𝑣′𝑅′|𝛼|𝑣𝑅⟩ 𝛿ℓ′,ℓ𝛿𝑅′,𝑅

+
1

3
⟨𝑣′𝑅′|𝛾|𝑣𝑅⟩ (−1)ℓ+ℓ′+𝑁𝛿𝑁 ′,𝑁𝛿𝑀 ′,𝑀

× [(2ℓ′ + 1)(2ℓ+ 1)(2𝑅′ + 1)(2𝑅 + 1)]
1/2

×

⎧⎨⎩𝑁 𝑅′ ℓ′

2 ℓ 𝑅

⎫⎬⎭
⎛⎝ℓ′ 2 ℓ

0 0 0

⎞⎠⎛⎝𝑅′ 2 𝑅

0 0 0

⎞⎠]︃
(4.29)

4.2.2 Hyperfine structure

The electrostatic model presented in the previous section correctly treats the elec-

tric fine structure splittings present in a Rydberg complex. In addition, magnetic

fine structure resulting from interactions of the electron and nuclear spin may cause

additional shifts and splittings of levels. This discussion follows the method outlined

by Lundeen and co-workers,6 which assumes an ad hoc Hamiltonian of the form:

𝐻𝑀𝐹𝑆 = 𝐻𝐻𝐹𝑆 +𝐻𝑀𝑆 + (−1)𝑆𝑉𝑥 (4.30)

where the third term represents an exchange energy between the Rydberg electron and

a core electron, and the second term represents the magnetic interaction between the
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core and the Rydberg electron. Both of these effects involve an interaction between

the Rydberg electron and the core, thus they decrease rapidly as 𝑛 and ℓ increase.

For the high-𝑛, high-ℓ Rydberg states studied in this work, we can safely neglect

these terms, as done in previous studies.6 This leaves the hyperfine structure of

the ion-core, 𝐻𝐻𝐹𝑆, as the only significant magnetic fine structure effect that must

be considered. First, we will slightly revise our case (d) angular momentum coupling

model to consider nuclear spin. The basis states from the long-range model appear on

the left in Figure 4-1, and are formed by coupling the Rydberg electron orbital angular

momentum with the ion-core rotation to form the spinless total angular momentum,

𝑁 = 𝑅+ℓ. Next, we couple the nuclear spin, 𝐼, to form the total angular momentum,

𝐹 = 𝑁+𝐼, illustrated in the center panel of Figure 4-1. In fact, the true total angular

momentum requires a final coupling of the Rydberg electron spin 𝑠 to form 𝐽 = 𝐹+𝑠.

This splitting due to the Rydberg electron spin is extremely small, and is identical to

zero if we ignore the terms 𝐻𝑀𝑆 and 𝑉𝑥 in our total Hamiltonian.

Figure 4-1: Angular momentum coupling in the presence of nuclear spin. Left: The
Rydberg electron orbital angular momentum couples to the ion-core rotation to form
𝑁 . These energies are determined by the long-range model and form the zeroth-order
basis states for consideration of nuclear spin effects. Center: The nuclear spin, 𝐼, is
coupled to 𝑁 , to form what we will call the total angular momentum 𝐹 . This results
in a splitting of the zeroth-order energy levels into three sub-levels for a nucleus with
𝐼 = 1. Right: In reality, the total angular momentum is given by the coupling of 𝐹
with the Rydberg electron spin, 𝑠, to form 𝐽 . This would split every hyperfine level
into a pair of spin doublets. We will neglect this energy level splitting entirely.

The hyperfine structure of NO+ results from the 𝐼 = 1 nitrogen nucleus, and can

180



be described by the Hamiltonian:

𝐻𝐻𝐹𝑆 = 𝐻𝑄 + 𝑐 (𝐼 ·𝑁 ) (4.31)

The second term in this expression describes the nuclear spin-rotation coupling. For

closed shell species, this is typically a small effect (𝑐 . 100 kHz),21,46 and this constant

has not been measured for the NO+ ion. In contrast, the electric quadrupole inter-

action, 𝐻𝑄, is always an important term to consider in high-resolution spectroscopy

of nitrogen-containing species. The electric quadrupole Hamiltonian describes the

interaction between the electric quadrupole moment of the nitrogen nucleus and the

electric field gradient due to all particles at the location of the quadrupolar nucleus.

It can simply be written as the product of two rank 2 tensors:

𝐻𝑄 = 𝑉 (2) ·𝑄(2) =
2∑︁

𝑞=−2

(−1)𝑞𝑉 (2)
𝑞 𝑄

(2)
−𝑞 (4.32)

where 𝑉
(2)
𝑞 are the components of the electric field gradient tensor and 𝑄

(2)
𝑞 are the

nuclear quadrupole tensor components. Using angular momentum machinery, we can

arrive at an expression for the first order perturbation theory estimate of the nuclear

quadrupole interaction energy:

Δ𝐸 =
1

2
𝑒𝑞𝑄

[︂
(3/4)𝐶(𝐶 + 1)− 𝐼(𝐼 + 1)𝑁(𝑁 + 1)

𝐼(2𝐼 − 1)𝑁(2𝑁 − 1)

]︂
(4.33)

where 𝐶 = 𝐹 (𝐹 + 1) − 𝑁(𝑁 + 1) − 𝐼(𝐼 + 1) and 𝑒𝑞𝑄 is the quadrupole coupling

constant. This constant has been measured for NO+ to be -6.76 MHz.17 In general,

the perturbation theory result is an excellent approximation to the true energy. When

increasing to very high 𝑛 values or at extremely high resolution, it will become neces-

sary to perform a full matrix diagonalization in which the off-diagonal elements couple

levels with the same value of 𝐹 and differences in 𝑁 of Δ𝑁 = ±2. The reason for this

change in approach again arises from the ubiquitious Rydberg scaling rules. While

the electric fine structure splitting of a Rydberg complex decreases approximately as
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𝑛−3, there is no such reduction in hyperfine splitting since the radial wavefunction of

the Rydberg electron is not involved. Thus, for sufficiently high 𝑛 (or ℓ), the electric

fine structure splitting will approach the scale of the hyperfine splitting and all levels

with Δ𝐹 = 0 and Δ𝑁 = 0,±2 will strongly interact.

Figure 4-2: Energy level splitting due to electric quadrupole hyperfine interaction.
The zeroth-order energies of the 43𝑔23 and 44ℎ24 Rydberg states are shown in blue
on the left- and right-hand side of the plot, respectively. The first order perturbation
theory result appears in red and the full matrix diagonalization result appears in
black.

An example of the hyperfine splitting in NO Rydberg states appears in Figure

4-2. The zeroth-order energies of the 43𝑔23 and 44ℎ24 levels, obtained from the long-

range model, appear in blue at 0 MHz on the left- and right-hand side of the plots,

respectively. Since 𝐼 = 1, the electric quadrupole interaction splits the single level into

three hyperfine states. The first order perturbation theory result appears in red, and

the full matrix diagonalization result appears in black. The correction due to inclusion

of off-diagonal elements is clearly quite small. Only one of the three hyperfine levels

exhibits a shift large enough to be seen on this scale. Comparing the two Rydberg

states, the 44ℎ24 state exhibits a smaller hyperfine splitting because the interaction

energy decreases with increasing 𝑁 . The correction to the shifted level in the matrix

diagonalization result is larger, though, because the electric fine structure splitting in

the ℎ state is smaller than the 𝑔 state so the off-diagonal interaction in the ℎ state is

stronger. In general, the two states exhibit very similar hyperfine structure, which,

combined with the fact that the strongest transitions in the spectrum satisfy the

propensity rule Δ𝐹 = Δ𝑁 , means the expected hyperfine splitting in the Rydberg-
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Rydberg spectra will be generally very small. Indeed, an explicit simulation of this

transition, which appears in Figure 4-3, shows that there are three strong transitions

within 150 kHz of each other that form a central peak, while satellite transitions

several MHz away are almost two orders of magnitude weaker. Satellite lines have

never been observed in our spectra, so the hyperfine splitting only influences the

experimental spectra by adding some additional line broadening. In Figure 4-3, for

example, each line is assumed to have a width of 600 kHz, and the central feature

is broadened to nearly 700 kHz by the slight frequency offsets of the three intense

Δ𝐹 = Δ𝑁 lines.

Figure 4-3: Simulation of the 44ℎ24 ← 43𝑔23 transition including hyperfine splitting.
The spectral intensity is concentrated in the closely spaced Δ𝐹 = Δ𝑁 lines that
form the central peak. Very weak satellite lines (labeled) are from transitions with
Δ𝐹 ̸= Δ𝑁 and occur at spacings similar to the actual hyperfine splitting.

4.3 Experimental

The experiments described in this chapter employ a three-color triple-resonance

laser excitation scheme to access 𝑛𝑔 Rydberg states of NO, which is shown schemat-

ically in Figure 4-4. The first laser is a frequency-doubled dye laser (Sirah, Cobra-

Stretch) pumped by the third harmonic of a Nd:YAG laser (Spectra Physics, GCR-
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270) and operating either at 452 nm with Coumarin 450 dye, or at 430 nm with

Stilbene 420 dye. Following frequency doubling in a BBO crystal, the former (452

nm) provides access to the (0,0) band of the A-X transition at 226 nm and the latter

(430 nm) to the (1,0) band at 215 nm. This initial step, following the Δ𝑣 = 0 propen-

sity rule for Rydberg-Rydberg transitions, selects the vibrational quantum number

for all further electronic states in the excitation scheme. A second dye laser (Lambda

Physik, Scanmate 2E) pumped by 355 nm light from the same Nd:YAG laser is op-

erated at 423 nm with Stilbene 420 laser dye. This laser is tuned to be resonant with

transitions in either the (0,0) or (1,1) band of the 4𝑓 -A transition.

Figure 4-4: Energy level scheme for NO spectroscopy experiments. The A-X and 4𝑓 -A
transitions are probed by 1+1 and 1+1’+1’ REMPI schemes, respectively. Transitions
to 𝑛𝑔 states are probed by pulsed field ionization for 𝑣 = 0 states and by autoionization
for 𝑣 = 1 states. The final mmW transitions can be probed by selective field ionization
or by CPmmW spectroscopy.

The final laser photon, which transfers population from the 4𝑓 state to an 𝑛𝑔

level, vertical in vibrational quantum number, has been generated by two different

setups. Initial laser spectroscopy on 𝑛𝑔-4𝑓 transitions was performed using the pulsed

dye amplification system. In this setup, a CW Ti:Sapphire laser (MSquared, Solstis)

operating near 830 nm seeds the dye amplifier chain (Lioptec, custom) pumped by the

second harmonic of a Nd:YAG laser (Spectra Physics, LAB-170) at 10 Hz. This pulsed

output is then mixed with residual 532 nm light from the same Nd:YAG in a BBO

crystal, to produce the difference frequency near 1500 nm. We obtain approximately
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7 ns, 2 mJ pulses of infrared light with an estimated bandwidth of 100 MHz.

For mmW experiments on high-𝑛 Rydberg states, even the narrow bandwidth

of the pulsed amplification laser cannot resolve electric fine structure components.

Therefore, we switched to a technically simpler setup using a pulsed dye laser. In this

setup, a pulsed dye laser (Continuum, ND6000) is pumped by the second harmonic

of a Nd:YAG laser (Spectra Physics, PRO-290) and operates near 630 nm with DCM

laser dye. The dye laser output is then mixed with residual fundamental (1064 nm)

from the Nd:YAG in a Li:NbO4 crystal to produce the difference frequency radiation

around 1500 nm. Although the bandwidth of this laser is substantially larger (∼ 0.1

cm−1), this system has some technical advantages. The Nd:YAG laser in this setup

runs at 20 Hz, matching the repetition rate of the other lasers, and doubling the data

collection rate. We can routinely obtain several 10s of mJ of pulsed radiation due to

the higher efficiency of the DCM dye and the lithium niobate crystal. Finally, the

alignment of a pulsed dye laser is significantly simpler, and minimal realignment is

required from day to day.

Laser spectroscopy experiments were all performed using the ion-detection mode of

our supersonic jet apparatus, shown schematically in Figure 4-5. In this experiment,

NO seeded at 0.5% by volume in Ar is expanded through a pulsed nozzle (Parker

Hannafin, General Valve Series 9) and passes through a 1 mm conical skimmer to

enter a differentially pumped detection chamber. The beam passes through a second

larger diameter skimmer before entering a gold shroud that houses the electrode stack.

Laser excitation occurs at this point transverse to the beam propagation direction. For

spectroscopy of the A state and 4𝑓 state, we employ a 1+1 or 1+1’+1’ REMPI scheme,

where the final photon non-resonantly ionizes the NO molecules out of an excited state

level. A pulsed electric field extracts these ions in the orthogonal direction, and these

ions are focused by the electrode stack onto an MCP detector. The 𝑛𝑔 Rydberg states

are either detected in an analogous way, following spontaneous autoionization of states

with 𝑣 = 1, or by pulsed field ionization (PFI) for bound 𝑣 = 0 Rydberg states. The

maximum pulsed electric field voltage of about 450 V/cm limits the Rydberg states

that can be detected by PFI to 𝑛 & 33. The ion detection chamber is additionally
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Figure 4-5: Left: Schematic of the experimental setup for ion-detected experiments in
the supersonic jet apparatus. A supersonic jet is skimmed twice before entering the
probe region of the differentially pumped detection chamber. Laser excitation occurs
transverse to the direction of the molecular beam propagation. If used, mmW radia-
tion is introduced counter-propagating along the molecular beam axis via a waveguide
feedthrough in the chamber. The time-of-flight axis for the mass spectrometer points
out of the plane. Right: Simplified schematic of the TOF electrode stack. Excitation
occurs under nearly field-free conditions. A pulsed field is then applied to the bottom
plate to simultaneously ionize high-𝑛 Rydberg states and extract ions for detection.
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equipped with a waveguide feedthrough and standard gain horn, which allows us to

broadcast mmW radiation along the propagation direction of the molecular beam.

Although this system is useful for some preliminary mmW spectroscopy experiments,

it suffers from the limited ability to control stray electric fields, as discussed in the

following sections.

Figure 4-6: Schematic of the experimental setup for CPmmW experiments in the
supersonic jet apparatus. An unskimmed free jet expansion is probed transversely by
the co-propagating laser and mmW fields. FID from the polarized Rydberg-Rydberg
transitions is detected at a second horn on the opposite side of the chamber.

The experimental setup for CPmmW spectroscopy experiments is shown schemat-

ically in Figure 4-6. The experiment occurs entirely in the first chamber of the super-

sonic jet apparatus. An unskimmed free jet expansion of the 0.5% NO in Ar mixture
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is probed transversely by the laser and mmW fields approximately 30 cm downstream

from the nozzle exit. As previously described, the radiation fields are first collimated

and then overlapped at several dichroic optics, including an ITO-coated glass plate

that reflects the mmW radiation. The mmW radiation in this experiment is gener-

ated by either the W band spectrometer or the high-frequency configuration of this

spectrometer as described in Chapter 2. At the opposite end of the chamber, the

FID from Rydberg-Rydberg transitions is collected, down-converted, and digitized

on a high-speed oscilloscope. The guiding principle of this setup was discussed in our

initial demonstration of CPmmW spectroscopy on Rydberg-Rydberg transitions.126

We require a large interaction volume, produced by expanding the laser beam diam-

eters and probing far downstream of the nozzle, in order to maximize the number of

Rydberg emitters, while minimizing the number density. The minimum number of

emitters is determined by the sensitivity of our detection system to typically & 105,30

while the maximum number density of . 107 cm−3 is determined by the onset of su-

perradiant dynamics61 that interfere with the spectroscopic experiment. This latter

issue is addressed in a later section.

For the CPmmW experiments, we found it necessary to change the vacuum system

on this apparatus from its initial configuration. Specifically, the chamber was initially

equipped with a 1000 L/s turbomechanical pump (Varian, Turbo-V1000HT). While

operating the CPmmW experiment with this pump, we observed mmW signals that

persisted long after the nominal duration of the gas pulse. In some cases, these

signals were even larger than those observed when the mmW probe overlapped with

the gas pulse timing. This suggested to us that a significant amount of background

gas remained in the chamber and likely affected the pulsed jet dynamics in the low

density region of the expansion that we interrogated. To overcome this issue, we

switched the vacuum system to a 3600 L/s diffusion pump (Varian, VHS-10). The

increased pumping speed immediately produced more sensible observations. The

mmW signal reached maximum intensity when the excitation pulses overlapped with

the gas pulse and quickly decreased as the delay time was increased. Yan Zhou

performed a quantitative analysis of these two systems and found that the residence
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time for gas in the chamber with this diffusion pump was approximately 15 ms, as

opposed to 50 ms with the slower turbo pump.168 Since our experiment operates at

20 Hz, the 50 ms residence time indicates a significant amount of gas remains in the

chamber from one experimental cycle to the next. By increasing the pumping speed

of our vacuum system, we have removed the complicated and confusing influence of

background gas on the experiment.

4.4 The A 2Σ+ ← X 2Π1/2 transition

4.4.1 Energy level structure of the X 2Π1/2 state

The ground state of NO is a 2ΠΩ state where the case (a) basis states have the

quantum numbers: Λ = ±1, Σ = ±1
2
, and Ω = ±1

2
,±3

2
. It is necessary to first

symmetrize the basis state wavefunctions to obtain solutions with well-defined parity.

|2Π1/2𝐽𝑀𝑝±⟩ = 1√
2

[︂
|Λ = 1⟩ |𝑆 =

1

2
,Σ = −1

2
⟩ |𝐽,Ω =

1

2
𝑀⟩

± |Λ = −1⟩ |𝑆 =
1

2
,Σ =

1

2
⟩ |𝐽,Ω = −1

2
𝑀⟩

]︂
(4.34)

|2Π3/2𝐽𝑀𝑝±⟩ = 1√
2

[︂
|Λ = 1⟩ |𝑆 =

1

2
,Σ =

1

2
⟩ |𝐽,Ω =

3

2
𝑀⟩

± |Λ = −1⟩ |𝑆 =
1

2
,Σ = −1

2
⟩ |𝐽,Ω = −3

2
𝑀⟩

]︂
(4.35)

The upper sign corresponds with + parity states and the lower sign with − parity

states. These parity doublets occur in both spin-orbit manifolds for all 𝐽 > 1/2. To

distinguish between them, we assign a label for the spin state: 𝐹1 for Ω = 1/2 and 𝐹2

for Ω = 3/2. These parity doublets are degenerate except for perturbations by distant

Σ symmetry electronic states, which, unlike states with Λ ≥ 1, lack parity doublets

for every value of 𝑁 . This interaction lifts the degeneracy by so-called Λ-doubling.

The rotational Hamiltonian appears in Equation 1.17. In addition, the spin-orbit
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operator lifts the degeneracy of the Ω = 1
2
and Ω = 3

2
states:

𝐻𝑠𝑜 = 𝐴𝐿 · 𝑆 (4.36)

= 𝐴𝐿𝑧𝑆𝑧 (4.37)

where we have neglected ΔΛ = ±1 terms connecting the X 2Π1/2 state to other

electronic states. The two Ω manifolds will be split by the spin-orbit operator by

an amount approximately equal to 𝐴, which for the 𝑣 = 0 level of the X state is

𝐴0 = 123.14 cm−1.71 At 15 K, an upper limit on the temperatures relevant to this

work, the upper 2Π3/2 state has a Boltzmann weight of order 10−6 and is insignificantly

populated. Solution of the 2 × 2 secular determinant for the total Hamiltonian,

𝐻 = 𝐻𝑟𝑜𝑡 +𝐻𝑠𝑜, yields the energies of the 2ΠΩ state:

𝐸 = 𝐵0

[︂(︂
𝐽 − 1

2

)︂(︂
𝐽 +

3

2

)︂
± 1

2
𝑋

]︂
(4.38)

where the plus (minus) sign applies to the the Ω = 3/2 (Ω = 1/2) component, and

𝑋 =

√︃
𝐴

𝐵

(︂
𝐴

𝐵
− 4

)︂
+ 4

(︂
𝐽 +

1

2

)︂2

(4.39)

The rotational constant of the X 2Π1/2(𝑣 = 0) state is given by:71

𝐵𝑣 = 𝐵𝑒 − 𝛼𝑒(𝑣 + 1/2) + 𝛾𝑒(𝑣 + 1/2)2 + . . . (4.40)

𝐵0 = 1.6961 cm−1 (4.41)

where the rotational constant is parametrized in the vibrational quantum number

with coefficients 𝛼, 𝛾, . . ., and the 𝑒 subscript refers to the value at the equilibrium

bond length. Since we will generally work at low rotation, we can safely neglect the

effect of centrifugal distortion, which for 𝑣 = 0 of X 2Π1/2 is characterized by the

constant 𝐷0 = 5.34× 10−6 cm−1.71 A schematic of the X state energy levels is shown

in the transition diagram of Figure 4-7.

Lastly, we can comment on the applicability of Hund’s case (a) to the description
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of the ground state. In reality, all rotational levels besides 𝐽 = 1/2 exist in a cou-

pling case between case (a) and case (b). The transition between these two limiting

behaviors is given approximately by the relative energy scales of the rotational and

spin-orbit operators: 2𝐵𝐽 ≈ 𝐴. For the ground state of NO, this case (a) → case

(b) transition occurs at approximately 𝐽 ≈ 35.5, which is far above the rotational

states considered in this work. Thus Hund’s case (a) will be a good approximation

for treating the X2Π1/2 state.

4.4.2 Energy level structure of the A 2Σ+ state

The A 2Σ+ state is the lowest-lying Rydberg state, and corresponds to excitation

of an electron from the anti-bonding 𝜋* electron from the ground state configuration

into the non-bonding 3𝑠𝜎 Rydberg orbital. As a result, the equilibrium bond length

of the A state is actually shorter than that of the ground state, an unusual reversal

of the typical bond length change upon electronic excitation. On the other hand,

most excited valence states of NO involve excitation of one of the bonding orbital 𝜋

electrons to an anti-bonding 𝜋* orbital, resulting in a longer bond length than in the

ground state. This fact gives rise to a pattern in which the Rydberg states of NO

have rotational constants of approximately 2 cm−1, and excited valence states of NO

have rotational constants of about 1 cm−1.

For a Σ state, the rotational Hamiltonian is simplified by Λ = 0 and reads:

𝐻𝑟𝑜𝑡 = 𝐵𝑅2 (4.42)

= 𝐵 (𝐽 − 𝑆)2 (4.43)

= 𝐵
[︀
𝐽2 − 2𝐽𝑧𝑆𝑧 + 𝑆2

]︀
−𝐵 [𝐽+𝑆− + 𝐽−𝑆+] (4.44)

In addition, we will consider a phenomenological spin-rotation operator, which lifts

the degeneracy of the different spin states, which have the same value of 𝑁 and

different values of 𝐽 :

𝐻𝑠𝑟 = 𝛾𝑅 · 𝑆 (4.45)
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= 𝛾 (𝐽 − 𝑆) · 𝑆 (4.46)

= 𝛾
[︀
𝐽𝑧𝑆𝑧 − 𝑆2

]︀
+

𝛾

2
[𝐽+𝑆− + 𝐽−𝑆+] (4.47)

The two different spin states will again be labeled 𝐹1 and 𝐹2, and are distinguished

by their relations between 𝐽 and 𝑁 , the total angular momentum neglecting spin:

𝐹1 : 𝐽 = 𝑁 +
1

2
(4.48)

𝐹2 : 𝐽 = 𝑁 − 1

2
(4.49)

The correctly symmetrized basis states for 𝐹1 and 𝐹2 can be written as linear combi-

nations of the case (a) basis functions:

|𝐹1⟩ =
1√
2

[︂
|Λ = 0⟩ |𝑆 =

1

2
,Σ =

1

2
⟩ |𝐽,Ω =

1

2
,𝑀⟩

+ |Λ = 0⟩ |𝑆 =
1

2
,Σ = −1

2
⟩ |𝐽,Ω = −1

2
,𝑀⟩

]︂
(4.50)

|𝐹2⟩ =
1√
2

[︂
|Λ = 0⟩ |𝑆 =

1

2
,Σ =

1

2
⟩ |𝐽,Ω =

1

2
,𝑀⟩

− |Λ = 0⟩ |𝑆 =
1

2
,Σ = −1

2
⟩ |𝐽,Ω = −1

2
,𝑀⟩

]︂
(4.51)

Now we can solve the total Hamiltonian 𝐻 = 𝐻𝑟𝑜𝑡+𝐻𝑠𝑟 for the energy levels of the
2Σ+ state without the use of a secular determinant:

𝐸𝐹1 = 𝐵

(︂
𝐽 +

1

2

)︂(︂
𝐽 − 1

2

)︂
+

𝛾

2

(︂
𝐽 − 1

2

)︂
(4.52)

= 𝐵𝑁(𝑁 + 1) +
𝛾

2
𝑁 (4.53)

𝐸𝐹2 = 𝐵

(︂
𝐽 +

1

2

)︂(︂
𝐽 +

3

2

)︂
− 𝛾

2

(︂
𝐽 +

3

2

)︂
(4.54)

= 𝐵𝑁(𝑁 + 1)− 𝛾

2
(𝑁 + 1) (4.55)

In the second line of each expression, we have replaced 𝐽 with 𝑁 and it becomes
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apparent that the symmetrized case (a) basis states are equivalent to the case (b)

basis states, and 𝑁 rather than 𝐽 is the pattern-forming quantum number. The

energy expression, with the exception of the spin-rotation splitting, is the same as

obtained from the case (b) Hamiltonian in Equation 1.31. The two spin states with

the same value of 𝑁 are split by the amount, 𝛾(𝑁 + 1/2), by the spin-rotation

interaction. Both the 𝑣 = 0 and 𝑣 = 1 levels of the A2Σ+ state will be relevant to the

work presented here; the relevant constants are:71

𝜈00 = 44080 cm−1 (4.56)

𝜈10 = 46541 cm−1 (4.57)

𝐵0 = 1.986 cm−1 (4.58)

𝐵1 = 1.967 cm−1 (4.59)

𝛾0 = −2.691× 10−3 cm−1 (4.60)

𝛾1 = −2.765× 10−3 cm−1 (4.61)

𝐷0 = 5.643× 10−6 (4.62)

𝐷1 = 5.661× 10−6 (4.63)

where 𝜈𝑣0 is the band origin for the specified vibrational level of the A 2Σ+(𝑣)←

X 2Π1/2(𝑣 = 0) transition. Again, we can neglect centrifugal distortion in the low

rotational states of interest, although the reported constants are included above for

completeness. The energy level pattern for the A state appears schematically in

Figure 4-7.

4.4.3 Transition Intensity

Allowed transitions between the A and X states, obey the standard selection rules

for parity and total angular momentum:

± ↔ ∓ (4.64)

Δ𝐽 = 0,±1 (4.65)
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Figure 4-7: Level diagram for the A 2Σ+ ← X 2Π1/2 transition. Transition labels
appear next to each arrow. Number subscripts indicate the transition is between the
specified spin states, F1 or F2. The energy level assignments are shown on the right
side of each level.

Since 𝑁 is not a good quantum number for the ground state, transitions to states

with any 𝑁 that satisfy the above selection rules are allowed. The rotational line

intensities for the A 2Σ+ ← X 2Π1/2 transition are calculated using two factors. First,

since the initial state is the ground electronic state, multiple rotational states will be

populated at the temperatures relevant to the experiments in this work, ca. 10 K.

At this temperature, there will be no population in electronic excited states. The

relative population in the rotational state |𝐽𝑀⟩ is given by the Boltzmann factor:

𝑃𝑀(𝐽) =
(2𝐽 + 1)𝑒−𝐵𝐽(𝐽+1) ℎ𝑐

𝑘𝑇∑︀∞
𝐽=1/2(2𝐽 + 1)𝑒−𝐵𝐽(𝐽+1) ℎ𝑐

𝑘𝑇

(4.66)

The second factor is the intrinsic rotational line intensity, which was introduced

in the introduction. Equation 1.75 will be used without modification, where we will

choose 𝑟 = 0 because our experiment uses linearly polarized light, and 𝑞 = −1 for

a Σ ← Π transition. The only additional consideration is that we will transform
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the A state from case (a) to case (b) using Equation 1.55 and summing over Σ and

Ω. This is not strictly necessary, since we could use properly symmetrized case (a)

wavefunctions for the A state and arrive at the same result. However, this is the

strategy we will pursue for the other transition intensities that will be calculated in

this work.

4.4.4 Results

A typical REMPI spectrum of the A 2Σ+ ← X 2Π1/2 (1,0) transition appears

in Figure 4-8. The experiment appears on top and a simulation appears below it,

with the intensity normalized to the strongest line in each spectrum. Transitions

to the F1 and F2 spin components of the upper state appear as blue and red lines,

respectively. The simulation is for a rotational temperature of 3.5 K, which accurately

reproduces the relative intensities of the observed lines. Several weak lines appear

in the experimental spectrum that are absent in the simulation. These are due to

warm background NO gas in the apparatus, which is not completely removed from

the chamber before the next experimental cycle. These weak signals are consistent

with a much higher rotational temperature than occurs in the molecular beam and

are observed at laser timings that do not overlap with the gas pulse. Moreover,

these signals are easily distinguished from the molecular beam signals on the time-of-

flight axis of the mass spectrometer. The latter result in tightly bunched ion packets

because all of the neutral molecules are initially concentrated in a beam, while the

former produce ion packets that are much broader in time since the molecular density

is similar everywhere in space. We have no reason to believe that these signals interfere

with ion detection experiments, though, as mentioned in a previous section, we found

it necessary to increase the pumping speed in our CPmmW experiments in order to

reduce this background pressure.

The temperatures achievable with our supersonic jet source are highly dependent

on the adjustment of the nozzle tension. In fact, we often adjust the nozzle tension

slightly away from optimal in order to produce higher temperature beams because

this give us access to higher rotational states for spectroscopic investigation.
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Figure 4-8: Top: Spectrum of the A-X transition measured by 1+1 REMPI in the
supersonic jet apparatus. Bottom: Simulation of the same transition with a rota-
tional temperature of 3.5 K. Red and blue lines are transitions to the F1 and F2 spin
components of the upper state, respectively.

4.5 The 4𝑓 ← A 2Σ+ transition

4.5.1 Energy level structure of the 4𝑓 state

The energy level pattern of the 4𝑓 state are characteristic of Hund’s case (d). The

rotational Hamiltonian in this case is trivial:

𝐻𝑟𝑜𝑡 = 𝐵𝑅2 = 𝐵𝑅(𝑅 + 1) (4.67)

where 𝑅 is the rotational quantum number of the molecular framework or ion-core.

This 𝑅-dependence is the largest splitting observed in the 4𝑓 complex; in essence,

there is a 4𝑓 complex converging to the ionization potential associated with each

rovibrational state of the ion-core. In an effective Hamiltonian treatment, each value

of |ℓ𝑅| would be assigned its own term value containing contributions from the elec-

tronic energy of the core and the weakly bound Rydberg electron. The splitting of
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ℓ𝑅 terms is approximately given by79

𝑇|ℓ𝑅| − 𝑇0 = −
3

2
𝑘ℓ2𝑅 (4.68)

where 𝑘 is a constant that characterizes the non-Coulombic interactions between the

ion-core and the Rydberg electron. This is exactly the physics we consider in the long-

range electrostatic model, so we will abandon the traditional effective Hamiltonian

approach at this point and calculate the 4𝑓 state (and all Rydberg state) energy level

structure using this model.

The parity of a case (d) state is given by 𝑅 + ℓ, so for a given 𝑛ℓ Rydberg state,

all levels with the same 𝑅 have the same parity and the parity alternates with the

value of 𝑅. A schematic of the 4𝑓 energy levels is shown in Figure 4-9, in which the

electric fine structure components, specified by 𝑁 or ℓ𝑅, are displayed in an arbitrary

order. The spin doublets for each 𝑁 level are shown explicitly, though the splitting

is expected to be far smaller than the resolution in this experiment. The degeneracy

of the spin doublets is lifted by the spin-orbit operator, which is an effect due to core

electrons, which are localized close to the molecular framework. As a result, increases

in ℓ and 𝑛 will rapidly reduce the magnitude of the effective spin-orbit constant, and,

specifically, the spin-orbit splittings will scale as 𝑛−3 due to the 𝑛−3/2 scaling of the

amplitude of the inner lobe of the Rydberg wavefunction.

4.5.2 Transition Intensity

Calculation of the rotational line intensities for the 4𝑓 ← A 2Σ+ transition is more

complicated. The initial state is well described by Hund’s case (b), while the final

state is best described in Hund’s case (d). Thus, we will need to transform Equation

1.75 from two case (a) states to two case (b) states. Then, a second transformation

for the final state to case (d) will be performed. This first step was performed in the

work of Petrović and Field,122 where the authors were able to eliminate the multiple
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Figure 4-9: Level diagram for the 4𝑓 ← A 2Σ+ transition. The transition labels next
to each arrow indicate the numerical value of 𝑁 ′ − 𝑅 in the left superscript, ℓ𝑅 in
the right subscript, and Δ𝑁 = −1, 0, 1 by P, Q, and R as usual. The energy level
assignments are shown on the right side of each level.
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summations and find a simplified form for the transition dipole matrix element:

⟨𝐽𝑀𝑁Λ𝑆𝑝 |𝜇(1, 𝑟)| 𝐽 ′𝑀 ′𝑁 ′Λ′𝑆𝑝′⟩

= (−1)𝐽 ′+𝐽+𝑆+1−Λ+𝑀 1 + (−1)𝑝+𝑝′+1

2(1 + 𝛿Λ,0 + 𝛿Λ′,0 − 2𝛿Λ′,0𝛿Λ,0)1/2

× [(2𝑁 + 1)(2𝑁 ′ + 1)(2𝐽 + 1)(2𝐽 ′ + 1)]
1/2

×

⎛⎝ 𝐽 ′ 1 𝐽

−𝑀 ′ −𝑟 𝑀

⎞⎠⎛⎝ 1 𝑁 ′ 𝑁

−𝑞 −Λ′ Λ

⎞⎠⎧⎨⎩1 𝑁 ′ 𝑁

𝑆 𝐽 𝐽 ′

⎫⎬⎭
× ⟨Λ|𝜇(1, 𝑞)|Λ′⟩ (4.69)

Note that, relative to Equation 5 of Petrović and Field,122 we have switched the primed

and unprimed labels to reflect a primed lower state and unprimed upper state. In

addition, we have corrected a sign error in the second 3j coefficient, which does not

satisfy the triangle condition163 (𝑚1 +𝑚2 = −𝑚3) as originally written.122 Just as in

the case of the A 2Σ+ ← X 2Π1/2 transition, we can then perform the case (b) to case

(d) transformation for the 4𝑓 state using Equation 1.68 and summing over all values

of Λ. The last issue we must address is the electronic matrix element shown as the

last factor in Equation 4.69. We can explicitly write the electronic components of the

4𝑓 state as |4𝑓𝜆⟩ which represents the product of a radial hydrogenic wavefunction

and a spherical harmonic with projection 𝜆 on the internuclear axis. Similarly, the

A state is also a Rydberg state with the dominant character |3𝑠𝜎⟩. However, atomic

selection rules clearly establish that there is no oscillator strength connecting an 𝑠

state and an 𝑓 state. In NO, the 𝑠 and 𝑑 Rydberg series are profoundly mixed, which

can be partly explained by the presence of a large quadrupole moment of the ion-core

that mixes states with Δℓ = ±2.78 Although the A state, the 3𝑠𝜎 Rydberg state,

is energetically distant from the 3𝑑𝜎 state, it appears that a small admixture of 𝑑

character is indeed the primary source of oscillator strength for transitions from the

A 2Σ+ state to the 𝑛𝑓 Rydberg states.27 Now, we can re-write the transition dipole
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matrix element for the electronic part of the wavefunction as:

⟨4𝑓𝜆|𝜇(1, 𝑞)|3𝑑𝜎⟩ = (−1)3−𝜆

⎛⎝ 3 1 2

−𝜆 𝜆 0

⎞⎠⟨︀
4𝑓 ||𝜇(1)||3𝑑

⟩︀
(4.70)

where we have used the Wigner-Eckart theorem to extract the angular dependence

on Λ, and recognized that only the 𝑞 = 𝜆 component is non-zero. The reduced matrix

element in Equation 4.70 is a constant factor applied to all rotational lines so we will

neglect it here. This yields, for the final transition dipole matrix element:

⟨
4𝑓 ; 𝐽𝑀𝑁𝑆 =

1

2
𝑅ℓ

⃒⃒⃒⃒
𝜇(1, 𝑟)

⃒⃒⃒⃒
A2Σ+; 𝐽 ′𝑀 ′𝑁 ′Λ′ = 0𝑆 ′ =

1

2
𝑝′
⟩

=
∑︁
Λ

(−1)𝐽 ′+𝐽+𝑆+𝑁−Λ+𝑀 1 + (−1)𝑝′+𝑅+ℓ+1

2

× [(2𝑁 + 1)(2𝑁 ′ + 1)(2𝐽 + 1)(2𝐽 ′ + 1)(2𝑅 + 1)]
1/2

×

⎛⎝𝑅 ℓ 𝑁

0 Λ −Λ

⎞⎠⎛⎝ 3 1 2

−Λ Λ 0

⎞⎠⎛⎝ 𝐽 ′ 1 𝐽

−𝑀 ′ −𝑟 𝑀

⎞⎠
×

⎛⎝ 1 𝑁 ′ 𝑁

−Λ 0 Λ

⎞⎠⎧⎨⎩1 𝑁 ′ 𝑁

1
2

𝐽 𝐽 ′

⎫⎬⎭ (4.71)

The square of this matrix element is taken and all transition probabilities through

unresolved spin doublets and 𝑀 sub-levels are summed to obtain the total line inten-

sity.

The lines in the 4𝑓 ← A 2Σ+ transition are labeled by the symbol 𝑁 ′−𝑅Δ𝑁ℓ𝑅 ,

where P, Q, and R branches denote Δ𝑁 = −1, 0, and 1, as normal, ℓ𝑅 is the electric

fine structure component of the 4𝑓 state, and 𝑁 ′ − 𝑅 is the difference between the

A state rotational quantum number and the 4𝑓 state ion-core rotational quantum

number. Since each 𝑁 ′ level of the A state has only one parity and the case (d) state

parity is given by 𝑅+ ℓ, 𝑁 ′ −𝑅 is restricted to even values only. In practice, we will

deal with just three branches: 𝑁 ′ − 𝑅 = −2, 0, 2. The only two additional parity

allowed transitions, −4𝑃3 and 4𝑅−3, have much weaker predicted intensities, which

approach zero in the limit of high rotation.
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4.5.3 Results

Spectra of the 4𝑓 (𝑣 = 0) state were collected by 1+1’+1’ REMPI where the laser

resonant with the 4𝑓 -A transition also served to ionize NO molecules for detection. In

general, a strong, blended R1 + Q21 line of the A-X transition was pumped to select

one rotational level (one pair of spin doublets) in the A state. The second dye laser

pumps lines belonging to one of the three (𝑁 ′−𝑅) transitions. Figure 4-10 shows two

typical spectra obtained by populating the 𝑁 ′ = 2 (top) and 𝑁 ′ = 1 (bottom) levels

of the A state. The calculated spectrum, shown in red, uses previously determined

A state term values3 and the long-range model with parameters determined by Mar-

tin et al.97 to determine the 4𝑓 level energies. Transition intensities are calculated

assuming pure case (d) states for the 4𝑓 levels and the formulas in Equations 4.71

and 1.75. The predicted line positions and intensities are in modest agreement with

the experimentally observed spectrum, with the noticeable exception of the 2P−3 line,

which does not appear in the lower spectrum and is more than an order of magnitude

weaker in the upper spectrum. In fact, this line is also absent in the spectra collected

from the 𝑁 ′ = 3 and 4 states as well. This observation is curious, particularly since

the 2P−3 transition is the most intense line of the branch in the high rotation limit.

Moreover, the study of the 4𝑓 -A (1,1) band by Cheung et al. observed the 2P−3 line

for all 𝑁 ′ levels with the expected intensity.27 The unexpected transition intensity

may be due to interference between transition intensity to different spin doublet com-

ponents, or due to unconsidered admixture of another electronic state in the A 2Σ+

(𝑣 = 0) state. We have no further evidence to resolve this question.

Table 4.1 summarizes the observed line positions in the (0,0) band of the 4𝑓 ←

A 2Σ+ transition. The · · · symbol indicates that the line does not exist and the ∘

symbol indicates that the line is predicted to have transition intensity, but was not

observed in our spectra. With the exception of the 2P−3 lines, previously discussed,

all unobserved lines are predicted to have weak intensities.

201



Figure 4-10: REMPI spectra of the 4𝑓 -A (0,0) band. The experimental measurements
are the black curve and theoretical predictions for each transition frequency and
intensity appear as a red line spectrum. The top and bottom spectra correspond to
𝑁 ′ = 2 and 1, respectively, in the A state.
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4.5.4 Long-range fit of the 4𝑓 (𝑣 = 1) state

Surprisingly, a fit of the long-range model to the 4𝑓 (𝑣 = 1) complex does not

appear in the literature, in spite of the extensive data set for the 4𝑓 ← A 2Σ+ (1,1)

transition reported by Cheung et al.27 Our fit of this data set provides some insight

into the long-range model and its limitations in describing low-𝑛, low-ℓ Rydberg

states.

Term values for the 4𝑓 (𝑣 = 1) states were calculated as the sum of the 4𝑓 -A

transition energies measured by Cheung et al.27 and the A state term values deter-

mined by Amiot and Verges.3 In fact, the A state term values were taken to be the

mean of the F1 and F2 term values of each 𝑁 reported in that study because this

small splitting was not resolved in the 4𝑓 -A transition. Our fit procedure adopts

the usual assumptions made by previous authors: i) the 4𝑓 (𝑣 = 1) state is isolated

and does not interact with other Rydberg states differing in 𝑛, ℓ, or 𝑣; ii) only the

isotropic polarizability, 𝛼, and quadrupole moment, 𝑄, of the NO+ core contribute;

iii) the values of 𝛼 and 𝑄 are assumed to be independent of the core rotation, 𝑅.

In addition, we have fixed the 𝑣 = 1 ioniziation potential at 77065.47 cm−1.15 We

include a phenomenological term to describe the effects of core penetration on the Σ

components of the complex. In case (d), this correction factor has the form:39

𝐻pen
𝑖𝑗 = 𝑑Σ

√︁
(2𝑅𝑖 + 1)(2𝑅𝑗 + 1)

⎛⎝ℓ 𝑁 𝑅𝑖

0 0 0

⎞⎠⎛⎝ℓ 𝑁 𝑅𝑗

0 0 0

⎞⎠ (4.72)

The resulting parameters determined from this fit appear in the second column of

Table 4.2. A fixed value of the centrifugal distortion constant was included,97 though

this had little impact on the quality of the fit. In addition, the anisotropic polarizabil-

ity, 𝛾, was arbitrarily fixed to the value, 𝛼/3, as in previous work. The reason for this

assumption is that the quadrupole moment and anisotropic polarizability operators

have identical angular dependence. As a result, the two parameters cannot be well

determined, independently of each other. If we allow the value of 𝛾 to vary in the

fit, we obtain a fit of similar quality and nearly identical parameter values. However,
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the standard deviations of 𝑄 and 𝛾 increase by orders of magnitude and we find a

pairwise correlation coefficient of almost exactly -1.

This inability to distinguish the quadrupole moment and the anisotropic polariz-

ability is one of the most significant limitations to all previous long-range fits of 𝑛𝑓

Rydberg states. Although the angular factors are identical, the two parameters can

be distinguished in other ways. First, the radial dependences of 𝑄 and 𝛾 differ by

one order of magnitude so the scaling of these factors with 𝑛 can reveal their separate

effects. Second, and more subtly, the anisotropic polarizability can mix states with

Δ𝑛 = 0 and Δℓ = 0,±2. This is different from the quadrupole operator, which can

only mix states of the same ℓ for a given 𝑛 since its radial matrix element vanishes

for Δℓ ̸= 0. Thus, a Rydberg state, 𝑛ℓ, lying close in energy to 𝑛(ℓ ± 2) states may

be particularly sensitive to this polarizability-induced mixing. Both of these factors

suggest that high-ℓ Rydberg states, which all lie close in energy, investigated over

a wide range of principal quantum numbers, should provide a data set capable of

distinguishing these two physical parameters.

Figure 4-11 shows the calculated and observed 4𝑓 energy levels as a function

of 𝑅 on a reduced term value plot. The rms deviation of this fit is 0.268 cm−1,

which is consistent with the reported ±0.2 cm−1 precision of the measurements. The

agreement is excellent up to about 𝑅 = 12. Indeed, most of the error in the fit

arises from these large-𝑅 states, and a fit to the data only up to 𝑅 = 12 achieves a

decreased rms deviation of 0.168 cm−1, while the fit parameters are unchanged within

1𝜎. It is possible that the neglected 𝑅-dependence of the fit parameters leads to the

discrepancy at large 𝑅.

Lastly, we can compare our fit to previous results for the 𝑛𝑓 states of NO, which

appear in the remaining columns of Table 4.2. In this table, the asterisk indicates the

parameter was fixed in the fit, the symbol · · · indicates that a particular parameter

was neglected, and the symbol ∘ indicates that the value was not reported. An inter-

esting trend emerges from this aggregated set of data. The fits to 4𝑓 data, especially

in the first three columns, yield smaller values of 𝑄 and 𝛼 than the higher 𝑛 states

reported in the last three columns of the table. In particular, note the very good
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Figure 4-11: Reduced term value plot of observed (red crosses) and calculated (black
circles) energy levels of the 4𝑓 (𝑣 = 1) Rydberg complex. The solid black lines connect
states with the same ℓ𝑅 value.
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agreement of the 𝑄 and 𝛼 values between our fit and the fit to the 5𝑔 ← 4𝑓 (𝑣 = 0)

transition by Martin et al. in the third column, as compared to the poor agreement

with the results of Biernacki et al. on the 7𝑓 , 12𝑓 , and 15𝑓 (𝑣 = 1) states in the

fifth column. One might reasonably expect that the values obtained from different

𝑛𝑓 states with the same vibrational quantum number should agree better than those

from different vibrational levels. The polarizabilities and multipole moments of the

molecule vary with internuclear distance, therefore their vibrationally averaged values

will be different for each vibrational level of the ion. This upending of expectations

suggests to us that the treatment of the 4𝑓 level employing a long-range model does

not capture the intended physics and the determined parameters are effective values

of the polarizability and quadrupole moment rather than those of the free ion. This

interpretation is further supported by the large magnitude of the core penetration

factor, which is essential in fitting the 4𝑓 data, but quickly becomes only a minor

correction at higher 𝑛. Indeed, beyond the well-known correlation of the anisotropic

polarizability and quadrupole moment that was addressed previously, we find large

pairwise correlation coefficients of 0.59 between 𝑄 and 𝑑Σ, and 0.57 between 𝛼 and

𝑑Σ. Since 𝑑Σ always has a negative value, this means that the magnitudes of 𝑄 and 𝛼

are strongly anti-correlated with the magnitude of 𝑑Σ. Thus, a large core-penetration

factor reduces the values of 𝑄 and 𝛼 in the 4𝑓 states relative to higher 𝑛𝑓 states.

Moreover, this strong correlation of parameters limits our ability to interpret the

parameters in a physically meaningful way. The core penetration of the 4𝑓 level,

irrespective of vibrational state, perturbs the energy level structure sufficiently to

reduce the appropriateness of the long-range model. In order to obtain realistic mea-

surements of the free ion electrostatic parameters, truly core-nonpenetrating Rydberg

states, such as the 𝑛𝑔 states, must be studied.

4.6 The 𝑛𝑔 ← 4𝑓 transition

While spectroscopic studies of most electronic states of NO are prolific, there exists

a surprising dearth of work on 𝑛𝑔 ← 𝑛𝑓 transitions. The 5𝑔 ← 4𝑓 transition was
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studied more than ten years ago by several teams.35,97,150 Higher 𝑛𝑔 states have only

been investigated in detail by Fujii and Morita, who first employed the three-color

triple-resonance excitation scheme described here.52 Their work established that,

unlike the 𝑛𝑓 states, 𝑛𝑔 states do not rapidly predissociate, and moreover, the 𝑛𝑔

(𝑣 = 1) states decay predominantly by autoionization. This relative immunity to

predissociative decay makes access to 𝑛𝑔 states essential to any experiment involving

high-resolution mmW spectroscopy.

4.6.1 Transition Intensity

The transition intensity to consider here is between case (d) Rydberg states. This

intensity formula is thus applicable not only to the laser excitation from the 4𝑓

state to the manifold of 𝑛𝑔 Rydberg states, but also for the microwave spectroscopy

experiments, which involve transitions of (𝑛± 1)ℎ← 𝑛𝑔. The strategy for computing

this transition moment matrix element is the same as for the previous electronic

transitions. The transition intensity is initially written in case (a), then transformed

to case (b) for both states, and finally to case (d) for both states. As was the case

for a case (b) to case (b) transition, we have derived a 6j contraction that eliminates

the multiple summations over Λ, Σ, and Ω:

⟨𝑅ℓ𝑆𝑁𝐽𝑀 |𝜇|𝑅ℓ′𝑆𝑁 ′𝐽 ′𝑀 ′⟩ = (−1)𝐽+𝐽 ′+𝑆+𝑁+𝑁 ′+ℓ+ℓ′+𝑅+𝑀+1(2𝑅 + 1)

× [(2𝐽 + 1)(2𝐽 ′ + 1)(2𝑁 + 1)(2𝑁 ′ + 1)(2ℓ+ 1)(2ℓ′ + 1)]
1/2

×

⎛⎝ 𝐽 ′ 1 𝐽

−𝑀 ′ −𝑟 𝑀

⎞⎠⎛⎝ℓ 1 ℓ′

0 0 0

⎞⎠
×

⎧⎨⎩1 𝑁 ′ 𝑁

𝑆 𝐽 𝐽 ′

⎫⎬⎭
⎧⎨⎩ ℓ 𝑁 𝑅

𝑁 ′ ℓ′ 1

⎫⎬⎭ (4.73)

We have eliminated the radial electronic matrix element from this expression, but it

should be considered explicitly in comparisons of transition intensities with different

values of 𝑛 and ℓ. The vibrational overlap integral is also not included. For Rydberg-

Rydberg transitions, however, the Franck-Condon factor is extremely diagonal since
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the potential energy curve of every Rydberg state converging to a given electronic

state of the ion-core closely resembles the potential energy curve of that ion-core

state. As a result, the Δ𝑣 = 0 propensity rule is very strong. In addition, in the case

(d) limit, Δℓ = ±1 and Δ𝑅 = 0 are strict transition selection rules. Figure 4-12 is

a schematic of the 𝑛𝑔-4𝑓 transition. The strict selection rules for case (d)-case (d)

transitions result in just a single P, Q, and R line in a spectrum originating from a

single 4𝑓 rotational level. As case (d) structure is relaxed, the Δ𝑁 = 0,±1 selection

rule becomes less strict and weaker Δ𝐽 ̸= Δ𝑁 satellites may appear. If case (d) is a

sufficiently bad approximation, as for some core-penetrating Rydberg states, Δ𝑅 ̸= 0

transitions turn on, though this is not expected for the 𝑛𝑔 Rydberg states of NO

studied here.

4.6.2 Results

A spectrum of the 12𝑔2𝑁 ← 4𝑓25 (1,1) transition, detected by autoionization of

the 12𝑔 level, appears in Figure 4-13. The narrowband pulsed dye amplification laser

resolves some of the electric fine structure in this low 𝑛 Rydberg state, representing the

first time this internal structure has been resolved, aside from work on the very lowest

5𝑔 state.97,150 The red spectrum is simulated by calculating the 4𝑓 term values using

the A (𝑣 = 1) state term values of Biernacki et al.15 and the 4𝑓 -A (1,1) transition

energies of Cheung et al.27 and calculating the 12𝑔 term values by the long-range

model using the parameters determined by Biernacki et al.15 Note that the intensities

of the overlapped P and Q transitions are multiplied by 10 in both the experiment and

theory for ease of comparison. The calculated and measured transition frequencies

show obvious disagreement. We have not exhaustively collected laser spectra of 𝑛𝑔

states because the goal of this work focuses on CPmmW spectrocopy. However, it

seems likely that laser spectroscopy will be an additional path toward gaining new

insight into the Rydberg energy level structure. Unlike CPmmW spectroscopy, careful

calibration of the laser frequency is required. In addition, a narrowband laser system,

like the one used here, should be employed in order to yield the most insight over the

widest range of principal quantum numbers.
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Figure 4-12: Level diagram for the 𝑛𝑔 ← 4𝑓 transition. The energy level diagram
for all Rydberg-Rydberg transitions, such as the (𝑛 ± 1)ℎ ← 𝑛𝑔 transitions probed
by microwave spectroscopy, will have a similar appearance. The selection rules for
transitions between case (d) states dramatically restrict the number of lines in these
spectra. The energy level assignments are shown on the right side of each level.
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Figure 4-13: Laser spectrum of the 12𝑔2𝑁 ← 4𝑓25 (1,1) transition. The simulated
spectrum appears as a red line spectrum. Note that the intensities of the overlapped P
and Q transitions at high frequency have been multiplied by 10 in both the experiment
and theory.

4.7 Millimeter-wave transitions

4.7.1 Ionization detected spectra

Rydberg-Rydberg transitions in the millimeter-wave region have previously been

investigated using ionization detection. Ionization-detected mmW spectra of the rare

gas atoms,101,133 H2 and its isotopologues,63,113 and even benzene,112 have been stud-

ied by the Merkt group. This technique typically uses selective field ionization to

produce a mmW frequency-dependent ion signal. Following electronic excitation to

some initial Rydberg state, 𝑛ℓ, the mmW radiation drives transitions to final Ryd-

berg states, (𝑛+𝑚)(ℓ± 1), where 𝑚 is some positive integer. By applying an electric

field with a carefully chosen magnitude, the higher energy final Rydberg state can be

ionized and detected without also ionizing the lower Rydberg state. This is possible

due to the dramatic scaling of the required ionization field with principal quantum

number:53

𝐹 =
1

16𝑛4
adiabatic (4.74)
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𝐹 =
1

9𝑛4
diabatic (4.75)

where the different proportionality factors arise for the different mechanisms of ion-

ization. Critically, the laser excitation and mmW interrogation of the Rydberg states

must occur under field-free conditions due to the extreme electric field sensitivity of

the typically high-𝑛 states investigated. The Merkt group employs specially designed

electrode stacks to achieve this goal.102

Ionization-detected Rydberg-Rydberg transitions in NO have been investigated

by our group and others,98,107 though, lacking the exquisite control over stray electric

fields achieved in the Merkt group experiments, these spectra are severely broad-

ened by the Stark effect. Figure 4-14 displays a typical example of a selective field

ionization-detected spectrum from the initial 43𝑔2𝑁 state of NO for 𝑁 = 2 and 3. The

experimental data in black show two partially overlapping features with linewidths

of several hundred MHz. At lower frequency are the transitions to 44𝑓 states and at

higher frequency are the transitions to 44ℎ states. The predicted line positions and

intensities for the many close-lying transitions appear as a red stick spectrum. At this

resolution, little information can be gleaned from the mmW spectrum. In particu-

lar, the electric fine structure of the transitions, which reports on the non-Coulombic

interactions between the ion-core and Rydberg electron, is completely unresolved.

4.7.2 CPmmW spectra

The principles of CPmmW spectroscopy are described in Chapter 2. The present

section describes some aspects of assigning Rydberg-Rydberg transitions in CPmmW

spectra, the dramatic and unexpected effects of stray electric fields on the spectra, and

progress toward a long-range electrostatic model to describe the Rydberg spectrum.

Assignment techniques

Beyond the predictions from the long-range electrostatic model, two important

experimental methods allow us to unambiguously assign Rydberg-Rydberg transi-
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Figure 4-14: Selective field ionization-detected spectrum of the 44ℓ←43g transitions.
The experimental spectrum appears in black and a simulated spectrum, using the
long-range parameters of Martin et al.,97 appears as a red stick spectrum.

tions observed by CPmmW spectroscopy: combination differences and polarization

diagnostics.

Combination differences, of course, are the gold standard for making and confirm-

ing assignments in more common vibrational and electronic spectroscopies. In those

cases, rotational combination differences are established by locating pairs of transi-

tions that either originate from the same initial level or terminate on the same final

level. Those transitions are characteristically separated by an energy difference pro-

portional to the ground or excited state rotational constant. In particular, plotting

all differences between R-branch and P-branch transition energies against 𝐽 + 1/2

results in many points lying along either the line 4𝐵0 or 4𝐵1 where 𝐵0 and 𝐵1 are the

ground and excited state rotational constants, respectively. This method quickly or-

ganizes all observed transitions and confirms assignments that may initially be based

on predicted line positions or the qualitative line pattern.

In Rydberg-Rydberg transitions, electronic combination differences of states with

different 𝑛, ℓ, or 𝑁 can be found in the spectra. As an example, Figure 4-15 shows

some of the combination differences possible in the case of laser excitation of the

𝑛𝑔23 and 𝑛𝑔22 states, indicated by bold font. In the left-hand case, the sum of the
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frequencies of the Q transitions (blue) upward and downward in 𝑛 from one level is

equal to the sum of the frequencies of the R transitions (red) upward and downward

in 𝑛 from a different laser-prepared level. Alternatively, as shown on the right-hand

side of Figure 4-15, the energy difference between two sets of laser-prepared Rydberg

states can be obtained to mmW accuracy by establishing a combination difference

with final levels having a common value of 𝑛. These more complicated combination

differences of sums is required because the energy splitting of two transitions with

either a common initial or final state is not known a priori. This splitting represents

the splitting of electric fine structure levels in either the initial or final state, and this

is not a constant or a value that simply scales with 𝑁 .

The flexibility of the AWG at the heart of the CPmmW spectrometer makes it

easy to add additional mmW photons to an experiment. This makes multi-pulse

experiments possible and a network of precisely connected Rydberg levels can be

built up from laser excitation of a small number of initial states. In Figure 4-16, this

idea is illustrated. Transitions from the initial 𝑛𝑔 states to neighboring (𝑛+ 1)ℎ and

(𝑛− 1)ℎ levels transfer population into these initially empty levels. A second mmW

pulse then polarizes transitions from those ℎ states to other 𝑛𝑔 Rydberg states that

were not initially laser-populated. These secondary transitions establish combination

differences, with sub-MHz accuracy, not only among themselves, but also with the

primary transitions, and provide additional confirmation of assignments.

The second important technique for establishing unambiguous assignments for ob-

served mmW transitions is polarization diagnostics. As one can see from the form of

every transition intensity formula presented in this chapter, there is a spatial compo-

nent that depends on𝑀 , the magnetic quantum number, and 𝑟, a constant determined

by the polarization of the light that induces each transition. By collecting a spectrum

with all laser and mmW fields in one polarization arrangement, and then collecting a

second spectrum with a different polarization arrangement, transitions between lev-

els with different total angular momentum, 𝐽 , will show characteristic changes in the

relative intensity pattern. This idea was explored in double resonance experiments on

Rydberg states in previous work by the Field group.122 We have found that when the
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Figure 4-15: Schematic of typical Rydberg-Rydberg transitions probed by CPmmW
spectroscopy. Laser excitation populates multiple initial electric fine structure com-
ponents of the desired Rydberg state. Left: By probing transitions upward and
downward in 𝑛, combination differences can be identified to confirm assignments.
Right: Combination differences also link laser-populated levels to the accuracy of
mmW transition frequencies.

Figure 4-16: Schematic of Rydberg-Rydberg transitions probed by CPmmW spec-
trosopy. Similar to Figure 4-15, combination differences can be established from
transitions upward and downward in 𝑛. In addition, after transferring population
from the laser-populated state to another Rydberg state, transitions back to states
with the initial value of 𝑛 allow construction of a network of transitions.
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angular momentum coupling case changes in the transition between two levels, this

has the effect of reducing the contrast observed between two different polarization

arrangements. In the optical-optical-optical-mmW excitation used for chirped-pulse

experiments, the final three states — 4𝑓 , 𝑛𝑔, and (𝑛 ± 1)ℎ — are all well described

by Hund’s case (d). Thus, we anticipated variations of the polarization arrange-

ment of the IR and mmW photons would produce the most dramatic polarization

effects. Since the mmW photon polarization cannot be changed without exchanging

components and disrupting alignment, we rotate the linear polarization of the IR

photon to produce either an arrangement of all linear, all parallel polarizations or a

linear polarization arrangement with relative angles of 0∘ − 0∘ − 90∘ − 0∘. A typical

spectrum is shown in Figure 4-17 for three exemplary two-step transition sequences,

44ℎ23 ← 43𝑔23 ← 4𝑓22, 44ℎ24 ← 43𝑔23 ← 4𝑓22, and 44ℎ23 ← 43𝑔22 ← 4𝑓22, in

order from lowest to highest transition frequency. The arrangement with all parallel

polarizations is shifted by 10 MHz for clarity. Beside each transition is listed the

observed and calculated intensity ratio for perpendicular:parallel arrangements. Ex-

cellent qualitative agreement is observed between the calculation and the experiment,

allowing us to confidently assign each transition.

It is worth briefly commenting on intensity measurements in CPmmW spec-

troscopy. Compared to sequential scanning techniques, the multiplexed broadband

nature of chirped-pulse spectroscopy makes relative intensity measurements much

more feasible and diagnostically reliable. Fluctuations in the molecular source or the

laser intensities will affect all transitions in the same way, reducing the relative inten-

sity noise. Reproducible relative intensities at the level of 15-30% are often cited.115

However, care must still be taken if quantitative relative intensities are desired. The

power output and detection sensitivity of the CPmmW spectrometer is frequency

dependent so transitions at different frequencies, especially if they are widely sepa-

rated, will be polarized by different amounts and detected with different efficiencies.

By measuring the instrument response in the absence of the sample, the frequency

dependent intensity can be corrected to improve relative intensity measurements, al-

though the performance of this method has not been quantitatively investigated.168

217



Figure 4-17: Polarization diagnostics can help to confirm transition assignments.
In this case, altering the polarization arrangement of the IR and mmW photons
(perpendicular vs. parallel) leads to significant, and predictable, increases or decreases
in transition intensity.

Furthermore, the details of the chirped polarizing pulse can profoundly affect the rel-

ative intensities. Since many transitions share common initial or final levels, a change

in polarization of one transition can impact the polarization of another. This is es-

pecially significant for Rydberg-Rydberg transitions with very large dipole moments,

where population transfer at low mmW powers is possible. Switching the frequency

chirp direction of the excitation pulse will also result in observation of different relative

intensities and even a different number of transitions169 Although this can complicate

relative intensity measurements, it assists in experimental determination of the level

connectivity.

Electric field effects

In contrast to the ion-detection apparatus, chirped-pulse spectra can be collected

in an apparatus free of the large electric fields required in the former technique. How-

ever, as will be discussed at length in this section, the exquisite sensitivity of high-𝑛,

high-ℓ Rydberg states to electric fields means that small fields due to electrical equip-
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ment outside the apparatus or patch charging on dielectric windows can noticeably

perturb CPmmW spectra. Although our apparatus is very similar to the setup in

which CPmmW spectroscopy of Rydberg states was initially demonstrated,126 the

high-ℓ states, with very small quantum defects, investigated in this work have sub-

stantially greater electric field sensitivity, revealing previously unobserved and unex-

pected stray fields in and around the apparatus.

A typical spectrum for our initial experimental setup is shown in Figure 4-18.

The laser excitation populates both 41𝑔23 and 41𝑔22 Rydberg states. There are three

allowed transitions from these two initial states to the electric fine structure com-

ponents of the 40ℎ state, all of which occur below 99 GHz in this spectrum. Two

instrumental artifacts are indicated by asterisks. The intense line around 99.07 GHz

is not predicted by our long-range electrostatic model and displays several charac-

teristics that distinguish it from the anticipated transitions. This extra peak is not

only more intense than the expected transitions, but it is also noticeably narrower.

The extra transition typically has a linewidth of around 1 MHz, while the expected

transitions are significantly broader, often around 5 MHz FWHM. The intensity of

this extra transition was of typically similar or larger intensity than the assigned

transitions. Moreover, when the density of the sample was increased, this transition

displayed superradiance.

Superradiance is a phenomenon that has appeared frequently in our CPmmW

spectroscopy experiments on Rydberg states,30,126,169 and was recently investigated

in detail by us in an atomic system.61 Essentially, superradiance is a collective effec-

tive, related to FID emission, in which the presence of neighboring radiators (Rydberg

atoms/molecules) modifies the radiation-matter interaction. Unlike FID, superradi-

ant emission results in a large change in excited state population, accompanied by a

“burst” of emitted radiation. The rate of superradiant decay, 𝛾𝑆𝑅, is given by:95

𝛾𝑆𝑅 =
1

𝜏𝑆𝑅
=

𝐴21𝑂𝐷

8𝜋
=

𝜋𝜌𝜇2

3𝜖0~
𝐿

𝜆
(4.76)
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Figure 4-18: CPmmW spectrum from the 41𝑔23 and 41𝑔22 initial states. Instrumental
artifacts are indicated by asterisks. The broader peaks below 99 GHz correspond to
expected 41𝑔-40ℎ transitions. The intense, narrow line at 99.07 GHz, which displays
superradiant emission at high densities, is assigned to an electric-field-induced 41𝑔-40𝑔
transition.

where the optical depth (𝑂𝐷) and Einstein A coefficient (𝐴21) are defined as

𝑂𝐷 = 𝜌𝜆2𝐿 (4.77)

𝐴21 =
8𝜋2𝜇2

3𝜖0~𝜆3
(4.78)

In these equations, 𝜌 is the number density, 𝜆 is the emission wavelength, 𝐿 is the

sample length, and 𝜇 is the transition dipole moment. Superradiant decay increases

with three factors: the density, the transition dipole moment, and the sample length

relative to the emission wavelength. The combination of huge Rydberg-Rydberg

transition dipole moments and samples of length much larger than the wavelength

of the radiation (3 mm at 100 GHz) explains the presence of superradiant decay in

our experiments. The superradiant burst occurs with a characteristic time delay, 𝜏𝐷,

which according to the semiclassical model, is linearly related to the superradiant

decay time, 𝜏𝑆𝑅:62

𝜏𝐷 = 2𝜏𝑆𝑅 log(𝜃𝑖/2) (4.79)
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where 𝜃𝑖 is defined in the Bloch vector model as the initial tipping angle induced by

the “trigger” pulse. The radiation that triggers superradiant decay can be applied by

the experimentalist, as done in our previous experiments,61 but can also come from the

blackbody radiation of the 300 K chamber. This blackbody-triggered superradiance

is what we have observed. At high Rydberg densities, superradiant emission follows

laser excitation, even without application of any mmW fields. A typical single-shot

observation of superradiant emission is shown in Figure 4-19. The three traces of

superradiant emission are obtained by Fourier transforming the time domain signal

to frequency space, applying a narrowband filter, and inverse Fourier transforming

to reconstruct the isolated superradiant emission traces. The y-axis is the emitted

power, |𝐸|2, at each frequency. Note that the laser excitation to a 43𝑔 state occurs at

approximately zero on the time axis and the initial superradiance in the lower trace

(red) occurs after a 100 ns delay.

Figure 4-19: Cascading superradiant emission from a high density sample of NO
Rydberg states, initially prepared in a 43𝑔2𝑁 state. The principal quantum numbers,
𝑛, of the transitions are indicated.

Superradiant decay is an obstacle to spectroscopy experiments not only because
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it adds an additional decay mechanism that can lead to line broadening, but also

because it can substantially modify the observed number of lines. In the presence of

a weak and a strong transition, numerical simulations have shown that superradiant

decay funnels population into the strong transition.167 This energy steering is a result

of the self amplification process in superradiance, where an initially small difference

in transition intensities can grow by orders of magnitude. In the presence of strong

superradiant emission, we observe no lines other than the superradiant one in the

spectrum.

Another multi-level effect that occurs in superradiant emission is cascading tran-

sitions. In a ladder system, if population from an initially populated level superradi-

antly decays to a lower level, a new population inversion can be established between

the second level and a third even lower energy level. If the sample density remains

high enough, superradiant emission can again occur, leading to population transfer

into the third level. This process will continue as long as the emission remains co-

herent within the dephasing time of the experiment and the optical density remains

sufficiently high. This cascading superradiance is “triggered” only once on the ini-

tial transition and each subsequent superradiant event is dependent on the initial

conditions of the first event. We clearly observe cascading superradiance in our ex-

periment. In Figure 4-19, a 43𝑔 state is initially populated by the laser excitation.

Emission between principal quantum numbers 43→ 42 (red) is first observed, and is

then followed by superradiant bursts at widely separated frequencies corresponding

to principal quantum numbers 42→ 41 (black), and 41→ 40 (blue). The intensity of

each successive superradiant event decreases in amplitude. The detection bandwidth

of the CPmmW spectrometer limits our ability to track the downward population

cascade to 𝑛 > 39.

Finally, in an extended sample, it is possible for the radiation emitted by an early

part of the sample to be absorbed and eventually re-emitted by a later part. This

results in multiple bursts of radiation escaping from the sample, which occur on the

same transition and are initiated by the same superradiant event. This is dramatically

displayed in our experiment. The first two superradiant transitions in the cascade
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shown in Figure 4-19 display beating emission due to this type of propagation effect.

All of these observations place the superradiance observed in these experiments in

a regime of high optical depth not previously attained in our Rydberg experiments.61

This is likely due to the simple explanation that even at high dilutions, using a

permanent gas like NO results in much higher density samples than are produced

from ablation-loaded beam sources. By probing the free jet expansion far downstream

of the nozzle exit, the sample density becomes low enough to avoid superradiance.

This is the experimental configuration used for spectroscopy experiments. We find

the superradiant emission useful, at least, for initial alignment of the lasers and the

molecular beam, since this signal is strong enough to observe in a single-shot (“real

time feedback”), and a sign that all lasers are on resonance and well-overlapped.

Further study of this system may be fruitful in gaining new insights into superradiant

physics, but that is beyond the scope of this thesis.

This discussion of superradiance demonstrates that this unexpected transition is

not a minor extra line, but is so strong as to completely control the physics of our

experiment under certain conditions. The last peculiarity of this line led us directly

to consider stray electric fields. In Figure 4-20, the upward pointing spectrum shows

transitions from a laser populated 42𝑔 state to levels with principal quantum number

𝑛 = 43. The downward pointing spectrum shows transitions from a laser populated

43𝑔 state to levels with 𝑛 = 42. The symmetry in the two spectra is striking. The

anticipated 𝑔-ℎ transitions occur at the low frequency and high frequency ends of

the lower and upper spectra, respectively. In the middle of the spectra, the strong,

unexpected line (and a second weaker one) occurs at the same frequency in both

spectra. This indicates to us that the intense line is a transition between two 𝑛𝑔 states

that are capable of being laser-populated, which should not be possible because they

have the same parity. We observe the same set of lines for every pair of 𝑛𝑔 states

within the spectrometer bandwidth.

At first glance, this assignment seems bizarre. This “forbidden” transition does

not just gain intensity due to a small stray electric field. It becomes the dominant

feature in the spectrum. To understand this behavior we must consider the Stark
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effect in more detail.

Figure 4-20: CPmmW spectrum from the 42𝑔23 and 42𝑔22 initial states (upward) and
the 43𝑔23 and 43𝑔22 initial state (downward). Expected 𝑔-ℎ transitions occur below
85.6 GHz and above 85.9 GHz in the two spectra. The two strong features in the
center of the spectrum occur at the same frequency in both spectra, indicating the
transitions occur between laser-populated levels, in violation of parity restrictions.

We start by examining a simple model to answer two questions regarding this

so-called 𝑔-𝑔 transition: Why is it so intense? Why is it narrower than the expected

transitions? To begin, Figure 4-21 shows the calculated Stark states for a single 𝑛-

manifold of Rydberg states in NO. The methodology for calculating the Stark effect

in NO is a matrix diagonalization procedure described by multiple authors, which we

will not repeat here.58,156 Highlighted in blue is a single 𝑛𝑔 state and highlighted in

red is the 𝑛ℎ state with which it interacts most strongly. Of course, the Stark effect

involves field-induced interactions among many of the levels shown in the figure, but

for the purposes of our model system we will only consider these two states in one

Stark manifold and the same two states in a neighboring-𝑛 Stark manifold. Now, we

can write the wavefunction for the nominal 𝑛𝑔 and 𝑛ℎ states in the presence of a

field as a linear combination of the two field-free basis states. For clarity, the basis

states are indicated as |𝑛𝐺⟩ and |𝑛𝐻⟩, where 𝑛 is a good quantum number in both

the electric field and field-free cases because we will not consider electric fields large
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enough to induce significant 𝑛 mixing.

|𝑛𝑔⟩ = cos 𝜃 |𝑛𝐺⟩+ sin 𝜃 |𝑛𝐻⟩ (4.80)

|𝑛ℎ⟩ = − sin 𝜃 |𝑛𝐺⟩+ cos 𝜃 |𝑛𝐻⟩ (4.81)

Here, 𝜃 is a mixing angle to describe the effect of the electric field; under field-free

conditions, 𝜃 = 0 and the real states are identical to the basis states; in the presence

of a large field, 𝜃 ≈ 𝜋/4 and the two states are completely mixed. Now consider

the transition dipole moment between the laser-populated |𝑛𝑔⟩ state and the states

|(𝑛− 1)ℎ⟩ and |(𝑛− 1)𝑔⟩:

⟨(𝑛− 1)ℎ |𝜇|𝑛𝑔⟩

= [− sin 𝜃 ⟨(𝑛− 1)𝐺|+ cos 𝜃 ⟨(𝑛− 1)𝐻|]𝜇 [cos 𝜃 |𝑛𝐺⟩+ sin 𝜃 |𝑛𝐻⟩] (4.82)

= − sin2 𝜃 ⟨(𝑛− 1)𝐺 |𝜇|𝑛𝐻⟩+ cos2 𝜃 ⟨(𝑛− 1)𝐻 |𝜇|𝑛𝐺⟩ (4.83)

= 𝜇0

(︀
cos2 𝜃 − sin2 𝜃

)︀
(4.84)

⟨(𝑛− 1)𝑔 |𝜇|𝑛𝑔⟩

= [cos 𝜃 ⟨(𝑛− 1)𝐺|+ sin 𝜃 ⟨(𝑛− 1)𝐻|]𝜇 [cos 𝜃 |𝑛𝐺⟩+ sin 𝜃 |𝑛𝐻⟩] (4.85)

= sin 𝜃 cos 𝜃 ⟨(𝑛− 1)𝐻 |𝜇|𝑛𝐺⟩+ cos 𝜃 sin 𝜃 ⟨(𝑛− 1)𝐺 |𝜇|𝑛𝐻⟩ (4.86)

= 2𝜇0 sin 𝜃 cos 𝜃 (4.87)

In Equations 4.84 and 4.87, we have made the well-justified assumption:

⟨(𝑛− 1)𝐻 |𝜇|𝑛𝐺⟩ ≈ ⟨(𝑛− 1)𝐺 |𝜇|𝑛𝐻⟩ = 𝜇0 (4.88)

In this simple model, destructive interference in the transition dipole moment of the

“allowed” transition leads to a rapid decrease of intensity. All of this intensity ends

up in the transition dipole moment of the “forbidden” transition, which gains its

intensity through constructive interference between the contributing dipole moments.

This suggests that a transfer of intensity from the 𝑔-ℎ transition to the 𝑔-𝑔 transition

at small electric field values may be physically reasonable.
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Figure 4-21: Full manifold of Stark states in NO. An 𝑛𝑔 state is highlighted in blue
and shows a quadratic Stark shift. An 𝑛ℎ state is highlighted in red and quickly
approaches the regime of linear Stark effect due to the nearby high-ℓ manifold of
states. The 𝑛𝑓 states occur far away from the 𝑛𝑔 and 𝑛ℎ states on this energy scale
and limited mixing occurs at the field values considered here.

Figure 4-22: Simplified Stark tuning diagram indicating transitions from an initial
𝑛𝑔 state to either the (𝑛 − 1)ℎ or (𝑛 − 1)𝑔 state as a function of electric field. The
difference in 𝑛𝑔 → (𝑛− 1)ℎ transition frequencies (solid arrows) at two electric field
values is much larger than the difference in 𝑛𝑔 → (𝑛 − 1)𝑔 transition frequencies
(dashed arrows).
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The second effect to consider is the difference in observed linewidths between the

expected and unexpected transitions. To understand this effect, we have to consider

not just an applied field, but an inhomogeneous field. This means that different

parts of the Rydberg sample will experience electric fields of different magnitudes.

Consider the simplified diagram in Figure 4-22. The Stark shift of the 𝑔 states in

blue is quadratic and substantially smaller than the approximately linear Stark shift

of the ℎ states in red. As a result, the frequency of the 𝑔-ℎ transition at field value 𝐸1

will be significantly different from the transition frequency at some larger field value

𝐸2. If a distribution of electric fields exists in the apparatus, this will be manifest as

a broadening of the linewidth. In contrast, the 𝑛𝑔 and (𝑛 − 1)𝑔 states have nearly

identical Stark shifts at high 𝑛. Thus, the frequency of the 𝑔-𝑔 transition at two field

values 𝐸1 and 𝐸2 will be very similar. In the presence of an inhomogeneous electric

field, this transition will be minimally broadened. Moreover, in effect, the narrow

𝑔-𝑔 transition extracts superradiant emission from a larger fraction of the initially

populated volume than the broad 𝑔-ℎ transitions.

While this simple model has allowed us to develop some intuition regarding 𝑔-

ℎ and 𝑔-𝑔 transitions in the presence of an electric field, it has obviously required

several simplifying assumptions. To more carefully investigate these field effects, we

can consider the same physics using the Stark effect calculation presented in Figure

4-21. In this extended model, we consider all basis states in the initial laser-populated

level with coefficients greater than 0.005, and calculate the transition dipole moment

to all allowed components of the possible final states. To simplify the calculation, we

assume that the transition dipole moments of all allowed transitions are the same and

the 𝑀 levels of the initial state, |𝑀 | = 0, 1, and 2, are initially equally populated.

The accuracy of the simulation could certainly be improved by treating these two

aspects more carefully.

In Figure 4-23, a simulated line spectrum for transitions out of the 41𝑔23 (blue)

and 41𝑔22 (red) levels for several electric field values is presented. Note that the

intensity axis is different for each plot. Under field-free conditions, only the three

expected transitions have intensity. At field values as low as 30 mV/cm, the 𝑔-𝑔
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transitions near 99.1 GHz have intensity comparable to the 𝑔-ℎ transitions, and by

60 mV/cm, these 𝑔-𝑔 transitions completely dominate the spectrum. As the field is

increased further, the 𝑔-𝑔 transition begins to lose intensity as more basis states are

mixed in and reduce the brightness of this transition.

To gain some sense of the effect of an inhomogeneous electric field, Figure 4-24

shows a simulated spectrum in the presence of a Gaussian electric field distribution

centered at 30 mV/cm with a 10 mV/cm FWHM. The different Stark shifts of the 𝑛𝑔

and 𝑛ℎ states result in dramatic broadening of the three 𝑔-ℎ transitions between 96.8

and 99 GHz. Meanwhile, the nearly identical Stark shifts of the 𝑛𝑔 and (𝑛−1)𝑔 states

results in all intensity piling up at the same frequency. This result demonstrates that

an inhomogeneous field can produce the two different levels of broadening observed.

In addition, it shows that field inhomogeneity will further decrease the intensity of

the 𝑔-ℎ transition relative to the 𝑔-𝑔 transition, so that the 𝑔-𝑔 transition can be the

most intense feature in the spectrum at even lower fields than suggested by Figure

4-23.

The most obvious difference between this simulated spectrum and the experimen-

tal result is the presence of so much intensity in transitions to the high-ℓ manifold at

frequencies below 98.8 GHz. It is possible that the emission from these many over-

lapping transitions will result in substantial destructive interference, which reduces

the observed intensities below those of our naive calculation. Again, the explanation

of many qualitative features in our observed spectra draws us to the conclusion that

small, inhomogeneous electric fields, such as those due to charging of the chamber

windows, could be responsible for the observed effects.

Obviously, elimination or compensation of the stray electric field in the apparatus

is of paramount importance for accurate measurement of Rydberg-Rydberg transition

frequencies. This is ongoing work. Several designs for electric field plates have been

tested, which could compensate for the stray fields in the apparatus. Even with the

addition of a single set of electric field plates along one axis, we observe dramatically

reduced linewidths and a loss of intensity in the 𝑔-𝑔 transition, as shown in Figure

4-26. The challenge in direct compensation of stray fields is the required geometry of
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Figure 4-23: Simulation of the mmW spectrum from the initial 41𝑔23 (blue) and 41𝑔22
(red) states as a function of applied electric field. Note the intensity axis changes for
each plot. As the electric field increases the intensity of the “allowed” transitions,
shown unperturbed in the top plot, decreases rapidly. The 𝑔-𝑔 transitions near 99.1
GHz rapidly gain intensity before eventually weakening at high field values.
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Figure 4-24: Simulation of the mmW spectrum from the initial 41𝑔23 (blue) and
41𝑔22 (red) states with a Gaussian distribution of applied electric field centered at
30 mV/cm with a FWHM of 10 mV/cm. The three “allowed” transitions experience
dramatic electric field broadening, which further reduces their intensity. In contrast,
the 𝑔-𝑔 transitions near 99.1 GHz are minimally broadened, leading to a pile up of
transition intensity. The simulated intensity transferred into the high-ℓ manifold at
frequencies below 98.9 GHz is much larger than observed experimentally.
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the experiment. A free jet expansion propagates in one direction, while all laser and

mmW fields are expanded to large diameters and intersect the molecular beam trans-

versely. This means that any field plates introduced along these two axes must have

large access ports, which will ruin the homogeneity of the applied field. Moreover,

the very large sample volume makes the application of a homogeneous field, or equiv-

alently, compensation of an inhomogeneous field, extremely challenging. In general,

ion-detected Rydberg experiments use very small active areas in order to reduce the

inhomogeneity of the field experienced by the sample. A small sample size is incom-

patible with the requirements of low number density needed to avoid superradiance,

and high emitter number needed to detect FID. We are currently pursuing several

new strategies, including the use of ITO or gold-coated glass electrodes to reduce

the effects of patch charging on the field plates,127 and irradiation of the chamber

windows with UV light to “clean” charged materials from the surface, an approach

used empirically by some atomic physics groups and investigated quantitatively by

the LIGO research team.130,143,148

Linewidths in CPmmW spectra

Beyond the electric field broadening discussed here, what is the next largest broad-

ening mechanism? From rotational spectroscopy experiments in this apparatus, we

anticipate the Doppler broadening to be approximately 500 kHz in the W band, and

1.5 MHz in the 220-330 GHz high frequency band. In addition, lifetime broaden-

ing should be considered. Although 𝑛𝑔 states do not suffer from the extremely fast

predissociation rates of 𝑛𝑓 states, predissociation will still be operative. The predis-

sociation rate of 𝑛𝑔 states of NO has been estimated crudely by Fujii and Morita,

who report a lifetime of 1 𝜇s at 𝑛 = 55.52 Assuming 𝑛−3 scaling, this gives a lifetime

of approximately 480 ns and a linewidth of 330 kHz for 𝑛 = 43, and a 160 ns lifetime

and 980 kHz linewidth for 𝑛 = 30. In order to obtain an approximate measure of the

predissociation rate, we have performed a lifetime measurement by varying the delay

time between the excitation laser pulses that prepare the initial Rydberg state and

the mmW chirped pulse that probes the state. Results for the 30𝑔23 state are shown
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in Figure 4-25, which gives a lifetime of 204 ns. This is in excellent agreement with

Fujii and Morita’s value and predicts a natural linewidth of 780 kHz. Extrapolating

to 𝑛 = 43, we estimate a lifetime of 600 ns and linewidth of 265 kHz. Either from our

measurement or the estimate of Fujii and Morita, the natural linewidth of 𝑛𝑔 states

is comparable to the expected Doppler width and so the total linewidth includes

both the Doppler and natural linewidth contributions. We find expected linewidths

of 565-600 kHz for 𝑛 = 43 and 1.7-1.8 MHz for 𝑛 = 30.

Figure 4-25: Lifetime measurement of the 30𝑔23 state. Since the linewidth is cor-
rupted by electric field broadening, the lifetime is measured by monitoring the mmW
signal as a function of delay between the excitation laser that populates the Rydberg
state and the mmW pulse that probes the 30𝑔23 → 29ℎ24 transition. This population
decay time demonstrates that the natural linewidth (∼780 kHz) is much narrower
than the observed linewidth (∼5 MHz), confirming that the observed transitions are
broadened by external effects rather than by the intrinsic lifetime.

While our attempts at stray field compensation have not yet achieved reproducible

zero field conditions, we have observed significant narrowing of the linewidths relative

to the absence of field compensation. Figure 4-26 shows a spectrum of 44ℎ ← 43𝑔

transitions with the narrowest linewidths we have observed. A fit to the 44ℎ24 ←

43𝑔23 transition appears on the right side of Figure 4-26. The additional lobes on each

side of the center peak are likely due to uncompensated magnetic fields in the chamber.

By fitting only the central peak, we find a linewidth of approximately 800 kHz. This is
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quite close to our expectation and additional broadening may be due to the magnetic

field effects just mentioned or due to unresolved hyperfine splitting of the transition, as

discussed earlier in this chapter. Regarding the former, we previously compensated

for magnetic fields using Helmholtz coils, a technique that requires observing the

splitting present in Figure 4-26 in order to reduce it. The hyperfine splitting is, of

course, intrinsic to the molecule, but would result in characteristically broader lines

for lower 𝑁 transitions, where the splitting is largest. In summary, this result suggests

stray field compensation is possible, though a reproducible method requires further

development.

Figure 4-26: CPmmW spectrum from the 43𝑔23 and 43𝑔22 initial states. With field
plates inserted into the apparatus the stray field magnitude and inhomogeneity is
decreased, leading to no intensity in the 𝑔-𝑔 transitions and to narrow 𝑔-ℎ transitions.
In the right panel, a fit to the 44ℎ24 ← 43𝑔23 transitions is shown with a linewidth of
less than 1 MHz FWHM. The side lobes are likely due to uncompensated magnetic
field in the apparatus and only the central peak is fit.

Long-range fit to mmW data

We perform a preliminary fit to the high-resolution CPmmW data in order to

demonstrate some of the advantages of this type of data in obtaining meaningful

long-range electrostatic values for the NO+ ion. All of the observed lines exhibit

broadening beyond the expected Doppler and natural linewidths, and typically have

linewidths of ∼5 MHz. In addition to broadening, shifts of the line centers from

the field-free values are also possible. Both of these factors reduce the accuracy of
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the input data and impact the quality of the fit. All of the observed line positions

and their assignments appear in Table 4.3. These data represent just a fraction of

the state space that we can sample by CPmmW spectroscopy. In particular, only

two values of the rotational quantum number are present, 𝑅 = 1 and 2, and the

full range of ℓ𝑅 values is not sampled. In spite of these deficiencies, we perform

two different long-range fits to the data. In both, the rotational and centrifugal

distortion constants are fixed at the values determined by rotational spectroscopy,

𝐵 = 1.98794634 cm−1 and 𝐷 = 5.704 × 10−6 cm−1.17 This is necessary because the

data set is made up of Rydberg-Rydberg transitions, rather than term values, so the

rotational energy does not explicitly appear. Rather, the rotational constant more

subtly affects the magnitude of the Δ𝑅 = ±2 interactions in the model. Fitting this

parameter accurately requires a more extensive data set.

In the first fit, we allow the quadrupole moment, isotropic polarizability, and

anisotropic polarizability to vary. Different from the fit procedure described for the

4𝑓 (𝑣 = 1) state, we consider the polarizability-induced mixing of states with Δ𝑛 = 0

and Δℓ = ±2 in the model. These off-diagonal radial matrix elements are calculated

by integration of numerically-generated hydrogenic wavefunctions. This fit produces

the parameters listed in the first column of Table 4.4, and a rms deviation of 4.59

MHz. The value of the fit error is similar to the observed Stark-broadened linewidths.

In contrast to our experience with the 4𝑓 (𝑣 = 1) state, the pairwise correlation

coefficient of 𝑄 and 𝛾 is reduced to just -0.53 from near unity. We interpret this

significant reduction in the parameter correlation to mean that our data set contains

the physics necessary to distinguish these parameters. As mentioned in the previous

discussion of the 4𝑓 level, 𝑄 and 𝛾 are distinguishable by the 𝑛-scaling and by the

impact of Δ𝑛 = 0, Δℓ = ±2 perturbations. By containing a wide range of principal

quantum numbers and transitions between states of high-ℓ, which are close in energy

to 𝑛(ℓ ± 2) Rydberg states, our data set is sensitive to both of these effects. The

residuals from this fit appear in the third column of Table 4.3 in units of MHz.

We can assign each transition unambiguously from this long-range fit because the

differences between transition frequencies are an order of magnitude larger than our
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Table 4.3: Observed line positions for 𝑔-ℎ (𝑣 = 0) transitions by CPmmW spec-
troscopy. The reported residual is from the fit with a floated 𝛾 value.

Assignment
𝜈obs 𝜈obs−calc Assignment

𝜈obs 𝜈obs−calc

(GHz) (MHz) (GHz) (MHz)

44ℎ23 ← 43𝑔23 80.0858 1.9 41𝑔23 → 40ℎ23 98.9383 5.2

44ℎ24 ← 43𝑔23 80.1308 4.7 44ℎ15 ← 43𝑔14 80.0698 4.5

44ℎ23 ← 43𝑔22 80.1769 5.8 43𝑔14 → 42ℎ15 85.6236 -5.6

43𝑔22 → 42ℎ23 85.8270 -3.1 43ℎ15 ← 42𝑔14 85.8581 3.8

43𝑔23 → 42ℎ24 85.5666 -2.6 43ℎ14 ← 42𝑔13 85.9602 -0.3

43𝑔23 → 42ℎ23 85.6164 2.5 42𝑔13 → 41ℎ14 91.8758 -1.3

43ℎ24 ← 42ℎ23 85.9316 -4.0 42𝑔14 → 41ℎ15 91.9651 -6.1

43ℎ23 ← 42𝑔22 85.9811 -2.7 42ℎ15 ← 41𝑔14 92.2181 2.9

42𝑔22 → 41ℎ23 91.8577 0.6 41𝑔14 → 40ℎ15 98.9469 -4.9

42𝑔23 → 41ℎ24 91.8996 1.6 41ℎ15 ← 40𝑔14 99.2186 5.2

42𝑔23 → 41ℎ23 91.9522 8.0 30𝑔22 → 29ℎ23 255.8408 -5.6

42ℎ23 ← 41𝑔23 92.2402 -3.4 30𝑔23 → 29ℎ24 255.9525 -4.6

42ℎ24 ← 41𝑔23 92.2915 0.2 30ℎ24 ← 29𝑔23 257.0434 -10.2

42ℎ23 ← 41𝑔22 92.3443 2.0 29𝑔23 → 28ℎ24 283.8591 1.0

41𝑔22 → 40ℎ23 98.8364 -2.4 29ℎ24 ← 28𝑔23 285.0700 -6.6

41𝑔23 → 40ℎ24 98.8818 -1.8
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Table 4.4: Ion-core electric parameters from long-range model fits to 𝑛𝑔 ↔ 𝑛ℎ tran-
sitions observed by CPmmW spectroscopy, with either a varied (Fit 1) or fixed (Fit
2) value of 𝛾. Values of the free ion, calculated by quantum chemical methods, are
reported in the third column.

Fit 1 Fit 2 Calculated

𝑄 (𝑒𝑎20) 0.489 (11) 0.5001 (90) 0.3715

𝛼 (𝑎20) 7.297 (25) 7.303 (23) 6.696

𝛾 (𝑎20) 2.81 (16) 𝛼/3 2.811

𝜎rms (MHz) 4.59 4.60 · · ·

fit residuals.

In the second fit, we arbitrarily fixed 𝛾 = 𝛼/3 as done in most previous analyses.

The parameters, which appear in the second column of Table 4.4, do not change

significantly, and are within 1𝜎 of those determined by the first fit. A future larger

data set will tighten the uncertainty of these fit parameters and improve our evaluation

of the goodness of each fit. The rms error for the two fits is very similar as well. This

result gives us some confidence that the fit with a varied 𝛾 has not converged to an

unrealistic solution.

Lastly, we calculated some of the electrostatic properties of the NO+ ion by quan-

tum chemistry to serve as a comparison for the experimentally determined values.

The details of the calculation are given in Chapter 5. In the third column of Table

4.4, we report the vibrationally averaged values of 𝑄, 𝛼, and 𝛾 for the 𝑣 = 0, 𝑅 = 0

level of ground-state NO+. These values do not change significantly for different

values of 𝑅 at low rotation, so the values for 𝑅 = 1 and 𝑅 = 2 are not reported.

Significantly, Fit 1, with a varied 𝛾 value produces numbers in better agreement with

the quantum chemistry calculation. In addition, the 𝛾/𝛼 ratio from quantum chem-

istry is approximately 2.4, and the ratio from our Fit 1 is 2.6. Both of these ratios are

substantially different from the factor of 3 typically assumed in long-range analyses.

Despite the imperfections of our initial data set, this preliminary analysis suggests

CPmmW spectroscopy produces the quality and quantity of data that can expand

the boundaries of our understanding of NO Rydberg states.
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4.8 Conclusion

After decades, study of NO continues to generate new insights, both fundamental

and idiosyncratic. Beyond our initial goal of improving the long-range electrostatic

model for Rydberg states, the spectroscopy detailed in this chapter opens up sev-

eral important avenues for further investigation. Multichannel quantum defect the-

ory (MQDT) is the model to completely describe the spectroscopy and dynamics of

molecular Rydberg states. Although the parameters of MQDT are less transparent to

interpretation than those of the long-range model, the level of detail offered by MQDT

predictions can spur new insights.77 The MQDT description of NO is, at the moment,

surprisingly unsophisticated for two seemingly contradictory reasons. First, the gross

energy level structure is very simple, so only very high-resolution techniques like mmW

spectroscopy are capable of probing the subtle inter-series interactions.58 Second, the

dynamics of the low-ℓ states are very complicated and involve weak interactions with

multiple valence states, which are difficult to probe by both experiment and the-

ory.124 Our high-resolution spectroscopy of core-nonpenetrating Rydberg states that

are minimally perturbed by the complex valence state interactions may offer a path

through these two issues. In addition to new molecular insights, the high optical den-

sity and strong superradiant dynamics of our experimental setup are ripe for further

study. Understanding of the Stark-induced transitions that produce the cascading

superradiance is required to develop a realistic model of the system, and may offer

a unique handle with which to manipulate superradiant decay. Further work in this

area will be of foundational importance.
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Chapter 5

Autoionization of high-ℓ Rydberg

states of NO

5.1 Introduction

For every rovibrational level of the ion-core, a series of Rydberg states exists

that converges to that limit. If a Rydberg state has energy greater than the lowest

ionization potential, due to rotational or vibrational excitation of the ion-core, it

can non-radiatively decay by autoionization. In this process, energy is exchanged

between the rovibrationally excited ion-core and the Rydberg electron resulting in

ejection of the electron and relaxation of the ion-core to a lower energy rovibrational

state. We will focus primarily on vibrational autoionization of molecular Rydberg

states, but autoionization can also occur due to electronic or spin-orbit excitation in

both molecules and atoms.

How does this exchange of energy occur? Since the electronic state of the ion-core

does not change in the vibrational autoionization process, the vibrational motion of

the core must be entirely responsible. From our discussion of the long-range elec-

trostatic model of Rydberg states in Chapter 4, we know that the Rydberg electron

and ion-core interact via the multipole moments of the ion-core at long range. Since

these multipole moments are, in general, dependent on the internuclear distance, vi-

brational motion will mediate the interaction between the quasi-bound Rydberg state
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and particular ionization continua, defined by the rovibrational state of the bare ion

and the partial wave of the ejected electron. Thus, autoionization is nothing more

than a special type of perturbation within the long-range model and the rate can be

obtained from Fermi’s golden rule:

Γ =
2𝜋

𝑛3
|⟨Φ𝑓 |𝐻 ′|Ψ𝑖⟩|2 (5.1)

where 𝐻 ′ is the Hamiltonian containing all long-range interactions, Φ𝑓 is the final

continuum state, and Ψ𝑖 is the initial Rydberg state. Both states are normalized per

unit energy, which results in the additional factor of 1/𝑛3. The matrix elements of the

long-range Hamiltonian look exactly like those in Chapter 4, except that the bound

perturber state is replaced by a continuum state specified by quantum numbers that

describe the bare ion, as well as the energy, 𝜖, and orbital angular momentum, ℓ, of

the electron. For example, the dipole interaction has the form:

⟨𝑣′𝑅′𝜖ℓ′𝑁 ′𝑀 ′|𝐻dipole|𝑣𝑅𝑛ℓ𝑁𝑀⟩

= −𝑒 ⟨𝑣′𝑅′|𝜇(𝑧)|𝑣𝑅⟩
⟨︀
𝜖ℓ′|𝑟−2|𝑛ℓ

⟩︀
𝛿𝑁 ′,𝑁𝛿𝑀 ′,𝑀(−1)ℓ+ℓ′+𝑁

× [(2ℓ′ + 1)(2ℓ+ 1)(2𝑅′ + 1)(2𝑅 + 1)]
1/2

×

⎧⎨⎩𝑁 𝑅′ ℓ′

1 ℓ 𝑅

⎫⎬⎭
⎛⎝ℓ′ 1 ℓ

0 0 0

⎞⎠⎛⎝𝑅′ 1 𝑅

0 0 0

⎞⎠ (5.2)

To gain some intuition into the effect of the multipole moments on the autoioniza-

tion rate, we can examine in more detail the relevant term in this Hamiltonian. Let’s

assume some generic multipole moment, 𝑄, as a function of internuclear distance, 𝑧,

and expand this term as a Taylor series about the equilibrium distance of the ion-core,

𝑧𝑒.

𝑄(𝑧) = 𝑄(𝑧𝑒) +
d𝑄

d𝑧
(𝑧𝑒) (𝑧 − 𝑧𝑒) +

1

2

d2𝑄

d𝑧2
(𝑧𝑒) (𝑧 − 𝑧𝑒)

2 + . . . (5.3)

Going forward, we will cut the expansion off at the quadratic term for the sake of

brevity. Now, we will evaluate the matrix element ⟨𝑣′𝑅′|𝑄(𝑧)|𝑣𝑅⟩ for a rovibrational

state of the free ion indicated by primed quantum numbers and a rovibrational state
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of the ion-core indicated by unprimed quantum numbers:

⟨𝑣′𝑅′|𝑄(𝑧)|𝑣𝑅⟩ = ⟨𝑣′𝑅′|𝑄(𝑧𝑒)|𝑣𝑅⟩+
⟨
𝑣′𝑅′

⃒⃒⃒⃒
d𝑄

d𝑧
(𝑧𝑒) (𝑧 − 𝑧𝑒)

⃒⃒⃒⃒
𝑣𝑅

⟩
+

⟨
𝑣′𝑅′

⃒⃒⃒⃒
1

2

d2𝑄

d𝑧2
(𝑧𝑒) (𝑧 − 𝑧𝑒)

2

⃒⃒⃒⃒
𝑣𝑅

⟩
(5.4)

= 𝑄(𝑧𝑒) ⟨𝑣′𝑅′|𝑣𝑅⟩+ d𝑄

d𝑧
(𝑧𝑒) ⟨𝑣′𝑅′ |(𝑧 − 𝑧𝑒)| 𝑣𝑅⟩

+
1

2

d2𝑄

d𝑧2
(𝑧𝑒)

⟨︀
𝑣′𝑅′ ⃒⃒(𝑧 − 𝑧𝑒)

2
⃒⃒
𝑣𝑅

⟩︀
(5.5)

By Fermi’s golden rule, the autoionization rate is proportional to the square of this

matrix element. We examine Equation 5.5 to understand some general properties

of long-range autoionization behavior. First, consider rotational autoionization, in

which only the rotational state changes (𝑣′ = 𝑣, 𝑅′ < 𝑅), versus vibrational autoion-

ization (𝑣′ < 𝑣). Within the harmonic approximation, the first term of this expansion

contributes to rotational autoionization, but not to vibrational autoionization. Thus,

we might expect, in general, that rotational autoionization is faster than vibrational

autoionization. This is rarely observed experimentally because for most molecules

with small rotational constants, vibrational autoionization occurs at much lower 𝑛

than rotational autoionization, and autoionization lifetimes scale as 𝑛3.

We can also use Equation 5.5 to justify the commonly invokedΔ𝑣 = −1 propensity

rule in vibrational autoionization. Within the harmonic approximation, the second

term has the selection rule Δ𝑣 = ±1, while the third term has the selection rule

Δ𝑣 = ±2, and so on.a This means that the leading term for the Δ𝑣 = 𝑣′ − 𝑣 = −1

process is larger than the leading term for the Δ𝑣 = 𝑣′−𝑣 = −2. A similar argument

will show that even larger changes in 𝑣 will have even higher order derivatives as

the leading term and will usually be negligible. While this argument is generally

aThis is easiest to see using raising/lowering operators:

⟨𝑣|𝑧|𝑣 + 𝑞⟩ = ⟨𝑣|(𝑎+ + 𝑎−)|𝑣 + 𝑞⟩
= ⟨𝑣|𝑎+|𝑣 + 𝑞⟩+ ⟨𝑣|𝑎−|𝑣 + 𝑞⟩

=
√︀
𝑣 + 𝑞 + 1 ⟨𝑣|𝑣 + 𝑞 + 1⟩+

√
𝑣 + 𝑞 ⟨𝑣|𝑣 + 𝑞 − 1⟩

̸= 0 iff 𝑞 = ±1
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correct, it should be pointed out that even for a Morse oscillator there will be some

contribution from lower order derivatives to |Δ𝑣| > 1 autoionization channels, which

will make these rates larger than the minuscule values expected from the harmonic

approximation. In addition, the harmonic approximation tells us that the Δ𝑣 = −1

rate will increase linearly with 𝑣 since ⟨𝑣|𝑧|𝑣 + 1⟩ =
√
𝑣 + 1.

5.2 Multipole moments and polarizabilities of the

NO+ ion

One of the two required inputs to the long-range model of autoionization is the

multipole moments and polarizabilities of the ion-core as a function of internuclear

distance. Unlike the simplified treatment in Chapter 4, which only considered the po-

larizability and quadrupole moment, we will consider all multipole moments up to the

hexadecapole moment, 𝑄4=Φ. These values can be calculated ab initio by a number

of quantum chemistry packages and methods. In this work, most of the results pre-

sented have been obtained using the ORCA program suite;108,109 the Psi4 package119

was also used for the calculation of the octupole and hexadecapole moments.

The computational method chosen for this work is a Complete Active Space self

consistent field (CASSCF) method.76 CASSCF is a multiconfigurational wavefunc-

tion method in which the electrons and orbitals of the molecule are divided into three

subspaces. In the first and third subspace, called the inactive and virtual space,

all orbitals are doubly occupied or doubly unoccupied, respectively. In the second

subspace, the active space, we allow possible configurations and perform a full-CI

calculation. The electrons and orbitals included in the active space should be those

that contribute most to the multiconfigurational nature of the wavefunction. By par-

titioning the space of electrons and orbitals correctly, one can obtain qualitatively

correct wavefunctions for regions of state space where the electronic configuration

is changing rapidly, as in bond dissociation. This method appropriately treats the

effects of static electron correlation, which arises from the near-degenerate energies
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of determinants encountered in bond dissociation. However, CASSCF does not ac-

curately capture dynamical correlation, the correlated movement of electrons in the

system. To improve the absolute energy determination, we use the N-valence electron

perturbation theory (NEVPT2) method5 following the initial CASSCF calculation.

This dramatically improves the accuracy of the potential energy curve (PEC) used for

calculation of vibrational wavefunctions. However, throughout this work, the calcula-

tion of electric properties is performed on the CASSCF wavefunction. As a test of the

importance of dynamical correlation in the calculation of electrostatic properties, we

used the Psi4 package to calculate electric properties at select internuclear distances

using a multireference configuration interaction (MRCI) wavefunction . However, as

found by Fehér and Martin,44 this more expensive method had little effect on the

values of the electric properties, despite large effects on the total energy.

All calculations used Dunning’s correlation consistent polarized quadruple zeta

basis set, augmented with diffuse functions (aug-cc-pVQZ).36 Test calculations with

a 5Z basis set resulted in nearly identical energies and properties. The inclusion of

diffuse functions was critical to obtaining accurate polarizability values.

Throughout this section, figures will show calculated values as markers. The

smooth lines that appear in each plot are cubic spline interpolations of the calcu-

lated points. These interpolations are shown because smoothly varying functions are

required for the calculation of the vibrational wavefunctions and the vibrationally

integrated multipole moments.

The calculated potential energy curve of the NO+ ground state appears in red

in Figures 5-1 and 5-2. In blue are the results of a CCSDT calculation performed

by Joshua Baraban.9 Coupled cluster methods are often considered the gold stan-

dard for inclusion of dynamical correlation. Our result yields energies comparable to

the CCSDT curve, suggesting that our perturbative approach has correctly handled

correlation, at least in the bonding region of the potential energy curve. Our PEC

approaches a dissociation limit at approximately 10.6 eV, in agreement with the lit-

erature value.145 The CASSCF calculation of Fehér and Martin appears in black.44

While the shape of the PEC is similar in the bonding region, the absence of dynamical
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Figure 5-1: Red: NEVPT2 potential energy curve. Blue: CCSDT potential energy
curve calculated by Joshua Baraban.9 Black: CASSCF potential energy curve cal-
culated by Fehér and Martin.44 The inclusion of dynamic correlation by NEVPT2
significantly lowers the energy of the CASSCF result and yields a result comparable
to sophisticated coupled cluster methods. The discontinuity in the CASSCF curve
between 5 and 6 a.u. is likely a result of the calculation converging to the wrong
dissociation limit, as discussed in the text.

Figure 5-2: The same potential energy curves as Figure 5-1, zoomed into the bonding
region of NO+. Red: NEVPT2 potential energy curve. Blue: CCSDT potential
energy curve calculated by Joshua Baraban.9 Black: CASSCF potential energy curve
calculated by Fehér and Martin.44
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correlation clearly raises the energy for all internuclear distances. In addition, a dis-

continuity is obvious between 5 and 6 a.u. This, along with some odd behavior in the

multipole moment curves presented below, raised our suspicions that this calculation

may have converged to the wrong solution at some values of the internuclear distance.

Indeed, we found that our own CASSCF calculation would frequently converge to an

incorrect configuration depending on the initial guess for the wavefunction. This was

particularly a problem using the Psi4 program suite. To better understand this chal-

lenge it is useful to examine the electronic configuration of the [N,O]+ system in the

bonding region and at the dissociation limit.

Figure 5-3: Molecular orbital diagram for NO+ showing the dominant electron con-
figuration in the bonding region of the ground state and the atomic configuration (4S)
of the N atom and O+ ion in the correct dissociation limit.

In the bonding region, the NO+ ground state is 1Σ+, and has a closed shell elec-

tronic configuration as shown in Figure 5-3. The ground state dissociates to N and

O+, which are isoelectronic, as shown in Figure 5-3, and have 4S ground states. The

same six p orbitals in the atomic dissociation limit form the valence molecular orbitals

of relevance in the bonding region. Thus, in the absence of state mixing, the electronic

configuration should smoothly change from three doubly occupied and three unoc-

cupied orbitals to six singly occupied orbitals along a singlet surface. This analysis

suggests that a (6,6) CASSCF calculationb should accurately capture the configura-

tions involved in bond dissociation along the ground state. The calculated occupancy

bThe notation (𝑛,𝑚) CASSCF specifies that 𝑛 electrons in 𝑚 orbitals make up the active space.
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Figure 5-4: Orbital occupancy of NO+ as a function of internuclear distance. The
circle markers are the molecular p𝜎 orbitals, and the square markers are the molecular
p𝜋 orbitals. The p𝜋 orbitals are doubly degenerate at all internuclear spacings. As the
bond length is increased, the initially doubly occupied orbitals (blue) lose electron
density and the initally unoccupied orbitals (red) become filled. At the separated
atom limit every p orbital is singly occupied as required for two 4S atoms.

of these six orbitals as a function of internuclear distance is shown in Figure 5-4. The

configuration changes rapidly, first between 3 and 4 a.u. as the electrons redistribute

in the molecular 𝜋 orbitals, and then more slowly between 3.5 and 5.5 a.u. as the

molecular 𝜎 orbitals become involved. As a result of the configuration change, this

large span of internuclear distance is challenging to compute and likely explains all

discrepancies between our calculation and that of Fehér and Martin.44 The dissocia-

tion limit of their calculation is approximately 11.6 eV, which corresponds better to

the dissociation limit of N+(3P) + O(3P) than the correct limit described above.145

We now turn to a qualitative description of the electric properties of the NO+

ground state. The dipole, quadrupole, octupole, and hexadecapole moments from

our calculation (red circles) and that of Fehér and Martin (black triangles) are shown

in Figures 5-5, 5-6, 5-7, and 5-8. All values are computed in the center of mass

frame. The dipole moment presents the most interesting and intuitively appealing

variation. In the chosen frame of reference, a positive dipole moment refers to a

dipole pointing from O to N, that is positive charge on N and negative charge on O.
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Figure 5-5: Dipole moment, calculated in the center of mass frame, as a function
of internuclear distance, 𝑅. Red: CASSCF, this work. Black: CASSCF, Fehér
and Martin.44 Blue: Separated atom calculation as described in text. Square data
points are for the N(4S) + O+(4S) limit. Cross data points with the dashed line are
the negative of the result for the dipole moment in the N+(3P) + O(3P) limit. It is
unclear how the sign error occurred in the previous result.44 See text for discussion.

Figure 5-6: Quadrupole moment as a function of internuclear distance, 𝑅. Red:
CASSCF, this work. Black: CASSCF, Fehér and Martin.44 Blue: Separated atom
calculation as described in text. Square data points are for the N(4S) + O+(4S) limit,
and the cross data points are for the N+(3P) + O(3P) limit.
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Figure 5-7: Octupole moment as a function of internuclear distance, 𝑅. Red:
CASSCF, this work. Black: CASSCF, Fehér and Martin.44 Blue: Separated atom
calculation as described in text. Square data points are for the N(4S) + O+(4S) limit,
and cross data points are for the N+(3P) + O(3P) limit.

Figure 5-8: Hexadecapole moment as a function of internuclear distance, 𝑅. Red:
CASSCF, this work. Black: CASSCF, Fehér and Martin.44 Blue: Separated atom
calculation as described in text. Square data points are for the N(4S) + O+(4S) limit,
and cross data points are for the N+(3P) + O(3P) limit.
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In the bonding region, around 2 a.u., the dipole moment is positive and very small.

This agrees with our intuition since the electronegativities of the two neutral atoms

should be very similar, but oxygen is slightly more electronegative than nitrogen.70

As the atoms are pushed together, the 𝜋 orbitals will be stabilized with respect to

the 𝜎 orbitals, eventually leading to a reversal of the energy ordering. This shifts

electron density along the bond axis from oxygen toward nitrogen and results in an

increasingly negative, though still small, dipole moment at R<2 a.u. As the atoms

are pulled apart, the dipole moment first becomes increasingly positive as expected.

Around 3 a.u., the dipole moment turns around. This is exactly the point when the

electronic configuration begins to change as shown in Figure 5-4, and electron density

moves into N-weighted orbitals. The slope of the dipole moment function changes

substantially until approximately 6 a.u. where it begins to increase in magnitude

linearly with increasing R. As mentioned above, the dissociation limit corresponds

with N(4S) + O+(4S), resulting in a negative dipole moment at large internuclear

distance. Again, our calculation begins to disagree with the literature result in the

configuration-changing region. However, if the previous result actually converges to

the N+(3P) + O(3P) limit, the dipole moment from that work should have the opposite

sign of our result.

The even multipole moments (quadrupole, hexadecapole), show only slight dis-

agreement with the previous calculation for R<6 a.u. Beyond that point they in-

crease monotonically with internuclear distance and have significantly different val-

ues from the previous result. The other odd moment, the octupole, shows more

complex variation. Reminiscent of the dipole, the octupole changes substantially in

the configuration-changing region, and exhibits both a minimum and maximum. Our

calculated moment varies smoothly with internuclear distance in contrast with the

discontinuities found by Fehér and Martin.44 Unlike for the dipole, the sign of our

octupole moment at large R disagrees with the Fehér and Martin calculation.

To address these discrepancies and gain confidence in our own calculation, we

examine the values of the multipole moments using a simple model for the separated

atom limit. We begin by placing the origin of the coordinate system on the charged
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atom, which is O+ for the lowest dissociation limit, and N+ for the next higher

dissociation limit. This places the neutral atom N (O) at some distance, 𝑧, from the

ion along the positive (negative) z-axis. The presence of the ion induces a dipole

on the neutral atom, which points away from the origin and is considered positive

(negative) for the [N,O+] ([N+,O]) limit. For simplicity, we assume that the induced

dipole is simply a point dipole at the location of the neutral atom. The functional

form for this ion-induced dipole is directly related to the atomic dipole polarizability:

𝜇ind(𝑅) =
𝛼× 𝑞

𝑧2
(5.6)

where 𝛼 is the dipole polarizability of the atom of interest, and 𝑞 is the charge of

the atomic ion, which is 1 in all cases considered here. We would like to evaluate all

of the multipole moments in the center of mass frame in order to compare with the

quantum chemical calculations. This is accomplished using the general formula for

displacement of the multipole moments along an axis of cylindrical symmetry:140

𝑄𝐿(𝑧 − 𝑏) =
𝐿∑︁

𝑗=0

(−𝑏)𝐿−𝑗

⎛⎝𝐿

𝑗

⎞⎠𝑄𝑗(𝑧) (5.7)

where 𝑄𝐿(𝑧) is the Lth multipole moment evaluated at 𝑧, +𝑏𝑧 is the displacement of

the origin at which the multipole moment is evaluated, and the binomial coefficient

is defined as: ⎛⎝𝐿

𝑗

⎞⎠ =
𝐿!

𝑗!(𝐿− 𝑗)!
(5.8)

This formula also allows us to express the initial higher-order multipole moments,

which are created by the presence of a point dipole at a distance, 𝑧, from the origin.

In terms of the induced dipole, 𝜇ind(𝑧), the next three multipole moments are written

as:

Θ = −2𝑧 × 𝜇ind(𝑧) =
−2𝛼
𝑧

(5.9)

Ω = 3𝑧2 × 𝜇ind(𝑧) = 𝑧𝛼 (5.10)
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Φ = −4𝑧3 × 𝜇ind(𝑧) = −4𝑧𝛼 (5.11)

The symbols Θ, Ω, and Φ refer here to the quadrupole, octupole, and hexadecapole

moments. After applying Equation 5.7 to the first five multipole moments to shift

the origin to the center of mass we find:

𝑞 = 1 (5.12)

𝜇 =
𝛼

𝑧2
− 𝑧𝐶𝑀 (5.13)

Θ = 𝑧2𝐶𝑀 −
2𝛼(𝑧 + 𝑧𝐶𝑀)

𝑧2
(5.14)

Ω = −𝑧3𝐶𝑀 +
3𝛼(𝑧 + 𝑧𝐶𝑀)2

𝑧2
(5.15)

Φ = 𝑧4𝐶𝑀 −
4𝛼(𝑧 + 𝑧𝐶𝑀)3

𝑧2
(5.16)

where 𝑧𝐶𝑀 is the center of mass position defined by

𝑧𝐶𝑀 =

∑︀
𝑖 𝑚𝑖𝑧𝑖∑︀
𝑖 𝑚𝑖

(5.17)

where 𝑚𝑖 and 𝑧𝑖 are the masses and positions of the two nuclei. An alternative,

but ultimately equivalent formulation of this problem is to set the initial origin at

the neutral atom position. This puts the charged atom at some distance from the

origin, which will produce an initial additional dipole contribution beyond the induced

dipole, as well as higher order moments. This approach is perhaps the more intuitive

method since the moments resulting from the ion have the simple forms −𝑞𝑧, 𝑞𝑧2,

−𝑞𝑧3, . . . , as expected.

The result of this separated atom calculation for the N(4S) + O+(4S) limit is shown

as blue squares in Figures 5-5, 5-6, 5-7, 5-8. The agreement between this simple model

and the quantum chemical calculation is excellent at large internuclear distance. This

result also confirms that our calculation approaches the correct dissociation limit as

the bond length increases.

We perform the same separated atom calculation for the higher energy N+(3P) +
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O(3P) dissociation limit and these results appear as blue crosses in the above figures.

It is immediately clear that the previous quantum chemical calculation by Fehér and

Martin is indeed converging to this higher limit. However, two discrepancies must

be addressed. First, the dashed blue line with crosses in Figure 5-5 is actually the

negative of the result obtained by our separated atom calculation. In accord with our

intuition, our calculation confirms that the [N+,O] dipole has the opposite sign of the

[N,O+] dipole. Some data processing error must have occurred in the earlier work.44

Second, unlike the other moments, there remains a significant difference between the

Fehér and Martin octupole result and the separated atom calculation. We do not have

a satisfactory explanation for this difference, although it may be related to whatever

error produced the opposite sign for the dipole moment in that work.

Figure 5-9: Parallel polarizability (𝛼𝑧𝑧) as a function of internuclear distance, 𝑅. Red:
CASSCF, this work. Black: MP2, Fehér and Martin.44

The functions for the NO+ polarizability, parallel and perpendicular to the inter-

nuclear axis, appear in Figures 5-9 and 5-10, respectively. We expect that both of

these values should approach the sum of the polarizabilities of the constituent atoms,

N and O+, in the separated atom limit. The two values do indeed approach the

same value 𝛼 ∼ 10 a.u., which is quite similar to the sum of atomic polarizability

values of 𝛼N=7.36(7.17) and 𝛼O+=2.67(2.63). These were calculated using the same
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Figure 5-10: Perpendicular polarizability (𝛼𝑥𝑥) as a function of internuclear distance,
𝑅. Red: CASSCF, this work. Black: MP2, Fehér and Martin.44

aug-cc-pVQZ basis set and a NEVPT2(MP2) method. The multireference method

requires numerical calculation of the polarizability using the computed dipole moment

at various applied electric fields, while the MP2 method allows for an analytical de-

termination of the polarizability. The similar results from the two approaches suggest

that our calculations throughout have converged sufficiently tightly to give accurate

polarizability values. The peak in the parallel polarizability around 4 a.u. is a result

of the expansion of the molecular wavefunction along the internuclear axis as the two

atoms approach each other, but are not yet tightly bound. This feature has been

observed repeatedly in both ab initio and semiempirical calculations of the polariz-

abilities of diatomic molecules, including the isoelectronic molecules N2 and CO, as

well as neutral NO.45,93,96,106,149 As the two atoms approach each other more closely,

the polarizability along the bond axis decreases along with the spatial extent of the

wavefunction. In contrast, except for ∼3 a.u. where the 𝜋 orbital configuration starts

to change, the perpendicular polarizability decreases monotonically as the atoms are

brought together because the electronic wavefunction significantly contracts in the

perpendicular direction as the bond is formed.

As the internuclear distance approaches zero, the molecule approaches the united
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atom limit. For N and O+ along a singlet surface this corresponds to P+(1D). The

polarizability of P+ in this electronic configuration was calculated using an MP2

method and the same aug-cc-pVQZ basis set to be 15.1 a.u.,c which implies that the

polarizability must increase again as 𝑧 is further reduced toward the united atom limit.

There is some ambiguity in the literature on this point. Several semiempirical models

suggest that the polarizability should begin increasing toward small 𝑧 within the range

investigated in this work.144,149 However, this increase is not consistently observed by

ab initio methods, perhaps due to the challenge of obtaining converged calculations

at very small values of the internuclear distance.45,93,149 We were able to obtain

some converged NEVPT2 calculations at shorter than 1 a.u. internuclear distance.

However, the orbital occupancy changed abruptly, in contrast to the smooth changes

observed throughout the rest of the range of internuclear distance investigated. This

inconsistency prompted us to abandon any interpretation of those calculation results.

Further investigation of this phenomenon seems warranted, though it is beyond the

scope of this work.

We can again compare our results with the earlier work of Fehér and Martin.44

Unlike the multipole moments, those authors were only able to obtain values of the

polarizability using the MP2 method. Since this perturbative method is not valid in

regions of internuclear distance where the electronic configuration changes rapidly,

their results only extend to an internuclear distance of 3 a.u. Our results using a

CASSCF wavefunction are in good agreement with their MP2 values over this range

of internuclear distance.

5.3 Numerical inputs

One advantage of the long-range electrostatic model is that it is entirely ab initio,

requiring as inputs the multipole moment and polarizability values and the radial

hydrogenic matrix elements. In Section 5.2, we discussed the quantum chemical cal-

cFor P+(1D), unlike the first row elements, we were unable to obtain a CASSCF wavefunction
that converged sufficiently tightly to be able to numerically compute the polarizability.
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culations performed to obtain an accurate potential energy curve and electric prop-

erties of the NO+ ion-core. The required model input is in fact the matrix element,

⟨𝑣′𝑅′|𝑄𝑘(𝑧)|𝑣𝑅⟩, where there is an explicit internuclear distance dependence, 𝑧, to

the multipole moment or polarizability of interest. For bound Rydberg states, this

is simply the expectation value of the 𝑄𝑘 multipole moment for the desired rovibra-

tional state. For autoionizing Rydberg states, this is a matrix element off-diagonal in

𝑣 and/or 𝑅. In either case, the vibrational wavefunctions are obtained numerically by

a simple 1D discrete variable representation (DVR) calculation, following Colbert and

Miller.29 For an interval (0,∞), as in the diatomic internuclear distance, we choose

the limits to be 𝑎 = 0 and 𝑏 → ∞. For a large number of data points, 𝑁 → ∞, the

grid spacing is Δ𝑧 = (𝑏− 𝑎)/𝑁 . Then we can write the kinetic energy operator as:

𝑇𝑖,𝑖′ = −
~2

2𝜇Δ𝑧2
(−1)𝑖−𝑖′

⎧⎪⎨⎪⎩
𝜋2/3− 1/2𝑖2, 𝑖 = 𝑖′

2

(𝑖− 𝑖′)2
− 2

(𝑖+ 𝑖′)2
, 𝑖 ̸= 𝑖′

⎫⎪⎬⎪⎭ (5.18)

where 𝑧𝑖 = 𝑖Δ𝑧, 𝑖 = 1, . . . , and 𝜇 is the reduced mass of the system. The potential

energy, which is diagonal in 𝑖, is written as the sum of the calculated potential energy

curve and a centrifugal potential term, which produces a small dependence of the

wavefunctions on the rotational quantum number:

𝑈(𝑧𝑖) = 𝑈calc(𝑧𝑖) +
𝑅(𝑅 + 1)

2𝜇𝑧2𝑖
(5.19)

The total Hamiltonian, 𝐻 = 𝑇 + 𝑈 , is diagonalized to obtain the vibrational wave-

functions. The built-in trapezoidal numerical integration procedure of MATLAB,

trapz, is then used with the calculated electric properties to obtain the desired matrix

elements.

The hydrogenic electronic wavefunctions are obtained by numerical integration

of the Schrödinger equation for a Coulombic potential by the Numerov method.171

In order to obtain an approximately constant number of points for each cycle of the

wavefunction, a square root scaling of the radial dimension is used.40 These wavefunc-

tions can be normalized in the typical way, ⟨𝑛ℓ|𝑛ℓ⟩ = 1. Energy normalization simply
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requires multiplication of the space-normalized wavefunction by 𝑛1.5. For both the

bound and continuum wavefunctions needed for autoionization calculations, we found

it superior for integration to proceed from small to very large 𝑟, particularly since the

inner lobes of the continuum wavefunctions contribute most to the calculated ma-

trix elements. For the bound wavefunctions, it is necessary to cut off the integration

when the solution begins to diverge at large 𝑟. It is well known that the continuum

wavefunctions, with energy 𝜖, should obey energy- rather than space-normalization.

Rather than attempt a numerical normalization procedure, we compute the ana-

lytical value of the hydrogenic continuum wavefunction at the position of the first

maximum14 and scale the numerical wavefunction accordingly. This approach took

advantage of the relatively efficient computation of hypergeometric functions built in

to the MATLAB software package. Again, built-in trapezoidal numerical integration

was used to calculate the final radial electronic matrix elements.

As a measure of the numerical error in our calculations, we compare in Figure

5-11 the fractional error of several numerically computed expectation values of radial

functions for the 25𝑓 state relative to the analytical results. The solid (hatched) bars

indicate the error is less than (greater than) the analytical value, and the red (blue)

bars indicate the result from inward (outward) Numerov integration of the hydrogenic

wavefunction. For positive 𝑘 values of the 𝑟𝑘 matrix elements, the inward integration

procedure produces very accurate results because the matrix elements are weighted

heavily at very large 𝑟. For negative 𝑘 values, the matrix elements of interest to this

work, the situation is reversed. The outward integration procedure produces accurate

wavefunctions at short 𝑟 where these matrix elements are heavily weighted. Moreover,

the error is essentially constant at just under 1% for all 𝑘. The wavefunctions produced

by inward integration require a cutoff at short 𝑟 where the integration begins to

diverge; this arbitrary cut-off at short 𝑟 results in an increasingly worse approximation

for larger negative 𝑘 values. Indeed, the amplitude of the wavefunction in the first

lobe controls the relative accuracy. The fractional error of the 𝑟−𝑘 expectation values

determined from the outward integration procedure generally decreases for larger ℓ,

and for smaller 𝑛.
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Figure 5-11: Fractional error in 𝑟𝑘 expectation values for a 25𝑓 wavefunction calcu-
lated by inward (red) or outward (blue) Numerov integrations. Solid (hatched) bars
indicate the direction of the error is negative (positive). Outward integration for both
bound and continuum wavefunctions is used in this work because it produces more
accurate 𝑟−𝑘 matrix elements.

5.4 Experimental

In order to gain some confidence in our model for long-range autoionization, we

measure lifetimes of 𝑛𝑔 (𝑣 = 1) Rydberg states for a range of values of 𝑛, 𝑅, and

ℓ𝑅. The experimental design is similar to the ionization detected spectroscopy experi-

ments described in Chapter 4. A supersonic expansion of ∼0.5% NO by volume in Ar

passes through a 1 mm conical skimmer into a differentially pumped detection cham-

ber that contains a Wiley-McLaren type time-of-flight mass spectrometer (TOF-MS).

At this point, the lasers employed in the triple resonance excitation scheme previously

described intersect the molecular beam transversely. The three lasers were delayed

with respect to each other by approximately 10 ns and loosely focused into the cham-

ber. Upon excitation to the autoionizing Rydberg state, production of free electrons

and NO+ ions begins immediately. In order to detect ions, a field is pulsed on the

bottom of the electrode stack and ions are accelerated through a ∼75 cm field-free

region and impinge on a multichannel plate (MCP) detector. By varying the delay

between the final excitation laser and the pulsed extraction field, the measured ion
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yield correlates with the lifetime of the chosen Rydberg state. The approximately 10

ns “turn-on” time of the extraction field limits the fastest autoionization rates that

can be measured by this method. While the extraction field is present, the Ryd-

berg states continue to autoionize and this appears as a tail of ions following the

prompt extracted ion signal. This signal is corrupted by the very large extraction

field, which mixes the initially laser-prepared state with the bath of higher-ℓ states,

making any interpretation challenging. Therefore, we only integrate over the prompt

signal, which results from ions already present when the extraction field turns on. In

other words, those Rydberg states had already autoionized. To improve the statistics

of the lifetime fitting and control for any slow drift of laser intensity and/or frequency,

we randomize the order of data collection and collect twelve measurements for each

delay time. An error-weighted exponential function was fit to the averaged data,

starting several nanoseconds after the initial appearance of ion signal to avoid the

influence of the extraction field “turn-on.” In the next two subsections, we discuss

two major sources of error that contribute to these measurements.

5.4.1 State Selectivity

The bandwidth of the pulsed dye laser (∼ 0.05 cm−1) used in these experiments

is larger than the typical separation between two ℓ𝑅 components of the investigated

𝑛𝑔 states. As a result it is possible to excite more than one component by P, Q, and

R transitions out of the intermediate 4𝑓 level. In order to obtain measurements of

selected 𝑛𝑔𝑅𝑁 states we take advantage of the intrinsic line intensity differences. Since

the final transition in this step involves a change ofΔℓ = +1 between the two Rydberg

states, there is a strong Δ𝑁 = +1 propensity rule. By choosing excitation schemes

that result in an R branch transition in the last step, we enhance the selectivity of

our excitation scheme for particular ℓ𝑅 states. In addition, we choose either P1 or R21

lines of the A 2Σ+ ← X 2Π1/2 transition in order to select a single 𝐽 level in the A

state. This choice generally enhances the selectivity, although only in a few cases do

we prepare a single 𝐽 of the final 𝑛𝑔𝑅𝑁 state: specifically, when an R branch of the

4𝑓 ← A 2Σ+ transition is used. The complete preparation schemes for all investigated
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Table 5.1: Excitation scheme and selectivity for preparation of the indicated Ryd-
berg state. In all cases, a final R transition is the most intense line, and nearly all
contamination is due to a Q transition to the 𝑁 − 1 component.

State A←X 4𝑓 ←A Selectivity

𝑛𝑔04 R21(0.5) −2R3(2) 1.0

𝑛𝑔13 P1(2.5) 0R1(1) 1.0

𝑛𝑔14 R21(1.5) −2Q2(3) 0.976

𝑛𝑔15 R21(1.5) −2R3(3) 0.988

𝑛𝑔22 P1(1.5) 2R−1(0) 1.0

𝑛𝑔23 R21(0.5) 0Q0(2) 0.959

𝑛𝑔24 R21(0.5) 0R1(2) 0.965

𝑛𝑔25 R21(2.5) −2Q2(4) 0.920

𝑛𝑔26 R21(2.5) −2R3(4) 0.972

𝑛𝑔31 P1(2.5) 2P−3(1) 1.0

𝑛𝑔32 P1(2.5) 2Q−3(1) 0.626

𝑛𝑔33 R21(1.5) 0P−1(3) 0.614

𝑛𝑔35 R21(3.5) −2P1(5) 0.724

𝑛𝑔36 R21(3.5) −2Q2(5) 0.872

𝑛𝑔37 R21(3.5) −2R3(5) 0.955

states are listed in Table 5.1, along with the state selectivity of the excitation scheme,

which is calculated using the transition intensity formulas presented in Chapter 4.

While for the majority of states, very high purity of the desired state is obtained,

the selectivities for 𝑛𝑔32, 𝑛𝑔33, and 𝑛𝑔35 states are only 0.63, 0.61, and 0.72, respec-

tively. The majority of the contamination in this preparation scheme is from the Q

branch, which excites the 𝑁 − 1 component. In spite of this, it is evident from the

results presented in Figures 5-16, 5-17, and 5-18 that these less perfectly selected

states do not exhibit greater discrepancy with the calculation than the other data.

This may simply be a result of the modest variation expected among the different ℓ𝑅

states, so that contamination of the desired state preparation by a neighboring state

will not dramatically alter the measured rate.

In all of these experiments, the polarization of all three lasers is linear and par-
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allel. It is possible that a different polarization arrangement could further enhance

the selectivity of the preparation scheme. This is certainly observed in the work of

Petrović and Field where double resonance experiments using circular polarization of

the same and opposite helicities produced dramatic differences in the P and R branch

transition intensities.122 It is important to note that those experiments involved tran-

sitions between three states well described by Hund’s case (b). Our calculations have

shown that this type of polarization discrimination is reduced when the involved

states belong to different angular momentum coupling cases. In our experiment, the

four involved states belong to three different Hund’s cases and, as a result, we expect

any enhancement due to a special polarization arrangement to be modest.

5.4.2 State Purity

As discussed at length in Chapter 4, Rydberg states exhibit extreme sensitiv-

ity to electric fields. Several studies have noted that the lifetimes of low-ℓ, rapidly

predissociating states can be lengthened in the presence of electric fields.107,157 In

particular, experiments by Vrakking and Lee158 demonstrated that, in the presence

of a small dc electric field estimated to be 25-40 mV/cm, the 𝑛𝑓21 and 𝑛𝑝01 states

exhibited an order of magnitude enhancement in lifetime as the principal quantum

number was increased beyond the critical values of 𝑛 = 65 and 115, respectively.

Later, Vrakking performed an explicit calculation of the lifetime enhancement due

to the Stark effect,156 incorporating estimated predissociation lifetimes for all states,

which weighted the decay rate by the bright state character of each Stark state. This

theoretical model gave excellent agreement with the experimentally determined life-

times. A simpler estimate based on Rydberg scaling rules can also predict these

critical values of 𝑛. The energy of an 𝑛ℓ Rydberg state in zero field is approximately
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given by:d

𝐸 = − 1

2𝑛2
− 𝛿ℓ

𝑛3
(5.20)

where 𝛿ℓ is a generic quantum defect for the ℓ Rydberg series. When placed in an

electric field, 𝐹 , the extreme red (blue) 𝑚 = 0 Stark states have the energy:

𝐸 = − 1

2𝑛2
∓ 3𝑛2𝐹

2
(5.21)

From these two formulae, we find that an extreme Stark state with principal quantum

number, 𝑛, meets the nearest member of a low-ℓ Rydberg series when the electric field

is

𝐹 =
2|Δℓ|
3𝑛5

(5.22)

where Δℓ = 𝛿ℓ−𝑞 and 𝑞 is the nearest integer. Calculations are most easily performed

in atomic units. For reference, the atomic unit of electric field is approximately

5.14 × 109 V/cm. Equation 5.22 resembles the formula for the more familiar Inglis-

Teller limit, 𝐹Inglis−Teller = 1/3𝑛5, which gives the electric field at which the extreme

red and blue Stark states of adjacent principal quantum numbers intersect.53 Both

depend on the energy shifts of the extreme Stark states, so the critical field given by

Equation 5.22 could be considered an intra-𝑛 version of the Inglis-Teller limit. This

field is significant because we naively expect the lifetime of a nominal 𝑛ℓ Rydberg

state to change significantly when that state begins to interact with the bath of high-

dThis convenient approximate formula is obtained from the normal Rydberg formula and assumes
that the quantum defect, 𝛿ℓ, is much smaller than the principal quantum number.

𝐸 = − 1

2(𝑛+ 𝛿ℓ)2

= − (𝑛+ 𝛿ℓ)
2

2(𝑛+ 𝛿ℓ)4

= −𝑛2 + 2𝛿ℓ𝑛+ 𝛿2ℓ
2(𝑛+ 𝛿ℓ)4

≈ − 𝑛2

2(𝑛+ 𝛿ℓ)4
− 2𝛿ℓ𝑛

2(𝑛+ 𝛿ℓ)4

≈ − 1

2𝑛2
− 𝛿ℓ

𝑛3
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ℓ states, which have intrinsically long lifetimes. Using the quantum defects, 𝛿𝑓 =

0.0101 and 𝛿𝑝 = 0.7, we find 𝐹 = 30 and 51 mV/cm for 65𝑓 and 115𝑝, respectively.

These values are consistent with both the experimental observations158 and the more

sophisticated model by Vrakking.156

In our supersonic jet apparatus, we assume that the inhomogeneity of the stray

field is small in order to estimate the magnitude of the stray field from the width

of our ion-detected mmW spectra. As demonstrated in Chapter 4, electric field in-

homogeneity significantly broadens all Rydberg-Rydberg transitions. However, the

small excitation volume and symmetry of the electrode stack make neglect of field

inhomogeneity a reasonable approximation. If the inhomogeneity is significant and

additional line broadening occurs, our estimate may be regarded as an upper bound

on the magnitude of the electric field. The mmW spectra in the ion-detection ap-

paratus are substantially broadened by stray field, so we assume that the observed

linewidths are approximately given by the width of the entire 𝑛 Stark manifold, which

is simply the energy difference between the extreme red and blue Stark states:

Δ𝐸 = 3𝑛2𝐹 (5.23)

From the ion-detected 44𝑓, 44ℎ ← 43𝑔 spectrum presented in Figure 4-14, we mea-

sure a linewidth of approximately 680 MHz, which corresponds to an electric field

of approximately 90 mV/cm. This is a representative value, though we have ob-

served linewidths corresponding to fields as small as 40 mV/cm in this apparatus.

Therefore, we take 100 mV/cm as an estimate for the stray field in the apparatus

in order to investigate the influence of an electric field on our autoionization lifetime

measurements.

First, we compare this stray field with the critical electric field given by Equation

5.22. For a 28𝑔 state, with the approximate quantum defect, 𝛿𝑔 ≈ 0.003, we find

𝐹 ≈ 600 mV/cm. This field is many times larger than our estimate for the stray field

in the apparatus. It is unlikely that a dramatic change in lifetime comparable to that

observed by Vrakking and Lee158 occurs in our experiment.
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We perform a calculation of the Stark effect for NO Rydberg states to obtain

a more quantitative estimate of the state mixing caused by this small electric field.

The state purity for all 28𝑔 states investigated in this work remains high at a field

of 100 mV/cm. For most states, the leading basis state character is > 0.98. The

state with the smallest fractional character of 0.9695 is 28𝑔15. In general, for a given

𝑅, the higher 𝑁 states are more mixed. These very high state purities suggest that

our lifetime measurements are minimally perturbed by the presence of stray electric

fields. Moreover, we observe no systematic discrepancies that point to the influence

of stray field. The measurements generally do not show better agreement with the

calculations at lower 𝑁 or lower 𝑛 where we anticipate the effects of electric field-

induced state-mixing to be smaller.

Looking at the 28𝑔04 state more closely, we perform a simplified three state version

of Vrakking’s Stark-induced lifetime calculation.156 In addition to the 𝑔 state of

interest, we consider the two states with which it interacts most strongly, the 28𝑓03

and 28ℎ05 states. These field-free states contribute about 0.1% and 1%, respectively,

of the basis state character to the Stark state at 100 mV/cm. Using our long-range

model, we can calculate the expected autoionization rate of the 28ℎ05 state to be

Γℎ = 7.4×106 s−1, and the 28𝑔04 rate to be Γ𝑔 = 1.23×107 s−1. The 𝑛𝑓 state decays

predominantly by predissociation. The formula for predissociation decay rates of 𝑛𝑓

states given by Bixon and Jortner16 predicts the 28𝑓03 decay to be approximately one

order of magnitude faster than the 28𝑔04 autoionization rate, Γ𝑓 = 3.6× 108 s−1. To

determine the total measured decay rate we calculate the Stark state decay rate as

the sum of the decay rates of the basis states weighted by their fractional character.

Γ𝑖,Stark = |𝐴𝑖,𝑓 |2Γ𝑓 + |𝐴𝑖,𝑔|2Γ𝑔 + |𝐴𝑖,ℎ|2Γℎ (5.24)

Next, the laser excitation does not fully resolve the three Stark states that correspond

to the field-free 𝑓 , 𝑔, and ℎ states, so the measured rate is the sum of the Stark state
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decay rates weighted by their bright state 𝑔 character.

Γ𝑜𝑏𝑠 =
∑︁
𝑖

|𝐴𝑖,𝑔|2Γ𝑖,Stark (5.25)

Performing this simplified three state calculation gives a total observed decay rate,

Γ𝑜𝑏𝑠 = 1.27×107 s−1. The mixing of 𝑓 state character into the nominal 𝑔 state results

in faster decay than in the absence of an electric field.

Finally, we perform a full calculation of the Stark-induced decay rates, following

the model of Vrakking,156 in order to gain some further insight. We assume that all

components of the 𝑓 complex have the same predissociation lifetime, Γ𝑓 = 3.6× 108

s−1. For every state with ℓ ≥ 4, we calculate the autoionization rate with our long-

range model. The calculation proceeds as in the simplified model where the Stark

state decay rate is a weighted sum of the basis state decay rates, and the total

observed decay rate is the sum of all Stark state decay rates weighted by the bright

state character. In addition, we explicitly account for the laser linewidth of 0.05 cm−1.

The result for all ℓ𝑅 components of the 28𝑔3𝑁 complex is shown in Figure 5-12. The

decay rates of all components of this state increase as the electric field increases. For

field values up to 100 mV/cm, the decay rates change by less than 3% relative to the

field-free values. At 500 mV/cm, some decay rates have changed by more than 50%.

In addition, the decay rates of each component do not increase with electric field at

the same rate. For example, Figure 5-12 shows that the ℓ𝑅 = 3 component has the

second smallest decay rate at zero field, but has the fourth largest decay rate at 500

mV/cm. This ℓ𝑅-specific change in the decay rates could serve as a diagnostic for the

magnitude of the stray field in the chamber.

It is informative to compare the change in decay rates of the 𝑓 and 𝑔 states.

Figure 5-13 shows the decay rates of the 28𝑓3𝑁 (left) and 28𝑔3𝑁 (right) complexes

as a function of electric field, up to 6 V/cm. The decay rates of the 𝑓 states decrease

by a full order of magnitude from ∼3.6×108 s−1 to ∼2×107 s−1. The rate of change

is fastest around 2.5 V/cm, which is similar to the critical field value 𝐹 = 2.01 V/cm

predicted by Equation 5.22. As expected, when the 𝑓 states begin to interact with
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Figure 5-12: Stark-induced decay rates of the members of the 28𝑔3𝑁 complex. The
colors correspond to the nominal ℓ𝑅 value of each Stark state as indicated in the
legend. The details of the calculation are given in the text.

the extreme red Stark state, the decay rates change dramatically.

Interestingly, this critical field value is also significant for the 𝑔 state decay rates,

which generally reach a maximum around 2.5 V/cm, before decreasing toward the

same final value as the 𝑓 state decay rates, ∼2×107 s−1. Significantly, the 𝑔 state

decay rate changes by less than an order of magnitude over the entire range of electric

field values, in contrast to the huge change observed here in the 𝑓 state decay rate,

and the large lifetime enhancement in 𝑛𝑓 and 𝑛𝑝 states observed by Vrakking and

Lee.158 On the basis of Figure 5-13, the dynamics of the 𝑔 and 𝑓 states are intimately

related. The decrease in 𝑓 state decay rate comes almost entirely from its interaction

with the 𝑔 state until the point at which this nominal 𝑔 Stark state meets the high-ℓ

manifold and all states converge to some “fully-mixed” average decay rate. In further

support of this picture, the decay rate of the ℎ states, not shown, first decreases

as the field increases due to interaction with the high-ℓ manifold, before eventually

increasing to the value of the average decay rate. The 𝑔 state acts as an effective

barrier between the rapidly predissociating 𝑓 state and the slowly autoionizing high-ℓ

states.
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Figure 5-13: Stark-induced decay rates of the members of the 28𝑓3𝑁 (left) and 28𝑔3𝑁
(right) states as a function of electric field. Note the difference in decay rate scale for
the two plots. The colors correspond to the nominal ℓ𝑅 value of each Stark state as
indicated in the legend. The details of the calculation are given in the text.

5.5 Autoionization rates

We begin by examining some general results of the long-range autoionization

model in order to better interpret the experimental results and compare them with

the specific model predictions. The rates of autoionization for the components of

the 25𝑔 complex are plotted in Figure 5-14. For the range of rotational quantum

numbers considered, no rotational autoionization channels are open, so vibrational

autoionization (Δ𝑣 = −1) is the only operative decay mechanism. The ℓ𝑅 labels

appear in red (positive Kronig symmetry) and blue (negative Kronig symmetry) and

states with the same value of ℓ𝑅 are connected by solid lines. As the high rotation

limit is approached, each pair of states with the same |ℓ𝑅| value approach the same

rate because, in this limit, ℓ𝑅 is a good quantum number for the projection of ℓ on

the rotation axis, and effectively characterizes the interaction of the Rydberg electron

with the ion-core. As 𝑅 increases further, the rates do not approach an 𝑅-independent

constant value due to two effects. First, more decay channels become energetically

allowed at higher 𝑅, particularly decay by rotational autoionization, which can be

similar to or greater than the vibrational autoionization rate. Second, the multipole

moments are 𝑅-dependent because the internuclear distance increases as 𝑅 increases.
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This will cause a gradual change in the autoionization rate with 𝑅.

Figure 5-14: Total autoionization rates as a function of 𝑅 for the 25𝑔𝑅𝑁 complex. The
rate for the ℓ𝑅 components are labeled on the plot in red (positive Kronig symmetry)
and blue (negative Kronig symmetry) numbers and connected by solid lines. The
variation with ℓ𝑅 and 𝑅 is rapid at low 𝑅. In the limit of high rotation, the two
states with the same value of |ℓ𝑅| approach the same autoionization rate.

It is particularly informative to examine the autoionization rate as a function of

ℓ. The rates, summed over all ℓ𝑅, for each particular electrostatic mechanism of the

25ℓ10𝑁 complex are plotted in Figure 5-15. Note that for any given decay channel it is

necessary to sum the amplitudes of each mechanism’s contribution before squaring to

find the rate, as dictated by Fermi’s golden rule in Equation 5.1. The results plotted

in this figure amount to assuming that only one electrostatic mechanism exists for

the molecule, and thus they cannot represent a real molecule. Nevertheless, this plot

allows for insight into the relative strengths of different mechanisms for the low-ℓ and

high-ℓ Rydberg states of NO. This is the key insight that explains both the NO results

presented here and how our results may be translated to other molecular systems.

At low ℓ, the relative rates vary with the magnitude of the electrostatic parameter

part of the full matrix element in Equation 5.2. In other words, the polarizability

matrix element, ⟨𝑣 = 0|𝛼(𝑧)|𝑣 = 1⟩, is larger than the quadrupole matrix element,

⟨𝑣 = 0|𝑄(𝑧)|𝑣 = 1⟩, which is larger than that of the dipole, etc., and the autoioniza-
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tion rates follow this same order. The dip in all rates for ℓ = 0 is likely due to both

a real effect, the smaller number of allowed decay channels, and a numerical artifact,

the generally poorer quality of the numerically generated 𝑠 hydrogenic wavefunctions.

To frame this result more generally, the contribution of each mechanism to the au-

toionization rate is dictated by the specific electric properties of the molecule under

investigation.

At high ℓ, the relative rates are ordered by the radial electronic part of the full

matrix element, which is the interaction between the continuum and bound electron

wavefunctions. In other words, the dipole matrix element has a radial contribution

that varies as 𝑟−2, the quadrupole matrix element has a 𝑟−3 radial contribution, the

polarizability matrix element has a 𝑟−4 radial contribution, etc., and the autoioniza-

tion rates follow this order. As ℓ becomes larger, the dipole dominates the autoion-

ization dynamics because the dipole is the longest range mechanism. In the limit of

high-ℓ, the contribution of each mechanism to the autoionization rate is dictated by

the universal scaling of the radial hydrogenic matrix elements.

At first, this might seem to be a surprising result. The dipole moment of NO+ is

extremely small for a heteronuclear diatomic molecule, and, in all previous treatments

of the Rydberg energy level structure of NO, its effect has been entirely neglected

without detriment. The key lies in how the dipole contributes to the autoionization

rate relative to the perturbation of bound states.

First, we consider how perturbations due to the dipole moment will affect a bound

Rydberg energy level. As a reminder, this matrix element has the form:

⟨𝑣′𝑅′𝑛′ℓ′𝑁 ′𝑀 ′|𝐻dipole|𝑣𝑅𝑛ℓ𝑁𝑀⟩

= −𝑒 ⟨𝑣′𝑅′|𝜇(𝑧)|𝑣𝑅⟩
⟨︀
𝑛′ℓ′|𝑟−2|𝑛ℓ

⟩︀
𝛿𝑁 ′,𝑁𝛿𝑀 ′,𝑀(−1)ℓ+ℓ′+𝑁

× [(2ℓ′ + 1)(2ℓ+ 1)(2𝑅′ + 1)(2𝑅 + 1)]
1/2

×

⎧⎨⎩𝑁 𝑅′ ℓ′

1 ℓ 𝑅

⎫⎬⎭
⎛⎝ℓ′ 1 ℓ

0 0 0

⎞⎠⎛⎝𝑅′ 1 𝑅

0 0 0

⎞⎠ (5.26)

By examining Equation 5.26, we see that only matrix elements off-diagonal in ℓ are
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Figure 5-15: Autoionization rates of particular electrostatic mechanisms as a function
of ℓ for the 25ℓ10𝑁 complex. The rates are summed over all ℓ𝑅 components to give
a single rate for the complex of states. Note that when more than one mechanism
is operative for one decay channel, as is generally the case, the amplitudes of each
mechanism must be summed. This means that the sum of the rates in this plot will
not give the correct total autoionization rate. The relative contributions at low-ℓ
vary significantly with ℓ, as the innermost lobe of the wavefunction shifts further
away from the ion-core. For states with ℓ ≥ 4 the relative rates are ordered by the
power of the involved radial electronic matrix element (𝑟−2 for the dipole, 𝑟−3 for the
quadrupole, 𝑟−4 for the polarizability, etc.). The dipole mechanism is dominant at
high-ℓ because it is the longest-range mechanism.
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non-zero because of the selection rules imposed by the angular dependence. In ad-

dition, the radial matrix element of 𝑟−2 vanishes for perturbations with Δ𝑛 = 0,

Δℓ = ±1.e Thus, in perturbation theory, the first-order contribution vanishes. Wat-

son showed that, in second-order perturbation theory, the dipole moment contribution

is non-zero and has the same quantum number dependence as the quadrupole moment

in first order.159 Within a perturbation theory treatment, then, it is not possible to

distinguish between effects due to the quadrupole moment, 𝑄, and the square of the

dipole moment, 𝜇2. In addition, the quadrupole moment of NO+ is much larger than

the dipole moment, so any energy shift caused by the dipole interaction is completely

obscured.

In contrast, the autoionization rate is directly related to the perturbation matrix

element in Equation 5.2 by Fermi’s Golden Rule. This matrix element has the same

angular dependence as the bound state matrix element in Equation 5.26, but the

radial part is always non-zero. Thus, the dipole moment plays an essential role in the

autoionization of all 𝑛ℓ Rydberg states of NO. The autoionization of high-ℓ Rydberg

states is a useful way to observe and, perhaps quantify, the effect of the NO+ dipole

moment.

Figures 5-16, 5-17, and 5-18 show the measured decay rates for several states

along with the autoionization rates calculated with our long-range model. The data

for the 𝑛𝑔34 state is missing for each value of 𝑛 because there is no excitation scheme

available to excite only this state due to the overlap of the 0R1(3) and 0Q0(3) lines

in the 4𝑓 ← A 2Σ+ (1,1) band. The uncertainties in these plots represent the 95%

confidence intervals obtained from a fit to the raw data. These experimental and

calculated values also appear in Table 5.3. We can make several observations about

these data sets. First, the order of magnitude of the total decay rate for all measured

states agrees with the model predictions for the autoionization rates. This strongly

distinguishes the 𝑛𝑔 Rydberg states from the 𝑛𝑓 states previously studied. With the

eA general property of radial hydrogenic functions, 𝑅𝑛,ℓ, is:
131⟨

𝑅𝑛,ℓ′

⃒⃒⃒⃒
1

𝑟ℓ+1

⃒⃒⃒⃒
𝑅𝑛,ℓ+ℓ′

⟩
= 0
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Figure 5-16: Measured (solid) and calculated (hatched) autoionization rates for sev-
eral 22𝑔𝑅𝑁 complexes. Experimental uncertainties are 95% confidence intervals from
a fit to the raw data. A dip in the autoionization rate at the center of each complex
of states is observed in the experimental and calculated data.

Figure 5-17: Measured (solid) and calculated (hatched) autoionization rates for sev-
eral 25𝑔𝑅𝑁 complexes. Experimental uncertainties are 95% confidence intervals from
a fit to the raw data. With the exception of 𝑅 = 3, a dip in the autoionization rate
at the center of each complex of states is observed in the experimental and calculated
data.
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Figure 5-18: Measured (solid) and calculated (hatched) autoionization rates for sev-
eral 28𝑔𝑅𝑁 complexes. Experimental uncertainties are 95% confidence intervals from
a fit to the raw data. A dip in the autoionization rate at the center of each complex
of states is observed in the experimental and calculated data.

exception of only a few measurements for negative Kronig symmetry states, the total

decay rate of 𝑛𝑓 states is orders of magnitude faster than the long-range model pre-

dictions.15,50 Table 5.2 summarizes the calculated autoionization rates and previously

measured decay rates15 for several 𝑛𝑓 states. This distinction between the 𝑛𝑓 and 𝑛𝑔

decay rates strongly suggests that the 𝑛𝑔 states are the first Rydberg series in NO

in which autoionization, rather than predissociation, is the dominant non-radiative

decay mechanism. This agrees with the conclusions of Fujii and Morita,52 who noted

a significant difference between the yields of the predissociation and autoionization

decay channels.

Looking at the variation of rates with ℓ𝑅 for each value of 𝑅, a trend emerges from

the experimental measurements, which qualitatively agrees with the calculation. At

the center of the cluster of ℓ𝑅 states, the rate is slower relative to the rates for states

with the largest and smallest ℓ𝑅 values. For 𝑅 = 1, the autoionization rate of the

ℓ𝑅 = 3 state is always slower than that of either ℓ𝑅 = 4 or ℓ𝑅 = 2. For 𝑅 = 2, the

autoionization rates of ℓ𝑅 = 3 and ℓ𝑅 = 2 are always slower than that of ℓ𝑅 = 0, 1,

and 4. This trend is only broken in the case of 25𝑔3𝑁 , shown in Figure 5-17, where
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Figure 5-19: Autoionization rates for all ℓ𝑅 components of the 25𝑔25𝑁 Rydberg com-
plex. The |ℓ𝑅| = 4 states autoionize fastest, and the rate reaches a minimum around
ℓ𝑅 = 0.

the measured ℓ𝑅 = 4 rate is slower (though with large error bars) than the measured

rates of the two lower ℓ𝑅 states.

It is informative to look at the relative rates of a large-𝑅 state, for which all

ℓ𝑅 components and all possible decay pathways are available. Figure 5-19 shows

the calculated rates for 25𝑔25𝑁 states, and one recognizes the same, though a more

symmetric, pattern of rates. The states with large |ℓ𝑅| values have the fastest au-

toionization rates, while the rate for the ℓ𝑅 = 0 state is slowest.

This pattern has a simple and detailed physical interpretation. As exemplified

by Figure 5-15, the autoionization of 𝑛𝑔 states is predominantly determined by the

magnitude of the dipole term. In addition, the radial matrix element, ⟨𝜖ℓ|𝑟−2|𝑛𝑔⟩, is

heavily weighted at small 𝑟 so we can examine the contributions from the wavefunc-

tions of interest over a small range of 𝑟 close to zero. The 𝑛𝑔 bound state wavefunction

and the relevant continuum wavefunctions, 𝜖𝑓 and 𝜖ℎ, are plotted in Figure 5-20. For

typical vibrational autoionization energies, 𝜖 ∼ 0.01, the phase shift of the 𝜖𝑓 out-

going waves results in almost perfect destructive interference between the first two

lobes of the 𝜖𝑓 wavefunction and the innermost lobe of the 𝑛𝑔 wavefunction. In con-
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trast, the phase shift of the 𝜖ℎ waves results in near perfect constructive interference

between the inner lobes of the 𝜖ℎ and 𝑛𝑔 wavefunctions. This fortuitous cancellation

for 𝜖𝑓 ∼ 25𝑔 means that we can restrict our attention to the Δℓ = +1 decay channel.

This means that there are only two decay paths with substantial rates: Δ𝑅 = ±1,

Δℓ = +1 for each ℓ𝑅 value.

Figure 5-20: Numerical radial hydrogenic wavefunctions for the 25𝑔 (red, solid) bound
state and the 𝜖𝑓 (black, dashed) and 𝜖ℎ (red, dot-dashed) continuum states, with
𝜖 = 0.01, representative of the energy for vibrational autoionization.

Within the dipole matrix element of Equation 5.2, the angular dependence of

interest is given by the 6j symbol: ⎧⎨⎩𝑁 𝑅′ ℓ′

1 ℓ 𝑅

⎫⎬⎭
By plugging relevant values of the quantum numbers into this expression, we find

that the value of the 6j symbol is maximum for the 𝑅′ = 𝑅 − 1 decay channel when

𝑁 = 𝑅 − ℓ (ℓ𝑅 = −ℓ) and minimum when 𝑁 = 𝑅 + ℓ (ℓ𝑅 = +ℓ). Similarly, it is

maximum for the 𝑅′ = 𝑅+1 decay channel when 𝑁 = 𝑅+ℓ (ℓ𝑅 = +ℓ) and minimum

when 𝑁 = 𝑅−ℓ (ℓ𝑅 = −ℓ). Thus, the states with extreme values of ℓ𝑅 have very large

autoionization rates in either the 𝑅′ = 𝑅 − 1 or 𝑅 + 1 channel. These contributions
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produce larger total autoionization rates for the ℓ𝑅 = ±4 states, than the sum of the

modest rates in both channels for the ℓ𝑅 = 0 state. Thus, the autoionization rate is

smallest for ℓ𝑅 = 0 and largest for ℓ𝑅 = ±4. At low 𝑅, this pattern is quantitatively

different due to the presence of fewer states, but the qualitative pattern persists.

Greater insight into the origin of the angular dependence requires a deeper exam-

ination of the meaning of the 6j symbol. The angular momentum problem described

by a 6j symbol is the coupling of three angular momenta. In the case of these elec-

trostatic perturbation matrix elements, the angular momenta involved are the core

rotation, the Rydberg orbital angular momentum, and 𝑘, the order of the tensor that

describes the electrostatic moment (𝑘 = 1 for the dipole moment, 2 for the quadrupole

moment, etc.). There is ambiguity in this statement, however, because there are two

possible ways to couple three angular momenta. Both 𝑁 = 𝑅+ ℓ and 𝑁 = 𝑅′ + ℓ′

are valid coupling schemes, where 𝑅′ = 𝑅 + 𝑘 and ℓ′ = ℓ + 𝑘. Since these two

coupling schemes must be equivalent, their eigenfunctions, |𝑅′ℓ′𝑁⟩ and |𝑅ℓ𝑁⟩, must

be connected by a unitary transformation:

|𝑅′ℓ′𝑁 ′𝑀 ′⟩ =
∑︁
𝑅

⟨𝑅ℓ𝑁 |𝑅′ℓ′𝑁 ′⟩ |𝑅ℓ𝑁𝑀⟩ 𝛿𝑁 ′𝑁𝛿𝑀 ′𝑀 (5.27)

where the expansion coefficient, called a recoupling coefficient, is the scalar product

of the eigenfunctions association with the two angular momentum coupling schemes,

and might be thought of as a three angular momenta analog of the Clebsch-Gordan

coefficient. Thus, the probability that a system in a state with the coupling scheme

𝑁 = 𝑅+ ℓ will be found in a state with the coupling scheme 𝑁 = 𝑅′ + ℓ′ is simply

the square of the recoupling coeffecient:

𝑃 = ⟨𝑅ℓ𝑁 |𝑅′ℓ′𝑁⟩2 = (2𝑅 + 1)(2ℓ′ + 1)

⎧⎨⎩𝑅′ 𝑘 𝑅

ℓ 𝑁 ℓ′

⎫⎬⎭
2

(5.28)

In Equation 5.28, we have made a connection to the 6j symbol, which is written

in a modified form, but is equivalent to the one that appears in Equation 5.2. A

geometric interpretation of this quantity is possible by considering the vector model
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of angular momenta, which is presented in Figure 5-21. The six angular momenta,

𝑁 , 𝑅, ℓ, 𝑅′, ℓ′, and 𝑘 form the sides of an irregular tetrahedron with volume:163

𝑉 =
1

3

[︂
1

2
(𝑅×𝑁) ·𝑅′

]︂
(5.29)

Figure 5-21: Vector model of the 6j symbol that describes the coupling of angular
momenta in the bound Rydberg state and free electron-ion state.

We will not walk through the details, but it can be shown that this volume is

directly related to the square of the 6j symbol in the (classical) limit of large angular

momenta by:163 ⎧⎨⎩𝑅′ 𝑘 𝑅

ℓ 𝑁 ℓ′

⎫⎬⎭
2

=
1

24𝜋𝑉
(5.30)

In the vector model of angular momentum, the trend in the autoionization rates we

found above states that the value of the 6j symbol is maximum when the core rotation

and Rydberg orbital angular momentum are parallel or anti-parallel to each other in

both the initial (𝑅,ℓ) and the final (𝑅′,ℓ′) state. Our geometric interpretation bears

out this fact. In the classical limit, this situation describes a tetrahedron with zero

volume and a singular value for Equation 5.30. Quantum mechanically, the value of
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the 6j symbol in this case is finite, but very large. Alternatively, we could state that,

because the angular momenta in the inital (𝑅,ℓ) and final (𝑅′,ℓ′) state all lie along

the same axis, the initial state makes the maximum possible projection onto the final

state and hence the probability for autoionization into this channel is very large.

Returning to the autoionization data set, we can now focus on where discrepancies

with the calculated rates appear. In general, the calculated values appear to under-

estimate the experimentally determined rates. This becomes clear when looking at

the aggregated data plotted in Figure 5-22. The solid line in that figure is a fit to

the data and the 95% confidence interval is indicated by the gray shaded area. For

reference, the dashed line has a slope that corresponds to perfect agreement between

the measurements and calculations. The fitted trend line indicates the measured rates

are generally larger than the calculated rates. The slope of this line appears to be

strongly affected by the states with the fastest autoionization rates. In particular,

the ℓ𝑅 states on the right-hand side of the 𝑅 = 2 and 3 complex of states in Figures

5-16, 5-17, and 5-18 show some of the largest differences between the calculation and

experiment. The rates for the states ℓ𝑅 = −1, 0 for 𝑅 = 2 and ℓ𝑅 = 0, 1, 2 for 𝑅 = 3

are all underestimated by the calculation. Assuming that the experimental values are

accurate, it is challenging to speculate on the source of error in the calculation.

One factor that has already been mentioned is that the phase shift of the outgoing

radial wavefunction with respect to the bound Rydberg wavefunction can have a pro-

found effect on the relative rates in each channel. For low-ℓ continuum wavefunctions,

there will be a phase shift due to core-penetration, which is entirely ignored in this

calculation. This phase shift could lead to either larger or smaller rates in certain

channels. In the case of the autoionizing 𝑛𝑔 Rydberg states, the 𝜖𝑓 continuum wave-

functions will be most important since they are involved in the dipole mechanism.

While we would not expect core-penetration to be very significant for ℓ = 3, an ex-

plicit core-penetration term has frequently been used in the literature (and in our fit

in Chapter 4) to correctly fit the energies of the 𝑛𝑓 Rydberg states with significant

𝜎 character.15,39 Thus, core-penetration of the continuum 𝜖𝑓 wavefunctions may not

be negligible.
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Core-penetration is an explicit physical phenomenon that we have so far neglected.

We should also discuss any errors in the quantum chemical calculations of the mul-

tipole moments. In particular, the dependence of the dipole moment on internuclear

distance has an explicit impact on the relative rates for the 𝑅′ = 𝑅±1 decay channels,

where the 𝑅′ = 𝑅 + 1 channel is generally faster than 𝑅′ = 𝑅 − 1. This difference

becomes larger for larger 𝑅. This is an important consequence of the specific shape

of the dipole moment function and any errors in 𝜇(𝑧) would affect autoionization in

a state-specific manner.

Figure 5-22: All measured 𝑛𝑔 decay rates plotted against the calculated rates. The
dashed line has a slope of 1 and would represent perfect agreement between the
measurements and the calculation. The solid line is a proportional fit to the data
with fit uncertainty represented by the shaded gray area. As suggested by the plot
of individual 𝑛 states, the calculation generally underestimates the measured rates.
Although the calculated rates from our model explain a large fraction of the variance
in the data set, there is not quantitative agreement.

In order to further contrast our data for 𝑛𝑔 states with the observations for 𝑛𝑓

Rydberg states, it is worthwhile to investigate how the autoionization rate depends

on the 𝜎 character of the Rydberg state. These high-𝑛, high-ℓ Rydberg states are

very well described in a Hund’s case (d) basis set. As demonstrated in Chapter 1, the

case (d) state can be written in a case (b) basis, where the square of the expansion

coefficients are the fractional character of each case (b) basis state. For example, the
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case (d) state 𝑛𝑔40 has 100% 𝜎 character since no other Λ state can contribute to a

state with 𝑁 = 0. Another important distinction between case (d) states is between

those with positive and negative Kronig symmetry. For a case (d) Rydberg state,

Kronig symmetry is determined entirely by the even-/odd-ness of ℓ and ℓ𝑅. For 𝑛𝑔

states, ℓ is even so all even ℓ𝑅 components have positive Kronig symmetry, and all odd

components have negative Kronig symmetry. As a result, only even ℓ𝑅 components

of an 𝑛𝑔 state can have any 𝜎 character. Similarly, only odd ℓ𝑅 components of an 𝑛𝑓

state have any 𝜎 character.

This type of analysis, based on fractional 𝜎 character, was performed by Fujii

and Morita50 on the 7𝑓(𝑣 = 1) lifetime data collected by Biernacki, Colson, and

Eyler.15 A similar analysis is presented in Figure 5-23. In this data set, the negative

Kronig symmetry states (even ℓ𝑅 states) exhibit much slower decay rates than the

positive Kronig symmetry states (odd ℓ𝑅 states). The lifetimes of the positive Kronig

symmetry states correlate perfectly with the fractional 𝜎 character of the Rydberg

state. Since predissociation is caused by electronic states with wavefunction amplitude

localized near the core, and 𝜎 states are the most core-penetrating states, this leads to

the conclusion that predissociation is the dominant decay mechanism for 𝑛𝑓 Rydberg

states of NO. The decay rates observed by Biernacki et al.15 along with our calculated

autoionization rates, appear in Table 5.2.

Regarding the decay of 𝑛𝑔 states, we have already argued that autoionization

is the dominant non-radiative decay mechanism. Figure 5-24 shows our measured

rates, scaled by 𝑛3 to remove the expected scaling of lifetime with principal quantum

number, and plotted against the fractional 𝜎 character. We obtain a similar level

of agreement as with our long-range calculations, but only for the positive Kronig

symmetry states. In contrast to the 𝑛𝑓 states, the negative Kronig symmetry states

have rates which span the same range of rates as the positive Kronig symmetry states.
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Table 5.2: Decay rates (experimental and calculated), Kronig symmetry, and frac-
tional 𝜎 character of several levels of the 7𝑓 , 12𝑓 , and 15𝑓 (𝑣 = 1) complexes. All
experimental rates (uncertainties) are reported by Biernacki et al.15 Some states have
been measured by observation of more than one spectroscopic line and are reported
one after the other. Calculated rates are from the long-range autoionization model
described in the text. The reported 𝜎 character is for a pure case (d) basis state. The
parenthetical values in that column are from a fit obtained by Anezaki et al.4 and
used in the analysis by Fujii and Morita.50

State Kronig Expt. Rate (109 s−1) Calc. Rate (109 s−1) 𝜎 character (%)

7𝑓03 + 33.55 (4.21) 1.49 14.3 (20.5)

7𝑓12 + 47.06 (3.90) 1.85 25.7 (28.5)

7𝑓21 + 69.30 (8.80) 2.15 42.9 (44.1)

83.57 (11.69)

7𝑓22 − 5.40 (0.75) 1.40 0.0 (0.0)

7𝑓23 + 24.06 (1.88) 1.39 19.1 (15.3)

7𝑓30 + 148.09 (19.92) 2.37 100.0 (100.0)

7𝑓31 − 4.08 (0.57) 1.98 0.0 (0.0)

7𝑓32 + 36.25 (5.09) 1.54 26.7 (25.1)

7𝑓41 + 66.29 (7.60) 2.20 57.1 (55.9)

7𝑓42 − 7.79 (0.82) 1.75 0.0 (0.0)

7𝑓43 + 43.17 (2.51) 1.43 23.4 (22.0)

35.06 (2.07)

7𝑓44 − 5.78 (0.63) 1.32 0.0 (0.0)

7𝑓45 + 29.59 (4.46) 1.29 18.0 (17.1)

12𝑓03 + 7.41 (1.57) 0.28 14.3

12𝑓12 + 1.51 (1.89) 0.35 25.7

1.38 (0.44)

12𝑓13 − 0.21 (1.89) 0.19 0.0

12𝑓14 + 7.29 (2.39) 0.31 19.1

12𝑓21 + 10.43 (1.89) 0.42 42.9

12𝑓22 − 0.16 (1.26) 0.26 0.0

Continued on next page
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Table 5.2 – continued from previous page

State Kronig Expt. Rate (109 s−1) Calc. Rate (109 s−1) 𝜎 character (%)

12𝑓23 + 7.04 (1.57) 0.27 19.1

12𝑓30 + 13.63 (1.38) 0.46 100.0

12𝑓32 + 3.58 (1.95) 0.29 26.7

3.71 (0.57)

12𝑓33 − 0.31 (1.95) 0.25 0.0

12𝑓34 + 9.24 (1.89) 0.25 18.2

12𝑓41 + 8.92 (1.26) 0.43 57.1

12𝑓43 + 4.78 (1.26) 0.27 23.4

12𝑓52 + 6.47 (2.20) 0.41 47.6

12𝑓53 − 0.23 (2.51) 0.31 0.0

12𝑓54 + 6.09 (2.01) 0.26 22.0

15𝑓03 + 3.27 (1.26) 0.14 14.3

15𝑓12 + 5.34 (0.69) 0.18 25.7

15𝑓13 − 0.69 (1.88) 0.10 0.0

15𝑓14 + 6.16 (2.07) 0.16 19.1

15𝑓21 + 18.66 (1.45) 0.21 42.9

15𝑓23 + 3.64 (1.32) 0.14 19.1

15𝑓31 − 2.20 (0.44) 0.19 0.0

15𝑓32 + 4.27 (2.01) 0.15 26.7

15𝑓33 − 0.69 (1.88) 0.13 0.0

15𝑓34 + 3.14 (1.95) 0.13 18.2

15𝑓41 + 7.67(1.38) 0.22 57.1

15𝑓43 + 4.08 (1.38) 0.14 23.4

15𝑓52 + 10.30 (2.70) 0.21 47.6

15𝑓53 − 1.45 (2.01) 0.16 0.0

15𝑓54 + 5.09 (2.07) 0.13 22.0
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Figure 5-23: Total decay rates of the 7𝑓(𝑣 = 1) complex measured by Biernacki et
al.15 plotted against the fractional 𝜎 character for a case (d) basis state. The negative
Kronig symmetry states (blue) are all longer-lived than the positive Kronig symmetry
states (red), whose decay rates are directly proportional to the fractional 𝑓𝜎 character
of the state. The solid line is a fit to the positive Kronig symmetry states only, and
the gray shaded area represents the fit error.

Figure 5-24: Measured decay rates of ng Rydberg states scaled by 𝑛3 versus the frac-
tional 𝜎 character of each state.The blue data points are negative Kronig symmetry
states, which all have zero 𝜎 character by symmetry. The variation of positive Kronig
symmetry state decay rates varies with 𝜎 character because, within the long-range
model, this value is correlated with the angular dependence of the autoionization
rates.
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If the variation with 𝜎 character is not indicative of a decay mechanism, why

does this positive correlation exist? If we examine the variation of fractional case (b)

character with increasing rotation, we note that, in the limit of high rotation, the

|ℓ𝑅| = 4 states have maximum 𝜎 character, while the ℓ𝑅 = 0 states have maximum 𝛾

(Λ = 4) character. This is a geometric effect in the classical limit. At high rotation,

ℓ𝑅 is a good quantum number that indicates the projection of ℓ on the rotation axis.

Thus, |ℓ𝑅| = 4 states have ℓ aligned along the rotation axis, which means that the

projection of ℓ on the internuclear axis, Λ, is zero. Similarly, for ℓ𝑅 = 0, the ℓ vector

has zero projection on the rotation axis. This means that ℓ lies perpendicular to the

rotation axis and parallel to the internuclear axis, making the maximum projection,

Λ = 4. At low rotation, we cannot rely on this geometric picture. Instead, we find

the low-Λ character to be concentrated in the low 𝑁 states, since it is necessary that

𝑁 ≥ Λ. The lowest values of 𝑁 appear within a complex for the most negative values

of ℓ𝑅. These are exactly the states that we calculate and observe to have the fastest

autoionization rates.

Considering this discussion, we speculated that the data will show a positive

correlation not only with the fractional 𝜎 character, but also with the fractional 𝜋

character, if the 𝜎 character result is simply an artifact of working at low rotation.

The same type of plot as Figure 5-24 appears in the four panels of Figure 5-25 for the

𝜋, 𝛿, 𝜑, and 𝛾 characters of the measured states. The measured rates are positively

correlated with 𝜋 character as speculated, and, unlike the 𝜎 character, this includes

the negative Kronig symmetry states as well. As Λ increases, the correlation gradually

gets worse, and fewer of the measured states have non-zero contributions. For 𝑛𝑔

states we conclude that correlation of the decay rates with Λ is accidental, or more

accurately, peculiar to the low rotational states investigated in this work.

For the 𝑛𝑓 (𝑣 = 1) data reported in Table 5.2, we examined similar plots of the

decay rates as a function of the higher Λ character. There is no obvious correlation

with the data, even for the fractional 𝜋 character. In the case of 𝑛𝑓 states, the

𝜎 character itself has a definite mechanistic impact, as previously suggested. This

analysis strongly suggests to us that the long-range autoionization model provides a
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more consistent explanation of the 𝑛𝑔 state data than predissociative decay, and one

that will continue to be valid at high rotation.

Figure 5-25: Plots of the total measured decay rates, scaled by 𝑛3, against fractional
𝜋, 𝛿, 𝜑, and 𝛾 state character (from left to right, top to bottom). There is strong
positive correlation with the data for the 𝑔𝜋 character as for the 𝑔𝜎 character, but
this correlation is gradually lost at higher Λ. This suggests that any correlation with
Λ is accidental, or more accurately, peculiar to the low rotational states investigated
in this work.

Table 5.3: Decay rates (experimental and calculated) of the 22𝑔, 25𝑔, and 28𝑔 (𝑣 = 1)
states. Experimental errors (95% confidence intervals) are reported in parentheses.

State Expt. Rate (107 s−1) Calc. Rate (107 s−1)

22𝑔04 3.63 (1.81) 2.54

22𝑔13 4.74 (1.25) 3.05

22𝑔14 1.55 (0.38) 1.83

Continued on next page
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Table 5.3 – continued from previous page

State Expt. Rate (107 s−1) Calc. Rate (107 s−1)

22𝑔15 3.06 (0.86) 2.79

22𝑔22 5.70 (1.27) 3.33

22𝑔23 4.70 (0.91) 2.49

22𝑔24 2.20 (0.47) 2.21

22𝑔25 0.95 (0.18) 2.04

22𝑔26 2.79 (0.96) 2.91

22𝑔31 6.50 (0.99) 3.51

22𝑔32 5.80 (0.41) 3.01

22𝑔33 5.01 (0.50) 2.56

22𝑔34 · · · 2.26

22𝑔35 3.25 (0.33) 2.13

22𝑔36 2.81 (0.28) 2.16

22𝑔37 3.81 (0.23) 2.97

25𝑔04 0.45 (0.24) 1.73

25𝑔13 2.48 (0.39) 2.07

25𝑔14 0.82 (0.17) 1.24

25𝑔15 1.26 (0.26) 1.90

25𝑔22 3.04 (0.84) 2.26

25𝑔23 2.19 (0.33) 1.69

25𝑔24 0.95 (0.35) 1.50

25𝑔25 0.95 (0.18) 1.39

25𝑔26 3.12 (0.39) 1.98

25𝑔31 5.95 (0.75) 2.34

25𝑔32 3.87 (0.48) 2.05

25𝑔33 2.28 (0.28) 1.74

25𝑔34 · · · 1.54

25𝑔35 1.99 (0.16) 1.45

Continued on next page
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Table 5.3 – continued from previous page

State Expt. Rate (107 s−1) Calc. Rate (107 s−1)

25𝑔36 1.57 (0.13) 1.47

25𝑔37 1.35 (0.33) 2.03

28𝑔04 2.03 (0.54) 1.23

28𝑔13 1.18 (0.29) 1.47

28𝑔14 0.72 (0.20) 0.88

28𝑔15 2.09 (0.18) 1.35

28𝑔22 3.30 (0.29) 1.61

28𝑔23 2.16 (0.27) 1.20

28𝑔24 0.81 (0.20) 1.07

28𝑔25 0.78 (0.14) 0.98

28𝑔26 1.29 (0.15) 1.40

28𝑔31 2.18 (0.47) 1.69

28𝑔32 3.43 (0.51) 1.45

28𝑔33 1.70 (0.18) 1.23

28𝑔34 · · · 1.09

28𝑔35 0.96 (0.13) 1.03

28𝑔36 0.69 (0.10) 1.04

28𝑔37 1.32 (0.24) 1.44

5.6 Ion rotational state distributions

5.6.1 𝑛𝑓 states

One significant source of motivation for this work on the autoionization dynamics

of NO comes from an important set of experiments performed by Park and Zare.117,118

Their experiment observed rotationally resolved photoelectron spectra resulting from
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vibrational autoionization of 𝑛𝑠, 𝑛𝑝, and 𝑛𝑓 Rydberg states of NO. Using two dye

lasers, Rydberg states were populated by double resonance via a single rotational

level of the A 2Σ+ state. The selected Rydberg state decayed by vibrational autoion-

ization in an electric and magnetic field-free region. The electrons produced by this

process, which are ejected orthogonal to both the laser and molecular beam propa-

gation directions, were detected after a 50 cm field-free flight, on an MCP. By using

a heated nozzle, very high rotational quantum numbers (17<𝑅<21) were accessed.

This was essential in order to populate ion rotational states with an energy spacing

larger than the energy resolution of the photoelectron spectrometer.

For nearly all states investigated, a wide range of final ion rotational states were

observed, indicating extensive angular momentum exchange between the ion-core and

the Rydberg electron in the vibrational autoionization process. In Figure 5-26, we

reproduce several representative examples of the observed spectra for 𝑛𝑓 states. At

the time of these experiments, this was an astounding result for several reasons.

First, in all MQDT treatments of autoionization, the ejected electron was assumed

to have the same ℓ value as the initial Rydberg state.80,128,129 Second, the only other

experiment of its kind was performed on singlet 𝑛𝑝 states of H2 and the observed

ion rotational state distributions were entirely consistent with the production of only

𝜖𝑝 partial waves by autoionization.125 Third, the appearance of both even and odd

partial waves from the autoionization of 𝑛𝑠, 𝑛𝑝, and 𝑛𝑓 states suggested a mixing of

odd and even angular momenta that was not evident in any previous spectra of bound

NO Rydberg states.15,48 Indeed, it was firmly accepted that the dipole moment of

NO+ was too small to induce significant state mixing, and moreover many discussions

of the electronic structure of NO relied on the preservation of pseudo-𝑢/𝑔 symmetry

in this “near homonuclear” molecule.103 Finally, it seems to fly in the face of our

classical intuition that sufficient angular momentum could be exchanged between a

light electron and the much heavier nuclear framework to induce large changes in the

rotational state of the NO+ ion.

These upended expectations, in combination with the known strong predissoci-

ation of all NO Rydberg states with ℓ ≤ 3, suggested to the authors and others
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Figure 5-26: Angle- and energy-resolved photoelectron spectra measured by Park and
Zare117,118 following vibrational autoionization of the indicated 𝑛𝑓𝑅𝑁 states, where
the 𝑁 = 18, 19, and 20 components are unresolved by the excitation laser. The time
of flight axis is calibrated in order to associate a particular 𝑁+ value of the resulting
ion with each photoelectron peak, indicated by the comb at the top of each plot. Top,
Center: Reprinted from H. Park and R. N. Zare, J. Chem. Phys., 106, 2239 (1997),
with the permission of AIP Publishing. Bottom: Reprinted figure with permission
from H. Park, D. J. Leahy, and R. N. Zare, Phys. Rev. Lett., 76, 1591-1594 (1996).
Copyright 1996 by the American Physical Society.
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that an indirect electronic interaction with predissociating states was an important

mechanism in the autoionization process.117,118,124 Two valence states known to be

important in the predissociation of NO are the I 2Σ+ and A′ 2Σ+ states, which possess

nearly pure gerade and ungerade symmetry, respectively.103 However, these states are

known to interact with each other in low-lying vibrational levels of the I state, and

the observation of predissociation products indicates that both states are directly

or indirectly involved in the predissociation of low-ℓ Rydberg states.49 Thus, in the

predissociation-mediated mechanism, the autoionizing Rydberg states first interact

with the predissociation continua, where the required 𝑢/𝑔 mixing occurs. A second

interaction with the ionization continua occus, which results in production of the free

ion and an electron in many even and odd ℓ partial waves. While such a mecha-

nism could explain the Park and Zare observations,117,118 the complexity of such a

proposed multi-state interaction has frustrated formulation of a thorough theoretical

treatment.124 In our work, while we have not attained a complete accounting of the

results of Park and Zare,117,118 we propose that long-range electrostatic autoioniza-

tion plays an important role in the dynamics of 𝑛𝑓 states and does explain most of

the decay channels observed by Park and Zare.117,118

Before examining the results of our long-range electrostatic autoionization model,

we will examine in detail the experimental results. It is important to note that,

in Park and Zare’s experiments, the laser bandwidth made it impossible to resolve

individual ℓ𝑅 components of the 𝑛𝑓 states investigated, so all observed photoelectron

spectra are the result of autoionization from three levels within a Rydberg complex.

When exciting the ℓ𝑅 = 1, 2, and 3 components of a Rydberg complex, as in the top

panel of Figure 5-26, there is an intense 𝑁+ = 𝑅−1 peak and weaker peaks extending

from 𝑁+ = 𝑅 to 𝑁+ = 𝑅+4. In addition, a weak 𝑁+ = 𝑅−2 peak was also observed

in this example. There is a roughly inverse pattern observed for the ℓ𝑅 = −1, −2, and

−3 states in the bottom panel of Figure 5-26. An intense peak appears at 𝑁+ = 𝑅+1

and peaks are observed all the way down to 𝑁+ = 𝑅 − 4. The intensity pattern is

different from the ℓ𝑅 = 1, 2, and 3 result, however, and the 𝑁+ = 𝑅−3 peak appears

as the most intense feature in the spectrum. A quite different pattern is observed for
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the ℓ𝑅 = −1, 0, and 1 states in the middle panel of Figure 5-26. The strong peaks

range from 𝑁+ = 𝑅− 2 up to 𝑁+ = 𝑅+ 2. This more symmetric distribution of ion

rotational states for the ℓ𝑅 = −1, 0, and 1 components suggests to us that the angular

momentum is not completely scrambled in the autoionization process, as might be

suggested by a predissociation-induced mechanism.

A few years later, the Zare group extended this work by measuring photoelectron

spectra from autoionizing 𝑣 = 2 Rydberg states.164 In this second set of experiments,

circular dichroism was used to verify the purity of states prepared by each excita-

tion scheme. This allowed for measurement of nearly pure ℓ𝑅 = −3 and 3 states.

Three representative photoelectron spectra from the thesis of Runchuan Zhao164 are

reproduced in Figure 5-27. The solid and dashed lines in every plot are the spectra

collected at two different observation angles. We will not discuss the photoelectron

angular distributions in any detail. The top and bottom spectra result from selective

excitation of the ℓ𝑅 = 3 and ℓ𝑅 = −3 states, respectively. The resulting 𝑣+ = 1

ion rotational state distributions (Δ𝑣 = −1) show striking similarities to the earlier

results in the top and bottom panels of Figure 5-26. For the top (bottom) spectrum,

the 𝑁+ = 𝑅 − 1 (𝑁+ = 𝑅 + 1) peak is very intense, followed by a strong 𝑁+ = 𝑅

(𝑁+ = 𝑅) peak and then weaker peaks extending out to 𝑁+ = 𝑅+ 4 (𝑁+ = 𝑅− 4).

Again, the intensity patterns in the two spectra are not exactly inverted, but there

exists an even more obvious symmetry than in the Park and Zare data117,118 of Fig-

ure 5-26. The center plot of Figure 5-27 is the result of exciting 𝑁 = 15, 16, and

17 (ℓ𝑅 = −1, 0, and 1) components of the 13𝑓16𝑁(𝑣 = 2) state and thus represents

an almost identical experiment to that shown in the center plot of Figure 5-26. The

symmetry of this distribution is also more striking than in the earlier work: a weak

𝑁+ = 𝑅 peak appears surrounded by intense 𝑁+ = 𝑅 − 2, 𝑅 − 1, 𝑅 + 1, and 𝑅 + 2

peaks.

Δ𝑣 = −1 decay

The first insight that a long-range electrostatic mechanism alone can produce

many partial waves and many ion rotational states for the 𝑛𝑓 Rydberg states comes
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Figure 5-27: Angle- and energy-resolved photoelectron spectra measured by Zhao164

following vibrational autoionization of the indicated 𝑛𝑓𝑅𝑁 states. The time of flight
axis is calibrated in order to associate a particular 𝑁+ and 𝑣+ value of the resulting
ion with each photoelectron peak, indicated by the comb at the top of each plot. The
dashed and solid line spectra in each plot are collected at two different angles. The
top and bottom plots are the results for the single ℓ𝑅 component that was selectively
excited. In both of those plots, the intense peak at the center of the 𝑣+ = 1 signal
is an artifact and not a product of the 𝑛𝑓 state autoionization. The center plot
shows the autoionization products following excitation of the 𝑁 = 15, 16, and 17
components of the 13𝑓16𝑁 complex. Reproduced with permission from Zhao, R.
Vibrational autoionization from nf Rydberg states of nitric oxide, PhD thesis, Stanford
University, 2004. Copyright 2004 by Runchuan Zhao.
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from Figure 5-15. At high-ℓ, the dipole mechanism dominates all other autoionization

processes. At ℓ = 3, however, the dipole, quadrupole, and dipole polarizability all

make similar contributions to the total autoionization rate. Thus, we might expect

that all even and odd changes of rotation, 𝑅 − 𝑁+, up to ±2 should be of similar

intensity.

In Figure 5-28, we have plotted the rotational state distribution calculated by our

long-range model for the same states investigated by Park and Zare that appear in Fig-

ure 5-26. In Figure 5-29, we have plotted the calculated rotational state distributions

for the states investigated by Zhao that are shown in Figure 5-27. When comparing

the experimental data to the calculations it is important to note two things. First, the

experimental results are angle-resolved, which means only the photoelectrons ejected

at a specified angle relative to the laser polarization direction were detected. Since the

photoelectron angular distribution can be different depending on the particular partial

wave, these results are not the same as the angle-integrated photoelectron spectrum

and do not represent the total rotational state distribution. Second, as mentioned

previously, not every experiment was able to resolve the individual ℓ𝑅 levels of the

𝑛𝑓 complexes investigated. While we could scale our calculated distributions by the

relative intensities of the P, Q, and R branches in the excitation scheme, we chose to

simply plot the results for an equal distribution of population in the three ℓ𝑅 levels,

since the exact intensity distributions cannot be directly compared.

We begin the discussion with the results for the ℓ𝑅 = −1, 0, and 1 states, which

appear in the center plots of Figures 5-28 and 5-29. The relevant experimental results

are in the center plots of Figures 5-26 and 5-27. The calculation predicts non-negligible

intensity in all five rotational states, 𝑁+ = 𝑅 − 2 to 𝑁+ = 𝑅 + 2, observed in both

sets of experiments. The agreement with Zhao’s results are particularly striking. One

curious feature in the calculated and experimentally observed distributions for these

states is the weak intensity of the 𝑁+ = 𝑅 peak relative to the intensities of the other

significant peaks. This is a result of interference between the quadrupole and po-

larizability mechanisms in the autoionization. Both mechanisms have approximately

equal magnitudes for all decay channels of the 𝑛𝑓 states. In general, the two mech-
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Figure 5-28: Total rotational N+ distributions of the NO+ ion following vibrational
autoionization of the indicated 𝑛𝑓𝑅𝑁 states. The rates for each autoionization 𝑁+

channel are summed for the three contributing states, 𝑁 = 18, 19, and 20. Above
each bar is the total autoionization rate, where the number in parentheses indicates
the order of magnitude.
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Figure 5-29: Total rotational N+ distributions of the NO+ ion produced following
vibrational autoionization of the indicated 𝑛𝑓𝑅𝑁 states into both 𝑣+ = 0 and 𝑣+ = 1
channels. Note that the scales of the two vibrational channels differ by two orders of
magnitude. The top and bottom plots are for a single ℓ𝑅 component, while the center
plot is the sum of the three indicated states. Above each bar is the total autoionization
rate, where the number in parentheses indicates the order of magnitude.
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anisms constructively interfere because the polarizabilities and quadrupole moment

have similar magnitudes and monotonically increase with internuclear distance in the

region near the equilibrium internuclear distance, and because the quadrupole mech-

anism has the same angular dependence as the anisotropic polarizability. However,

for the Δ𝑅 = 0, Δℓ = 0 channel, the isotropic polarizability, which lacks any angular

dependence, also contributes to the polarizability matrix element. This is the basis

for how the polarizability and quadrupole terms can end up with opposite signs and

destructively interfere. This destructive interference is most significant for the 𝑛𝑓

components with ℓ𝑅 values close to zero.

Looking at the results for the ℓ𝑅 = 1, 2, and 3 states in the top panel of Figure

5-28, several features resemble the experimental results in the top panel of Figure

5-26. In both spectra, the 𝑁+ = 𝑅 − 1 peak is the dominant feature. This is

followed by weaker peaks for 𝑁+ = 𝑅,𝑅 + 1, and 𝑅 + 2, all of similar intensity.

In addition, there is a much weaker peak at 𝑁+ = 𝑅 − 2 in both the calculation

and experiment. Obviously missing from the calculated distribution are peaks with

significant intensity at 𝑁+ = 𝑅 + 3 and 𝑁+ = 𝑅 + 4. These two channels only

have contributions from the octupole and hexadecapole moments, respectively, which,

according to Figure 5-15, are substantially weaker than the polarizability, dipole, and

quadrupole mechanisms. As a result, those channels have autoionization rates that

are many orders of magnitude slower and hence will not result in a significant yield

of ions in those rotational states.

The absence of the 𝑁+ = 𝑅 + 3 and 𝑁+ = 𝑅 + 4 peaks is not an indication that

the long-range electrostatic model is fundamentally incapable of describing these ion

state distributions. Although we have included high-order multipole moments in our

model, we have completely neglected higher-order polarizabilities of the ion-core. The

dipole-quadrupole polarizability, 𝐴𝛾,𝛼𝛽, could produce odd-valued changes in the ro-

tational quantum number, while the quadrupole polarizability, 𝐶𝛼𝛽,𝛾𝛿, could produce

even-valued rotation changes. These are the next two terms that result from sec-

ond order perturbation theory applied to the multipole expansion. The higher-order

(non-linear) polarizabilities are obtained by third and fourth order perturbation the-
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ory. Applied to the dipole moment, the first hyperpolarizability (dipole-dipole-dipole

polarizability), 𝛽𝛼𝛽𝛾, produces odd rotational changes, and the second hyperpolariz-

ability (dipole-dipole-dipole-dipole polarizability), 𝛾𝛼𝛽𝛾𝛿, produces even changes. All

of these higher-order polarizabilities have shorter range radial matrix elements, but

if the magnitude of the vibrationally averaged polarizability is sufficiently large, they

may be responsible for a significant effect for ℓ ≤ 3 Rydberg states. For example,

Figure 5-15 shows that, for low ℓ, the polarizability, which has a 𝑟−4 radial matrix

element, has a larger contribution to the rate than the quadrupole moment, which

has a 𝑟−3 radial matrix element. Consideration of these higher-order effects will be

the next step in this work.

In addition to the possibility that other electrostatic properties produce peaks with

large 𝑁+−𝑅 changes, there is also the possibility that low-ℓ partial waves contribute

more intensity than predicted by our model. The matrix elements that produce the

largest changes in the core rotation can also produce the largest changes in orbital

angular momentum. For example, the 𝑁+ = 𝑅 − 3, Δℓ = −3 channel produces a 𝜖𝑠

partial wave via autoionization of an initial 𝑛𝑓 state. There is reason to believe our

calculation of the rates in these channels is inaccurate. The current model uses purely

hydrogenic continuum wavefunctions, and completely neglects any phase shift due to

the finite size of the ion-core or close-range interactions with the core. While this

assumption is justified for high-ℓ states, low-ℓ states will be significantly impacted.

Consideration of 𝜖ℓ phase shifts for low-ℓ partial waves is a second avenue for future

work that may lead to more accurate predictions.

A final possibility is the presence of a predissociation-mediated mechanism, as

suggested by several authors.117,118,124 The agreement between the experiments and

our calculation for the ℓ𝑅 = −1, 0, and 1 results suggest that these ℓ𝑅 components

decay mainly by long-range mechanisms. This means that the 𝑁+ = 𝑅 + 3 and

𝑁+ = 𝑅 + 4 peaks observed in the top panel of Figure 5-26 are produced by either

the ℓ𝑅 = 2 or 3 components. The change in the relative intensities of the 𝑁+ = 𝑅+3

and 𝑁+ = 𝑅 + 4 peaks between the top panel of Figure 5-26 (ℓ𝑅 = 1, 2, and 3) and

the top panel of Figure 5-27 (ℓ𝑅 = 3) suggests that these peaks may be produced

296



mainly by the ℓ𝑅 = 3 component. In the high rotation limit, the ℓ𝑅 = 3 state

has the largest fractional 𝜎 character. As a result, this state likely interacts most

strongly with the valence states responsible for predissociation. Thus, the ℓ𝑅 = 3

component of an 𝑛𝑓 complex may report in a unique way on the influence of a

predissociation-mediated autoionization mechanism. This state-specific hypothesis

simplifies the number of Rydberg-valence state interactions that would need to be

included in a more sophisticated multi-state model of predissociation. This additional

autoionization mechanism should be considered in future work.

Examination of the ℓ𝑅 = −1, −2, and −3 states in the bottom panel of Figure

5-28 show that the calculation agrees with the experimental results in the bottom

panel of Figure 5-26 in the same ways as for the ℓ𝑅 = 1, 2, and 3 states. An intense

𝑁+ = 𝑅 + 1 peak and weaker 𝑁+ = 𝑅, 𝑅 − 1, and 𝑅 − 2 peaks appear in both the

calculation and the experiment. As before, the peaks with large changes in rotation,

𝑁+ = 𝑅− 3 and 𝑁+ = 𝑅− 4, are not captured by the calculation. It may be worth

noting that the rates for those channels in the calculation are orders of magnitude

larger than those for the channels with opposite sign changes, 𝑁+ = 𝑅 + 3 and

𝑁+ = 𝑅+4. This may suggest that the mechanism that produces these large changes

in rotation obeys the same angular momentum coupling as the existing octupole and

hexadecapole mechanisms. We interpret this as a further impetus for the need to

consider higher-order extensions to our model in any future work.

The isolated ℓ𝑅 = 3 and ℓ𝑅 = −3 states investigated by Zhao164 in the top and

bottom panels of Figure 5-27 show distributions similar to the unresolved results of

Park and Zare.117,118 The absence of a 𝑁+ = 𝑅−1 (𝑁+ = 𝑅+1) peak in the spectra

from Zhao relative to the spectra from Park and Zare is an important difference, which

is reproduced by our calculation in the top and bottom panels of Figure 5-29. This

occurs because Zhao’s experiment populated single ℓ𝑅 = 3 (ℓ𝑅 = −3) states, while the

Park and Zare experiment also populated the ℓ𝑅 = 1 (ℓ𝑅 = −1) component. These

states produce the 𝑁+ = 𝑅− 1 (𝑁+ = 𝑅+ 1) peaks, which are shown in red (green)

in the top (bottom) panel of Figure 5-28. Zhao also observes large rotational changes,

𝑁+−𝑅 = ±3 and ±4, which are orders of magnitude weaker in our calculation than
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in the experiment. Once again, we note that the channels with the correct sign change

in rotation are orders of magnitude faster than the channels with the opposite sign

change.

Δ𝑣 = −2 decay

In addition to Δ𝑣 = −1, the Δ𝑣 = −2 channel is also open for the 𝑣 = 2 Ryd-

berg states investigated by Zhao.164 These ion states appear at earlier times (higher

energies) in all three panels of Figure 5-27. They are slightly more challenging to

interpret for a few reasons. First, the resolution of the time-of-flight photoelectron

spectrometer is inversely related to the kinetic energy of the photoelectrons. Thus,

the 𝑣+ = 0 rotational peaks are incompletely resolved in this spectrum. Second, the

very intense peak at the center of the 𝑣+ = 0 distributions in the top and bottom

panels was found by Zhao to be insensitive to laser detuning and so is unlikely to

result from autoionization of the 𝑛𝑓 states.164 This suggests that some type of ad-

ditional perturbation may be at work in this decay channel, or additional states are

unintentionally populated during the preparation of the desired 𝑛𝑓 states.

Nevertheless, we will summarize some of the observations for this ionization chan-

nel. As in the 𝑣+ = 1 distribution, there appears to be interesting symmetry. For

ℓ𝑅 = 3, the ion rotational states have roughly similar intensity for 𝑁+ = 𝑅+1 through

𝑁+ = 𝑅 + 5, and, for ℓ𝑅 = −3, the distribution spans 𝑁+ = 𝑅 − 1 to 𝑁+ = 𝑅 − 5

with roughly equal intensities. For the center plot of Figure 5-27, it is clear that the

𝑣+ = 0 rotational distribution is quite similar to the 𝑣+ = 1 rotational distribution.

There are very intense 𝑁+ = 𝑅+ 1 and 𝑁+ = 𝑅− 1 peaks, weaker 𝑁+ = 𝑅+ 2 and

𝑁+ = 𝑅− 2 peaks, and a very weak 𝑁+ = 𝑅 peak.

For the ℓ𝑅 = −1, 0, and 1 result, our calculated distribution of ion rotational states

in the center panel of Figure 5-29 agree with the observation in the center panel of

Figure 5-27. As in the Δ𝑣 = −1 channel, the 𝑁+ = 𝑅 channel is weak due to an

interference between the quadrupole moment and polarizability. One discrepancy

between our calculation and the results of Zhao is the very intense Δ𝑣 = −2 decay

observed in the experiments. As discussed at the beginning of this chapter, the Δ𝑣 =
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−2 decay is generally expected to be much slower than the Δ𝑣 = −1 decay. In our

calculations, this expectation is borne out and the decay rates differ by approximately

two orders of magnitude. The intensity of the 𝑣+ = 0 peaks relative to the 𝑣+ = 1

peaks suggest that there is at most a one order of magnitude 𝑣+ = 0 vs. 𝑣+ = 1

difference in the experiment. We have no explanation for this discrepancy.

We look next at the results of the Δ𝑣 = −2 channel for the ℓ𝑅 = 3 and −3 states

in the top and bottom panels of Figure 5-29, respectively. Unlike the ℓ𝑅 = −1, 0,

and 1 experimental result of Zhao, the intensity of these Δ𝑣 = −2 channels is about

1% of the Δ𝑣 = −1 channels, in agreement with the calculation and our intuition.

The 𝑣+ = 0 channel distributions measured by Zhao are substantially different than

any distribution described so far. A wide range of rotational states is populated

with minimal variation in intensity. In contrast, our calculation suggests that the

𝑣+ = 0 distribution should be very similar to the 𝑣+ = 1 distribution. One difference

is the relative strength of the channels for large rotational changes. In the upper

(lower) panel of Figure 5-29, the 𝑁+ = 𝑅 + 4 (𝑁+ = 𝑅 − 4) channel has the same

order of magnitude as the 𝑁+ = 𝑅 + 2 (𝑁+ = 𝑅 − 2) channel. This is never the

case in our calculation for Δ𝑣 = −1 decay. The other significant discrepancy is the

appearance of 𝑁+ = 𝑅 + 5 and 𝑁+ = 𝑅 − 5 peaks in the experimental results.

Our calculation cannot produce such large changes in rotation. Consideration of

higher-order multipole moments and polarizabilities would be required to obtain any

amplitude in this decay channel.

This entire discussion must be qualified by Zhao’s observation of a very intense

photoelectron peak in the same energy range that appears to originate from a state

other than the 𝑛𝑓 Rydberg state. This unknown decay channel may have corrupted

the rotational state distribution. In addition, previous work demonstrated the par-

ticular importance of the predissociation-mediated autoionization process in Δ𝑣 > 1

vibrational autoionization.57 These photoelectron spectra for the Δ𝑣 = −1 channel

may assist in disentangling the possible contributions of that mechanism versus the

long-range mechanism in a more global model of vibrational autoionization.
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5.6.2 𝑛𝑔 states

Although we are unable to directly measure the rotational distributions following

autoionization of 𝑛𝑔 Rydberg states, it is instructive to examine the predictions from

our long-range model calculation. We will begin the discussion by examining Figure

5-30, where we have plotted the predictions for the 25𝑔10𝑁 state, which will serve

as the model result for the high rotation limit. The most obvious result from this

plot is the intense peaks for all ℓ𝑅 components that occur in the 𝑁+ = 𝑅− 1 and/or

𝑁+ = 𝑅 + 1 channels. This pattern is exactly the one we have previously described

in discussing the total autoionization rates. The dipole dominates over the other

electrostatic mechanisms due to the long range of the dipole interaction. The ℓ𝑅 =

−4 state produces predominantly ions with 𝑁+ = 𝑅 − 1, while the ℓ𝑅 = 4 state

produces predominantly ions with 𝑁+ = 𝑅 + 1. Again, this is exactly the pattern

that we described for a majority Δℓ = +1 decay, which occurs due to the destructive

interference between the 𝑛𝑔 wavefunction and the 𝜖𝑓 continuum wavefunction.

Figure 5-30: Rotational distributions of the NO+ ion following vibrational autoion-
ization of the 25𝑔10𝑁 state. The ℓ𝑅 value is color coded as indicated in the legend.
The dipole mechanism results in the most significant intensity in the 𝑁+ = 𝑅 + 1
and/or 𝑁+ = 𝑅− 1 channels.

The 𝑁+ = 𝑅 channel behaves similarly to the same decay channel for 𝑛𝑓 states as
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previously described. The Δ𝑅 = 0, Δℓ = 0 channel makes the largest contribution.

For the ℓ𝑅 = 0 component, there is nearly perfect destructive interference between

the quadrupole and polarizability mechanisms that results in very slow autoioniza-

tion rates. For the extreme ℓ𝑅 states, the interference becomes constructive and the

autoionization rate increases.

The 𝑁+ = 𝑅 ± 2 channels are also mostly controlled by the quadrupole and

polarizability matrix elements. Since the isotropic polarizability plays no role in these

decay channels, the quadrupole and polarizability mechanisms always constructively

interfere. The Δℓ = 0 channel typically has the largest contribution, which results

in the fastest decay for components with ℓ𝑅 close to zero. The Δℓ = ±2 channels

also have non-negligible amplitude, which is responsible for making the variation of

autoionization rates with ℓ𝑅 not symmetric about ℓ𝑅 = 0.

As expected, there is essentially no production of ion rotational states with 𝑁+ =

𝑅±3 or 𝑁+ = 𝑅±4 since the octupole and hexadecapole mechanisms are even weaker

for the 𝑛𝑔 states than the 𝑛𝑓 states, as a result of the electronic wavefunction’s inner

turning point shifting to larger 𝑟.

Figure 5-31 shows the predicted ion rotational states that result from every com-

ponent of the 25𝑔𝑅𝑁 states for 𝑅 = 0, 1, 2, and 3. These are the specific states

investigated in our experiment. Many of the same trends occur in these plots as in

the 25𝑔10𝑁 result just described. In particular, the dipole mechanism results in either

one or two dominant rotational states for the resultant ion. Indeed, the low-𝑅, high-

ℓ𝑅 states produce single rotational states of the ion with even higher purity than in

the limit of high rotation. The 25𝑔04 state autoionizes to produce an NO+ ion with

𝑁+ = 0 in ∼ 92% yield, while the 25𝑔25 state produces 𝑁+ = 3 ions in ∼ 93% yield.

Thus, we suggest that high-ℓ Rydberg states of NO are useful “precursors” for the

production of quantum state-selected molecular ions by vibrational autoionization.

Our long-range autoionization model serves as the recipe book.

In addition to vibrational autoionization, rotational autoionization can play an

important role in the non-radiative decay of Rydberg states. All states of NO con-

sidered up to this point, including the high rotation levels studied by the Zare group,
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Figure 5-31: Rotational distributions of the NO+ ion following vibrational autoion-
ization of the 25𝑔𝑅𝑁 states. From left to right, top to bottom, 𝑅 = 0, 1, 2, and 3.
The ℓ𝑅 value is color coded as indicated in the legend of each plot. The dipole mech-
anism results in the most significant intensity in the 𝑁+ = 𝑅+1 and/or 𝑁+ = 𝑅− 1
channel.
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can only autoionize by a vibrational mechanism. Rotational autoionization channels,

assuming a maximum change in the rotation of 𝑁+ − 𝑅 = −4, remain closed until

quite high 𝑛 or high 𝑅. This is governed simply by the magnitude of the ion-core ro-

tational constant. For a very large rotational constant as for H+
2 with 𝐵 ≈ 10−4 a.u.,

rotational autoionization can occur at very low 𝑛 and 𝑅; for example, O’Halloran

and co-workers111 studied the rotational autoionization of 𝑛𝑝𝑅𝑁 states of H2 with

quantum numbers 1 < 𝑅 < 6 and 20 < 𝑛 < 40. Although NO+ is a first row diatomic

molecule, the rotational constant, 𝐵 ≈ 10−5 a.u., is substantially smaller. Neverthe-

less, the rotational autoionization dynamics are interesting to examine even if they

exist in a state space that is experimentally challenging to access.

In Figure 5-32, we plot the ion rotational state distribution and total rotational

autoionization rate for all components of the 35𝑔25𝑁 (𝑣 = 0) state. For this choice of

𝑛 and 𝑅, all rotational channels are energetically allowed. The dipole mechanism still

produces the fastest autoionization rates for all values of ℓ𝑅. However, the intensity

in the remaining three channels is substantially larger than observed in vibrational

autoionization. This occurs because rotational autoionization is controlled by the

magnitude of the multipole moments and polarizability, while vibrational autoioniza-

tion is approximately dictated by their derivatives with respect to the internuclear

distance. The dipole moment is quite small at the equilibrium internuclear distance,

but has a relatively steep derivative; the value of ⟨𝑣 = 0|𝜇|𝑣 = 0⟩ is only about five

times larger than the value of ⟨𝑣 = 1|𝜇|𝑣 = 0⟩. In contrast, with the exception of the

quadrupole, the other moments and polarizabilities have magnitudes at least an order

of magnitude larger than their first derivatives. While this distinction does alter the

rotational state distribution, it should be noted that the dipole mechanism is still the

most important. For the 35𝑔25𝑁 complex, the ℓ𝑅 = −4 and ℓ𝑅 = −3 states have near

unity yield in 𝑁+ = 𝑅 − 1, and also have the fastest total autoionization rates. The

total decay rate decreases as ℓ𝑅 increases and is minimum for the ℓ𝑅 = 4 component,

which has the smallest amplitude in the Δℓ = +1, Δ𝑅 = −1 channel as it does in

vibrational autoionization.

The strategy to produce single rotational states of the ion by rotational autoioniza-
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tion is straightforward. To prepare NO+ in the 𝑁+ rotational state, the experimenter

should excite the 𝑛𝑔𝑅𝑅−4 (𝑣 = 0) Rydberg state where 𝑅 = 𝑁++1 and 𝑛 is dictated

by the energy scale:
1

2𝑛2
< 2𝐵𝑅 (5.31)

where the left-hand side is the Rydberg energy and the right side is the energy differ-

ence between the initial and desired final rotational state. Unfortunately, this would

require 𝑛 > 166 for 𝑁+ = 0, or 𝑛 > 117 for 𝑁+ = 1. An alternative strategy is to rely

upon the slightly slower Δ𝑅 = −2 process and excite a 𝑛𝑔𝑅𝑅 Rydberg state where

𝑅 = 𝑁+ + 2 and the state lies within the energy interval:

2𝐵𝑅 <
1

2𝑛2
< 2𝐵(2𝑅− 1) (5.32)

For the choice 𝑁+ = 0, 95 < 𝑛 < 118, and for 𝑁+ = 1, 74 < 𝑛 < 96. One could

continue this exercise all the way to Δ𝑅 = −4, although the autoionization rate will

decrease significantly. Without showing the explicit expression, accessing 𝑁+ = 0

by this route requires 52 < 𝑛 < 56 and accessing 𝑁+ = 1 requires 44 < 𝑛 < 48.

These are still relatively high principal quantum numbers and only a few values of

the principal quantum number will produce the desired ion rotational state. This

latter fact makes the scheme more vulnerable to an unexpected perturbation, which

could corrupt the dynamics, since few alternative initial Rydberg states are possible.

All of these numbers have assumed the rotational constant for NO+, which is smaller

than for a typical diatomic hydride, but is quite large relative to most heavy atom

diatomic molecules. A smaller rotational constant will exacerbate all of the issues

in this rotational autionization scheme. This discussion highlights the experimental

advantage of identifying a vibrational autoionization route to low 𝑁+ states of the

molecular ion.
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Figure 5-32: Left: Rotational distributions of the NO+ ion following rotational au-
toionization of the 35𝑔25𝑁(𝑣 = 0) states. The ℓ𝑅 value is color coded as indicated
in the legend. The dipole mechanism results in the most significant intensity in the
𝑁+ = 𝑅 − 1 channel. Unlike the vibrational case, observable intensity exists in the
𝑁+ = 𝑅 − 3 and 𝑁+ = 𝑅 − 4 channels. Right: Absolute autoionization rates for
each channel. The 𝑁+ = 𝑅− 1 channel has the fastest decay for all states, while the
decay into 𝑁+ = 𝑅− 3 and 𝑁+ = 𝑅− 4 channels is at least two orders of magnitude
slower.

5.7 Conclusion

Autoionization lifetimes of 𝑛𝑔 Rydberg states of NO have been directly measured

for the first time. We find qualitative agreement with the predictions from a long-

range electrostatic model of the autoionization process, though the calculated rates

are generally slower than the observed rates. Significantly, the non-radiative decay of

𝑛𝑔 states is dominated by autoionization rather than predissociation as in all low-ℓ

Rydberg states of NO. In addition, we find that this long-range model predicts NO+

state distributions following the autoionization of 𝑛𝑓 levels that are largely consistent

with the experimental observations from the Zare group.117,118,164 The agreement is

particularly striking for states with |ℓ𝑅| ≤ 1. The extreme ℓ𝑅 components decay by

𝑅 − 𝑁+ = ±3, and ±4 channels, which are not captured by our model. Extensions

of the long-range model to include higher-order polarizabilities, or explicit phase

shifts due to core-penetration, may shed light on these discrepancies. In addition, re-

examination of a predissociation-mediated autoionization model is warranted. Finally,

we propose that vibrational autoionization of selected 𝑛𝑔 Rydberg states is an efficient
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means to produce molecular ions in few, or even a single selected quantum state.

While our investigation focuses on NO, this experimental and theoretical methodology

will be applicable to a variety of diatomic molecules because high-ℓ Rydberg states

obey a universal scaling of the long-range autoionization mechanisms. Quantum-state

selected ions are a useful tool for experiments in precision measurement,56,92 ultracold

chemistry,134,146 and quantum computing.135
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Chapter 6

Conclusions and Outlook

This thesis has explored new physics and scientific applications of the high-ℓ Ry-

dberg states of atoms and molecules. When the Rydberg electron possesses sufficient

orbital angular momentum, the centrifugal barrier prevents its close approach to the

ion-core. This inability of the Rydberg electron to interact with the ion-core pro-

foundly affects the properties of a molecular Rydberg state, because molecules suffer

from rapid non-radiative decay by predissociation. The electronic valence states re-

sponsible for this non-radiative decay have large wavefunction amplitude in the region

of the ion-core. For low-ℓ, core-penetrating Rydberg states, these predissociative wave-

functions interact strongly with the Rydberg electron wavefunction, which leads to

fragmentation of the molecule. When the value of ℓ is sufficiently high, the probabil-

ity of finding the Rydberg electron in the core-region becomes vanishingly small, and

these core-nonpenetrating Rydberg states exhibit enhanced lifetimes characteristic of

their atomic counterparts. Moreover, the physics of the Rydberg electron↔ion-core

interaction is simplified because the complex, many-body interactions due to the ion-

core are strongly attenuated. This fact allows us to treat the ion-core as a polarizable,

multipole point source, which communicates with the Rydberg electron exclusively

via long-range electrostatic forces. In this long-range theory, the spectroscopy and

dynamics of the high-ℓ, core-nonpenetrating states are completely described in an

a priori, mechanistically explicit way, granting predictive power that will guide the

design of new Rydberg experiments.
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While the experimental and theoretical advantages of high-ℓ states are transpar-

ent, a general method for their preparation is not. The low orbital angular momentum

of the ground molecular state of most molecules is due to the 𝑠 and 𝑝 valence elec-

trons involved in the bonding of the constituent atoms. Since each photon in an

excitation scheme transmits no more than one unit of angular momentum to the

molecule, several photons are required to raise the value of ℓ sufficiently to access

core-nonpenetrating states. In addition, this pathway must typically traverse low-ℓ,

core-penetrating Rydberg states, which decay rapidly by predissociation. To address

this challenge, we develop the method of optical-millimeter-wave (mmW) stimulated

Raman adiabatic passage (STIRAP). This technique for coherent population transfer

in a three-level system has been shown to transfer population with near unity effi-

ciency from an initial state to a final state without directly populating an intermedi-

ate, possibly lossy, state.13 In our proposed application, the optical photon addresses

the transition between a molecular valence state and low-ℓ, predissociated Rydberg

state, while the mmW photon connects this low-ℓ Rydberg state to a neighboring,

long-lived, core-nonpenetrating state. Our inital demonstration on a thermal beam

of Ca atoms allows for complete experimental characterization of the intermediate

and final state populations as a function of the optical-mmW timing and detuning,

and subsequent numerical simulations to assist in interpretation. Several known ex-

perimental imperfections, including Doppler broadening, the temporal profile of the

mmW pulse, and the transverse profile of the laser beam, are explicitly included in

the simulations. The observed &50% population transfer in the so-called “counter-

intuitive” pulse timing, and robust population transfer on two-photon resonance for

all one-photon detunings, are characteristic features of the STIRAP process that are

reproduced by our numerical simulations. Simulation of a hypothetical system with

a lossy intermediate state and otherwise identical parameters indicates the possibility

that this method can populate high-ℓ Rydberg states of molecules as well as atoms.

In particular, nitric oxide could serve as an ideal test system for optical-mmW

STIRAP in molecules. The 𝑛𝑓 states of NO are strongly predissociated, exhibiting

lifetimes of 𝜏 ≈ 10 ns for 𝑛 ≈ 40. In contrast, the 𝑛𝑔 states are decidedly core-
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nonpenetrating, and possess lifetimes more than an order of magnitude longer. An

excitation scheme, which requires minimal modifications of the existing laser and

mmW sources, would involve access to a 29𝑓 state through the H 2Σ+, H’ 2Π (3𝑑𝜎,

3𝑑𝜋) complex, with our pulse amplified laser system operating around 840 nm. The

mmW Stokes transition around 280 GHz connects the predissociated 29𝑓 level to the

long-lived 28𝑔 level and this population transfer can be probed via the 29ℎ ← 28𝑔

transition at approximately 285 GHz. Rabi frequencies similar to those in our proof-

of-principle Ca experiment are attainable with this scheme. The fast predissociation

of the intermediate state presents a stringent test of optical-mmW STIRAP, but the

well-known level structure of NO, supplemented by our own observations of mmW

transitions, makes this test experimentally feasible. Optical-mmW STIRAP is a gen-

eral population transfer method that will enable access to the high-ℓ Rydberg states

of a plethora of new molecules.

Having populated the high-ℓ Rydberg states of molecules, these long-lived states

are amenable to investigation by high-resolution mmW spectroscopy. Of particular

interest is refinement and extension of the long-range electrostatic model, which serves

as a mechanistically explicit model for the energy level structure of high-ℓ states.41

Significant work in this vein has until now been limited to high-resolution spectroscopy

of H2
6,141 and relatively low-resolution laser spectroscopy of a few other molecules, in-

cluding NO.15,97 By employing a three-color, triple-resonance laser excitation scheme,

we directly populate 𝑛𝑔 states of NO, which possess predissociation-limited lifetimes

approaching 1 𝜇s at 𝑛 ≈ 50.52 We probe Rydberg-Rydberg transitions using chirped-

pulse millimeter-wave (CPmmW) spectroscopy, making NO only the second molecule

investigated by this powerful, multiplexed technique. The obtained high-resolution

data set of 𝑔-ℎ transitions spans a wider range of state space than possible in previous

work. In particular, the resolution of the electric fine structure in high-𝑛 Rydberg

states reports directly on the “non-sphericity” of the ion-core, or in other words, the

polarizability and multipole moments that perturb the Rydberg states from hydro-

genicity. A preliminary fit of our data set suggests that previously inaccessible electric

properties of the NO+ ion can be determined by our spectroscopy.
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Further work on the spectroscopy of NO first requires improved control over the

stray electric fields in the apparatus, which shift and broaden the observed transi-

tions. In addition to this technical improvement, a greater variety of transitions bear

investigation in future work. These include: i) Δ𝑛 > 1 transitions, which will ex-

tend the range of observed 𝑛 to higher values, where Rydberg states exhibit greater

sensitivity to some of the electrostatic perturbations of interest; ii) transitions in the

𝑣 = 1 and 𝑣 = 2 Rydberg manifolds, which will report in a direct way on the autoion-

ization decay dynamics and the variation of electrostatic properties with internuclear

distance; iii) transitions in regions of 𝑛 where stroboscopic resonances additionally

perturb the Rydberg level structure due to Rydberg-Rydberg transition energies sim-

ilar to the NO+ rotational transition energies. A wealth of spectroscopic information

and physical insights remain unexplored in the Rydberg states of NO. An additional

Ph.D. thesis (and more!) could be spent uncovering it all.

Beyond spectroscopy, autoionization dynamics of high-ℓ Rydberg states can be

described by a long-range electrostatic model. Specifically, vibrational autoionization

involves the exchange of energy between the vibrationally excited ion-core and the

Rydberg electron via the internuclear distance-dependent electrostatic properties of

the ion-core. By directly measuring autoionization rates of 𝑛𝑔 Rydberg states of NO,

we demonstrate that the decay of these states is dominated by autoionization consis-

tent with the predictions of this long-range model. This result is in striking contrast

with the 𝑛𝑓 Rydberg states of NO, which decay rapidly by predissociation.49,52 Sur-

prisingly, we find that although the total decay rates of the 𝑛𝑓 states are incompatible

with a long-range autoionization model, the rotational states of the product ions are

generally consistent with our model. These NO+ ion rotational state distributions,

measured in pioneering experiments by the Zare group,117,118,164 were surprising be-

cause they indicated extensive angular momentum exchange between the Rydberg

electron and the ion-core. Our long-range model indicates that this angular momen-

tum exchange is in large part due to the NO+ electric dipole moment, a previously

unappreciated mechanism. Using the long-range electrostatic model, we make pre-

dictions of the ion rotational state distributions following vibrational autoionization
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of 𝑛𝑔 Rydberg states of NO. Due to the dominant influence of the dipole decay mech-

anism, very few rotational states are populated, and in some cases, more than a 90%

yield in a single rotational state is possible.

This last theoretical result represents an area of exciting new applications that may

be applied to many other molecules. In particular, all first row diatomic ions possess a

significant electric quadrupole moment that causes mixing of 𝑠 and 𝑑 character in the

low Rydberg states. Upon identification of the lowest 3𝑠𝜎 Rydberg state, an excitation

scheme that accesses 𝑛𝑔 states via the 4𝑓 complex, in analogy to the excitation

scheme used in our work, is applicable. Either by photoelectron spectroscopy or

laser spectroscopy of the resultant ions, the rotational state distributions can be

probed and directly compared to the predictions of our long-range model. Extensions

of the current model to non-1Σ+ ion-core electronic states is required to address

these new molecular systems. However, the strong influence of the dipole moment

in autoionization decay of high-ℓ states will be a consistently dominant feature for

all heteronuclear species. Vibrational autoionization of core-nonpenetrating Rydberg

states represents a novel and efficient method for generation of molecular ions in a

single quantum state. These will be useful systems in a wide range of modern physics

experiments.

High-ℓ, core-nonpenetrating Rydberg states are a special class of unexplored and

unexploited electronic states that merge the complexity of a molecule with the sim-

plicity of a Rydberg atom. More mature atomic Rydberg-state-enabled technologies

can be applied to these systems, further advancing the goal of raising molecules to

the same level of control and insight as for atoms. Applications far beyond those

described in this thesis, from electrostatic trapping69 and many-body physics61 to

precision measurement92 and ultracold chemistry,2,146 will benefit from our enhanced

understanding of these unique states.

311



312



Bibliography

[1] Nobel Media AB. Summary. NobelPrize.org, 2019. Online; accessed 8-
November-2019.

[2] P. Allmendinger, J. Deiglmayr, O. Schullian, K. Höveler, J. A. Agner,
H. Schmutz, and F. Merkt. New method to study ion-molecule reactions
at low temperatures and application to the H+

2 + H2 → H+
3 + H reaction.

ChemPhysChem, 17:3596–3608, 2016.

[3] C. Amiot and J. Verges. Fourier transform spectrometry of the D2Σ+-A2Σ+,
E2Σ+-D2Σ+, and E2Σ+-A2Σ+ systems of nitric oxide. Physica Scripta, 26:422–
438, 1982.

[4] Y. Anezaki, T. Ebata, N. Mikami, and M. Ito. Two-color multiphoton ionization
and fluorescence dip spectra of NO in a supersonic free jet. Highly excited 𝑛𝑠,
𝑛𝑝, 𝑛𝑓 Rydberg states. Chemical Physics, 97:153–163, 1985.

[5] C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger, and J.-P. Malrieu. In-
troduction of 𝑛-electron valence states for multireference perturbation theory.
The Journal of Chemical Physics, 114:10252, 2001.

[6] P. W. Arcuni, E. A. Hessels, and S. R. Lundeen. Series mixing in high-𝐿
Rydberg states of H2: An experimental test of polarization-model predictions.
Physical Review A, 41:3648–3662, 1990.

[7] H. Ashkenas and F. S. Sherman. Rarefied Gas Dynamics, volume 2. Academic
Press, New York, 1966.

[8] Y. S. Au, C. B. Connolly, W. Ketterle, and J. M. Doyle. Vibrational quenching
of the electronic ground state in ThO in cold collisions with 3He. Physical
Review A, 90:032703, 2014.

[9] J. Baraban. Personal communication, June 2017.

[10] J. F. Barry, E. S. Shuman, and D. DeMille. A bright, slow cryogenic molecular
beam source for free radicals. Physical Chemistry Chemical Physics, 13:18936–
18947, 2011.

313



[11] T. Bauer, J. S. Kolb, T. Löffler, E. Mohler, H. G. Roskos, and U. C. Pernisz.
Indium-tin-oxide-coated glass as a dichroic mirror for far-infrared electromag-
netic radiation. Journal of Applied Physics, 92:2210, 2002.

[12] K. Bergmann, H. Theuer, and B. W. Shore. Coherent population transfer
among quantum states of atoms and molecules. Reviews of Modern Physics,
70:1003–1025, 1998.

[13] K. Bergmann, N. V. Vitanov, and B. W. Shore. Perspective: Stimulated Raman
adiabatic passage: The status after 25 years. The Journal of Chemical Physics,
142:170901, 2015.

[14] H. A. Bethe and E. E. Salpeter. Quantum mechanics of one- and two-electron
atoms. Springer-Verlag Berlin Heidelberg, New York, 1957.

[15] D. T. Biernacki, S. D. Colson, and E. E. Eyler. High resolution laser spec-
troscopy of NO: The A, 𝑣 = 1 state and a series of 𝑛𝑓 , 𝑣 = 1 Rydberg states.
The Journal of Chemical Physics, 89:2599, 1988.

[16] M. Bixon and J. Jortner. The dynamics of predissociating high Rydberg states
of NO. The Journal of Chemical Physics, 105:1363, 1996.

[17] W. C. Bowman, E. Herbst, and F. C. De Lucia. Millimeter and submillimeter
spectrum of NO+. The Journal of Chemical Physics, 77:4261, 1982.

[18] T. Breeden and H. Metcalf. Stark acceleration of Rydberg atoms in inhomoge-
neous electric fields. Physical Review Letters, 47:1726–1729, 1981.

[19] G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, and B. H. Pate. The
rotational spectrum of epifluorohydrin measured by chirped-pulse fourier trans-
form microwave spectroscopy. Journal of Molecular Spectroscopy, 238:200–212,
2006.

[20] G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman, and
B. H Pate. A broadband Fourier transform microwave spectrometer based on
chirped pulse excitation. Review of Scientific Instruments, 79:053103, 2008.

[21] J. Brown and A. Carrington. Rotational spectroscopy of diatomic molecules.
Cambridge University Press, Cambridge, UK, 2003.

[22] J. M. Brown and B. J. Howard. An approach to the anomalous commuta-
tion relations of rotational angular momenta in molecules. Molecular Physics,
31:1517–1525, 1976.

[23] A. D. Buckingham. Theory of long-range dispersion forces. Discussions of the
Faraday Society, 40, 1965.

[24] N. E. Bulleid, S. M. Skoff, R. J. Hendricks, B. E. Sauer, E. A. Hinds, and M. R.
Tarbutt. Characterization of a cryogenic beam source for atoms and molecules.
Physical Chemistry Chemical Physics, 15:12299, 2013.

314



[25] W. C. Campbell and J. M. Doyle. Cooling, trap loading, and beam production
using a cryogenic helium buffer gas. In Roman V. Krems, William C. Stwalley,
and Bretislav Friedrich, editors, Cold Molecules: Theory, Experiments, Appli-
cations. CRC Press, Boca Raton, FL, 2009. Chapter 13.

[26] W. C. Campbell, G. C. Groenenboom, H.-I. Lu, E. Tsikata, and J. M. Doyle.
Time-domain measurement of spontaneous vibrational decay of magnetically
trapped NH. Physical Review Letters, 100(8):083003, 2008.

[27] W. Y. Cheung, W. A. Chupka, S. D. Colson, D. Gauyacq, P. Avouris, and J. J.
Wynne. Rydberg-Rydberg transitions of NO using an optical-optical double
resonance multiphoton ionization technique. The Journal of Chemical Physics,
78:3625, 1983.

[28] M. S. Child. Theory of Molecular Rydberg States. Cambridge University Press,
2011.

[29] D. T. Colbert and W. H. Miller. A novel discrete variable representation for
quantum mechanical reactive scattering via the S-matrix Kohn method. The
Journal of Chemical Physics, 96:1982, 1992.

[30] A. P. Colombo, Y. Zhou, K. Prozument, S. L. Coy, and R. W. Field. Chirped-
pulse millimeter-wave spectroscopy: Spectrum, dynamics, and manipulation of
Rydberg-Rydberg transitions. The Journal of Chemical Physics, 138:014301,
2013.

[31] P. J. Crutzen. Role of NO and NO2 in the chemistry of the troposphere and
stratosphere. Annual Reviews of Earth and Planetary Science, 7:443–472, 1979.

[32] T. Cubel, B. K. Teo, V. S. Malinovsky, J. R. Guest, A. Reinhard, B. Knuffman,
P. R. Berman, and G. Raithel. Coherent population transfer of ground-state
atoms into Rydberg states. Physical Review A, 72:023405, 2005.

[33] I. Dabrowski, D. W. Tokaryk, M. Vervloet, and J. K. G. Watson. New Rydberg-
Rydberg transitions of the ArH and ArD molecules. I. Emission from 𝑛𝑝 states
of ArD. The Journal of Chemical Physics, 104:8245, 1996.

[34] M. J. S. Dewar and S. D. Worley. Photoelectron spectra of molecules. I. Ioniza-
tion potentials of some organic molecules and their interpretation. The Journal
of Chemical Physics, 50:654, 1969.

[35] K. Dressler, C. Jungen, and E. Miescher. Identification of the 5g-4f Rydberg-
Rydberg transition of the NO molecule. Journal of Physics B: Atomic and
Molecular Physics, 14:L701, 1981.

[36] T. H. Dunning. Gaussian basis sets for use in correlated molecular calculations.
I. The atoms boron through neon and hydrogen. The Journal of Chemical
Physics, 90:1007, 1989.

315



[37] K. S. E. Eikema, W. Ubachs, W. Vassen, and W. Hogervorst. Lamb shift
measurement in the 1 1𝑆 ground state of helium. Physical Review A, 55:1866,
1997.

[38] U. Even, J. Jortner, D. Noy, N. Lavie, and C. Cossart-Magos. Cooling of
large molecules below 1 K and He clusters formation. The Journal of Chemical
Physics, 112:8068, 2000.

[39] E. Eyler and D. T. Biernack. Analysis of the 4𝑓 , 𝑣 = 3 state of NO. The
Journal of Chemical Physics, 88:2850, 1988.

[40] E. E. Eyler. Autoionization of nonpenetrating Rydberg states in diatomic
molecules. Physical Review A, 34:2881–2888, 1986.

[41] E. E. Eyler and F. M. Pipkin. Triplet 4𝑑 states of H2: Experimental observation
and comparison with an ab initio model for Rydberg-state energies. Physical
Review A, 27:2462–2478, 1983.

[42] E. E. Eyler, A. Yiannopoulou, S. Gangopadhyay, and N. Melikechi. Chirp-free
nanosecond laser amplifier for precision spectroscopy. Optics Letters, 22:49–51,
1997.

[43] M. S. Fee, K. Danzmann, and S. Chu. Optical heterodyne measurement of
pulsed lasers: toward high-precision pulse spectroscopy. Physical Review A,
45:4911, 1992.

[44] M Fehér and P. A. Martin. Ab initio calculations of the properties of NO+ in
its ground electronic state X 1Σ+. Chemical Physics Letter, 215:565–570, 1993.

[45] M. Fehér and P. A. Martin. Ab initio calculation of the electrical properties of
the X 2Σ+

𝑔 ground and A 2Π𝑢 excited states of N+
2 . Journal of the Chemical

Society Faraday Transactions, 91:1063–1066, 1995.

[46] W. H. Flygare. Magnetic interactions in molecules and an analysis of molecular
electronic charge distribution from magnetic parameters. Chemical Reviews,
74:653–687, 1974.

[47] D. B. Fraser and H. D. Cook. Highly conductive, transparent films of sputtered
In2−𝑥Sn𝑥O3−𝑦. Journal of the Electrochemical Society, 119:1368–1374, 1972.

[48] S. Fredin, D. Gauyacq, M. Horani, C. Jungen, G. Lefevre, and F. Masnou-
Seeuws. 𝑠 and 𝑑 Rydberg series of NO probed by double resonance multiphoton
ionization: multichannel quantum defect analysis. Molecular Physics, 60:825–
866, 1987.

[49] A. Fujii and N. Morita. Detection of nitrogen atoms produced by predissociation
of superexcited Rydberg states of NO. Chemical Physics Letters, 182:304–309,
1991.

316



[50] A. Fujii and N. Morita. Rotational state dependence of decay dynamics in the
superexcited 7𝑓 Rydberg state (𝑣 = 1) of NO. The Journal of Chemical Physics,
97:327, 1992.

[51] A. Fujii and N. Morita. Laser investigation of the competition between rota-
tional autoionization and predissociation in superexcited 𝑛𝑝 Rydberg states of
NO. The Journal of Chemical Physics, 98:4581, 1993.

[52] A. Fujii and N. Morita. Three-color triple resonance spectroscopy of highly
excited 𝑛𝑔 Rydberg states of NO: Decay dynamics of high-ℓ Rydberg states.
The Journal of Chemical Physics, 103:6029, 1995.

[53] T. F. Gallagher. Rydberg Atoms. Cambridge University Press, New York, 1994.

[54] S. Gangopadhyay, N. Melikechi, and E. E. Eyler. Optical phase perturbations
in nanosecond pulsed amplification and second-harmonic generation. Journal
of the Optical Society of America B, 11:231–241, 1994.

[55] U. Gaubatz, Rudecki P., S. Schiemann, and K. Bergmann. Population trans-
fer between molecular vibrational levels by stimulated Raman scattering with
partially overlapping laser fields. a new concept and experimental results. The
Journal of Chemical Physics, 92:5363, 1990.

[56] M. Germann, X. Tong, and S. Willitsch. Observation of electric-dipole-forbidden
infrared transitions in cold molecular ions. Nature Physics, 10:820–824, 2014.

[57] A. Giusti-Suzor and C. Jungen. Theoretical study of competing photoionization
and photodissociation processes in the NO molecule. The Journal of Chemical
Physics, 80:986, 1984.

[58] A. L. Goodgame, H. Dickinson, S. R. Mackenzie, and T. P. Softley. The Stark
effect in the 𝑣+ = 1 autoionizing Rydberg states of NO. The Journal of Chemical
Physics, 116:4922, 2002.

[59] D. D. Grimes. Millimeter-Wave Dynamics and Control of Rydberg-Rydberg
Transitions. PhD thesis, Massachusetts Institute of Technology, Cambridge,
MA, 2017.

[60] D. D. Grimes, T. J. Barnum, Y. Zhou, A. P. Colombo, and R. W. Field. Coher-
ent laser-millimeter-wave interactions en route to coherent population transfer.
The Journal of Chemical Physics, 147:144201, 2017.

[61] D. D. Grimes, S. L. Coy, T. J. Barnum, Y. Zhou, S. F. Yelin, and R. W. Field.
Direct single-shot observation of millimeter-wave superradiance in Rydberg-
Rydberg transitions. Physical Review A, 95:043818, 2017.

[62] M. Gross and S. Haroche. Superradiance: An essay on the theory of collective
spontaneous emission. Physics Reports, 93:301–396, 1982.

317



[63] C. Haase, M. Beyer, C. Jungen, and F. Merkt. The fundamental rotational in-
terval of para-H+

2 by MQDT-assisted Rydberg spectroscopy of H2. The Journal
of Chemical Physics, 142:064310, 2015.

[64] T. Halfmann and K. Bergmann. Coherent population transfer and dark reso-
nances in SO2. The Journal of Chemical Physics, 104:7068, 1996.

[65] B. Hemmerling, E. Chae, A. Ravi, L. Anderegg, G. K. Drayna, N. R. Hutzler,
A. L. Collopy, J. Ye, W. Ketterle, and J. M. Doyle. Laser slowing of CaF
molecules to near the capture velocity of a molecular MOT. Journal of Physics
B: Atomic, Molecular and Optical Physics, 49:174001, 2016.

[66] H. Herburger. Demonstration of optical-millimeter-wave stimulated raman adi-
abatic passage in calcium. Master’s thesis, ETH Zurich, Switzerland, 2017.

[67] HighFinesse GmbH. Wavelength Meter Ångstrom WS/7 User Manual.

[68] S. D. Hogan and F. Merkt. Demonstration of three-dimensional electrostatic
trapping of state-selected Rydberg atoms. Physical Review Letters, 100:043001,
2008.

[69] S. D. Hogan, C. Seiler, and F. Merkt. Rydberg-state-enabled deceleration and
trapping of cold molecules. Physical Review Letters, 103:123001, 2009.

[70] C. E. Housecroft and A. G. Sharpe. Inorganic Chemistry, Third Edition. Pear-
son Education Limited, Harlow, England, 2008.

[71] K. P. Huber and G. Gerzberg. Molecular spectra and molecular spectra. Volume
IV. Constants of diatomic molecules. Van Nostrand Reinhold Company, New
York, 1979.

[72] N. R. Hutzler, H.-I. Lu, and J. M. Doyle. The buffer gas beam: An intense, cold,
and slow source for atoms and molecules. Chemical Reviews, 112:4803–4827,
2012.

[73] N. R. Hutzler, M. F. Parson, Y. V. Gurevich, P. W. Hess, E. Petriz, B. Spaun,
A. C. Vutha, D. DeMille, G. Gabrielse, and J. M. Doyle. A cryogenic beam
of refractory, chemically reactive molecules with expansion cooling. Physical
Chemistry Chemical Physics, 13:18976–18985, 2011.

[74] P. L. Jacobson, D. S. Fisher, C. W. Fehrenbach, W. G. Sturrus, and S. R.
Lundeen. Determination of the dipole polarizabilities of H+

2 (0,0) and D+
2 (0,0)

by microwave spectroscopy of high-𝑙 Rydberg states of H2 and D2. Physical
Review A, 56:R4361–4364, 1997.

[75] Z. J. Jakubek and R. W. Field. Core-penetrating Rydberg series of BaF: 𝑠 ∼
𝑝 ∼ 𝑑 ∼ 𝑓 supercomplexes. Physical Review Letters, 27:2167–2170, 1994.

318



[76] F. Jensen. Introduction to Computational Chemistry. John Wiley & Sons, Inc.,
West Sussex, England, 2007.

[77] J. Jiang, Barnum T. J., S. L. Coy, and R. W. Field. Analysis of vibra-
tional autoionization of CaF Rydberg stats. The Journal of Chemical Physics,
150:154305, 2019.

[78] C. Jungen. Rydberg series in the NO spectrum: an interpretation of quantum
defects and intensities in the 𝑠 and 𝑑 series. The Journal of Chemical Physics,
53:4168, 1970.

[79] C. Jungen and E. Miescher. Absorption spectrum of the NO molecule. IX. The
structure of the 𝑓 complexes, the ionization potential of NO, and the quadrupole
moment of NO+. Canadian Journal of Physics, 47:1769–1787, 1969.

[80] C. Jungen, S. T. Pratt, and S. C. Ross. Multichannel quantum defect theory
and double-resonance spectroscopy of autoionizing levels of molecular hydrogen.
The Journal of Physical Chemistry, 99:1700–1710, 1995.

[81] L. A. Kaledin, M. C. Heaven, and R. W. Field. Thermochemical properties
(𝐷0

0 and IP) of the lanthanide monohalides. Journal of Molecular Spectroscopy,
193:285–292, 1999.

[82] J. J. Kay, G. Paterson, M. L. Costen, K. E. Strecker, K. G. McKendrick, and
D. W. Chandler. Communication: Direct angle-resolved measurements of col-
lision dynamics with electronically excited molecules: NO(A2Σ+)+Ar. The
Journal of Chemical Physics, 134:091101, 2011.

[83] J. Kim. Buffer-gas Loading and Magnetic Trapping of Atomic Europium. PhD
thesis, Harvard University, Cambridge, MA, 1997.

[84] Z. Kis, A. Karpati, B. W. Shore, and N. V. Vitanov. Stimulated Raman adia-
batic passage among degenerate-level manifolds. Physical Review A, 70:053405,
2004.

[85] C. Kittrell, E. Abramson, J. L. Kinsey, S. A. McDonald, D. E. Reisner, and
R. W. Field. Selective vibrational excitation by stimulated emission pumping.
Journal of Chemical Physics, 75:2056, 1981.

[86] D. E. Koshland Jr. The molecule of the year. Science, 258:1861, 1992.

[87] I. Kozyryev, L. Baum, K. Matsuda, P. Olson, B. Hemmerling, and J. M. Doyle.
Collisional relaxation of vibrational states of SrOH with He at 2 K. New Journal
of Physics, 17:045003, 2015.

[88] A. Kuhn, G. W. Coulston, G. Z. He, S. Schiemann, K. Bergmann, and W. S.
Warren. Population transfer by stimulated raman scattering with delayed pulses
using spectrally broad light. The Journal of Chemical Physics, 96:4215, 1992.

319



[89] A. Kuhn, S. Steuerwald, and K. Bergmann. Coherent population transfer in NO
with pulsed lasers: the consequences of hyperfine structure, Doppler broadening
and electromagnetically induced absorption. The European Physical Journal D,
1:57–70, 1998.

[90] M. P. Lee, B. K. McMillin, and R. K. Hanson. Temperature measurements
in gases by use of planar laser-induced fluorescence imaging of NO. Applied
Optics, 32:5379–5396, 1993.

[91] Hélène Lefebvre-Brion and Robert W. Field. The spectra and dynamics of
diatomic molecules. Elsevier, New York, 2004.

[92] H. Loh, J. Wang, M. Grau, T. S. Yahn, R. W. Field, C. H. Greene, and E. A.
Cornell. Laser-induced fluorescence studies of HfF+ produced by autoionization.
The Journal of Chemical Physics, 135:154308, 2011.

[93] B. I. Loukhovitski, A. S. Sharipov, and A. M. Starik. Influence of vibrations and
rotations of diatomic molecules on their physical properties: I. Dipole moment
and static dipole polarizability. Journal of Physics B: Atomic, Molecular and
Optical Physics, 49:125102, 2016.

[94] M.-J. Lu and J. D. Weinstein. Cold TiO(X 3Δ)-He collisions. New Journal of
Physics, 11:055015, 2009.

[95] J. C. MacGillivray and M. S. Feld. Theory of superradiance in an extended,
optically thick medium. Physical Review A, 14:1169–1189, 1976.

[96] P. A. Martin and M. Fehér. Casscf calculations of the multipole moments and
dipole polarisability functions of the X 2Σ+ and A 2Π states of CO+. Chemical
Physics Letters, 232:491–496, 1995.

[97] P. A. Martin, R. J. Stickland, C. S. B. Martin, and P. B. Davies. Infrared diode
laser spectroscopy of the 5g-4f Rydberg transition of nitric oxide. Canadian
Journal of Physics, 72:979–988, 1994.

[98] F. B. V. Martins, J. S. Keller, and E. R. Grant. Control of molecular ultra-
cold plasma relaxation dynamics by mm-wave Rydberg-Rydberg transitions.
Molecular Physics, 117:3096–3107, 2019.

[99] S. E. Maxwell, N. Brahms, R. deCarvalho, D. R. Glenn, J. S. Helton, S. V.
Nguyen, D. Patterson, J. Petricka, D. DeMille, and J. M. Doyle. High-flux beam
source for cold, slow atoms or molecules. Physical Review Letters, 95:173201,
2005.

[100] T. G. McGurk, T. G. Schmalz, and W. H. Flygare. Fast passage in rota-
tional spectroscopy: Theory and experiment. The Journal of Chemical Physics,
60:4181, 1974.

320



[101] F. Merkt, A. Osterwalder, R. Seiler, R. Signorell, H. Palm, H. Schmutz, and
R. Gunzinger. High Rydberg states of argon: Stark effect and field-ionization
properties. Journal of Physics B: Atomic, Molecular, and Optical Physics,
31:1705–1724, 1998.

[102] F. Merkt and H. Schmutz. Very high resolution spectroscopy of high Rydberg
states of the argon atom. The Journal of Chemical Physics, 108:10033, 1998.

[103] E. Miescher and K. P. Huber. Electronic spectrum of the NO molecule. In A. D.
Buckingham, editor, International Review of Science, Physical Chemistry Series
2, Volume 3. Spectroscopy. Butterworths, London, 1976.

[104] D. M. Mittleman. Perspective: Terahertz science and technology. Journal of
Applied Physics, 122:230901, 2017.

[105] L. Moi, C. Fabre, P. Goy, M. Gross, S. Haroche, P. Encrenaz, G. Beaudin, and
B. Lazareff. Heterodyne detection of Rydberg atom maser emission. Optics
Communications, 33:47–50, 1980.

[106] W. Müller and W. Meyer. Static dipole polarizabilities of Li2, Na2, and K2.
Journal of Chemical Physics, 85:953–957, 1986.

[107] E. Murgu, J. D. D. Martin, and T. F. Gallagher. Stabilization of predissociating
nitric oxide Rydberg molecules using microwave and radio-frequency fields. The
Journal of Chemicla Physics, 115:7032, 2001.

[108] F. Neese. The ORCA program suite. Wiley Interdisciplinary Reviews: Compu-
tational Molecular Science, 2:73–78, 2012.

[109] F. Neese. Software update: the ORCA program suite, version 4.0. Wiley
Interdisciplinary Reviews: Computational Molecular Science, 8:e1327, 2017.

[110] K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B. Neyenhuis, J. J.
Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye. A high phase-space-
density gas of polar molecules. Science, 322:231–235, 2008.

[111] M. A. O’Halloran, P. M. Dehmer, S. T. Pratt, J. L. Dehmer, and F. S. Tomkins.
Double-resonance studies of rotational autoionization of H2. The Journal of
Chemical Physics, 90:930, 1989.

[112] A. Osterwalder, S. Willitsch, and F. Merkt. High-resolution pulsed field ioniza-
tion study of high Rydberg states of benzene. Journal of Molecular Structure,
599:163–176, 2001.

[113] A. Osterwalder, A. Wüest, F. Merkt, and C. Jungen. High-resolution millimeter
wave spectroscopy and multichannel quantum defect theory of the hyperfine
structure in high Rydberg states of molecular hydrogen H2. The Journal of
Chemical Physics, 121:11810, 2004.

321



[114] C. D. Panda, B. R. O’Leary, A. D. West, J. Baron, P. W. Hess, C. Hoff-
man, E. Kirilov, C. B. Overstreet, E. P. West, D. DeMille, J. M. Doyle, and
G. Gabrielse. Stimulated Raman adiabatic passage preparation of a coherent su-
perposition of ThO H3Δ1 states for an improved electron electric-dipole-moment
measurement. Physical Review A, 93:052110, 2016.

[115] G. B. Park and R. W. Field. Perspective: The first ten years of broadband
chirped pulse Fourier transform microwave spectroscopy. The Journal of Chem-
ical Physics, 144:200901, 2016.

[116] G. B. Park, A. H. Steeves, K. Kuyanov-Prozument, J. L. Neill, and R. W. Field.
Design and evaluation of a pulsed-jet chirped-pulse millimeter-wave spectrom-
eter for the 70–102 GHz region. The Journal of Chemical Physics, 135:024202,
2011.

[117] H. Park, D. J. Leahy, and R. N. Zare. Extensive electron-nuclear angular mo-
mentum exchange in vibrational autoionization of 𝑛𝑝 and 𝑛𝑓 Rydberg states of
NO. Physical Review Letters, 76:1591–1594, 1996.

[118] H. Park and R. N. Zare. Roationally resolved photoelectron spectra from vibra-
tional autoionization of NO Rydberg levels. The Journal of Chemical Physics,
106:2239, 1997.

[119] R. M. Parrish, L. A. Burns, D. G. A. Smith, A. C. Simmonett, A. E. De-
Prince III, E. G. Hohenstein, U. Bozkaya, A. U. Sokolov, R. Di Remigio,
R. M. Richard, J. F. Gonthier, A. M. James, H. R. McAlexander, A. Ku-
mar, M. Saitow, X. Wang, B. P. Pritchard, P. Verma, H. F. Schaefer III,
K. Patkowski, R. A. King, E. F. Valeev, F. A. Evangelista, J. M. Turney,
T. D. Crawford, and C. D. Sherrill. Psi4 1.1: An open-source electronic struc-
ture program emphasizing automation, advanced libraries, and interoperability.
Journal of Chemical Theory and Computation, 13:3185–3197, 2017.

[120] D. Patterson and J. M. Doyle. Cooling molecules in a cell for FTMW spec-
troscopy. Molecular Physics, 110:1757–1766, 2012.

[121] H. Pauly. Atom, Molecule, and Cluster Beams. Springer-Verlag, Berlin, 2000.
Vol. 1.

[122] V. S. Petrović and R. W. Field. Polarization dependence of transition intensities
in double resonance experiments: Unresolved spin doublets. The Journal of
Chemical Physics, 128:014301, 2008.

[123] J. H. Piskorski. Cooling, Collisions and non-Sticking of Polyatomic Molecules
in a Cryogenic Buffer Gas Cell. PhD thesis, Harvard University, Cambridge,
MA, 2014.

[124] S. T. Pratt. Vibrational autoionization and predissociation in high Rydberg
states of nitric oxide. The Journal of Chemical Physics, 108:7131, 1998.

322



[125] S. T. Pratt, E. F. McCormack, J. L. Dehmer, and P. M. Dehmer. Rotational
state distributions from vibrational autoionization of H2 revisited. The Journal
of Chemical Physics, 92:1831, 1990.

[126] K. Prozument, A. P. Colombo, Y. Zhou, G. B. Park, V. S. Petrović, S. L.
Coy, and R. W. Field. Chirped-pulse millimeter-wave spectroscopy of Rydberg-
Rydberg transitions. Physical Review Letters, 107:143001, 2011.

[127] I. M. Rabey, J. A. Devlin, E. A. Hinds, and B. E. Sauer. Low magnetic John-
son noise electric field plates for precision measurement. Review of Scientific
Instruments, 87:115110, 2016.

[128] M. Raoult and C. Jungen. Calculation of vibrational preionization in H2 by
multichannel quantum defect theory: Total and partial cross sections and phot-
electron angular distributions. The Journal of Chemical Physics, 74:3388, 1981.

[129] M. Raoult, C. Jungen, and D. Dill. Photoelectron angular distributions in H2:
Calculation of rotational-vibrational preionization by multichannel quantum
defect theory. Journal de Chimie Physique et de Physico-chimie biologique,
77:599–604, 1980.

[130] S. Rowan, S. Twyford, R. Hutchins, and J Hough. Investigations into the effects
of electrostatic charge on the Q factor of a prototype fused silica suspension for
use in gravitational wave detectors. Classical and Quantum Gravity, 14:1537–
1541, 1997.

[131] A. Russek, M. R. Patterson, and R. L. Becker. Auto-ionization in molecular
systems. Physical Review, 167:17–25, 1968.

[132] J. R. Rydberg. On the structure of the line-spectra of the chemical elements.
Philosophical Magazine, 29:331–337, 1890.

[133] M. Schäfer and F. Merkt. Millimeter-wave spectroscopy and multichannel
quantum-defect-theory analysis of high Rydberg states of krypton: the hyper-
fine structure of 83Kr+. Physical Review A, 74:062506, 2006.

[134] P. C. Schmid, M. I. Miller, J. Greenberg, T. L. Nguyen, J. F. Stanton, and
H. J. Lewandowski. Quantum-state-specific reaction rate measurements for the
photo-induced reaction Ca+ + O2 → CaO+ + O. Molecular Physics, 117:3036–
3042, 2019.

[135] D. I. Schuster, L. S. Bishop, I. L. Chuang, D. DeMille, and R. J. Schoelkopf.
Cavity QED in a molecular ion trap. Physical Review A, 83:012311, 2011.

[136] S. M. Skoff, R. J. Hendricks, C. D. J. Sinclair, J. J. Hudson, D. M. Segal,
B. E. Sauer, E. A. Hinds, and M. R. Tarbutt. Diffusion, thermalization and
optical pumping of YbF molecules in a cold buffer-gas cell. Physical Review A,
83:023418, 2011.

323



[137] D. Sprecher, C. Jungen, W. Ubachs, and F. Merkt. Towards measuring the ion-
isation and dissociation energies of molecular hydrogen with sub-MHz accuracy.
Faraday Discussions, 150:51–70, 2011.

[138] A. L. Steber, B. J. Harris, J. L. Neill, and B. H. Pate. An arbitrary waveform
generator based chirped pulse Fourier transform spectrometer operating from
260 to 295 GHz. Journal of Molecular Spectroscopy, 280:3–10, 2012.

[139] G. Stokes. On the effect of the internal friction of fluids on the motion of
pendulums. Transactions of the Cambridge Philosophical Society, 9:8–106, 1851.

[140] A. J. Stone. The Theory of Intermolecular Forces. Oxford University Press,
Oxford, second edition, 2013.

[141] W. G. Sturrus, E. A. Hessels, P. W. Arcuni, and S. R. Lundeen. Microwave
spectroscopy of high-L H2 Rydberg states: The (0,1) 10 G, H, I, and K states.
Physical Review Letters, 61:2320–2323, 1988.

[142] W. G. Sturrus, E. A. Hessels, P. W. Arcuni, and Lundeen S. R. Laser spec-
troscopy of (𝑣 = 0, R=1)10F and (𝑣 = 0, R=1)10G states of H2: A test of the
polarization model. Physical Review A, 38:135–151, 1988.

[143] K.-X. Sun, B. Allard, S. Buchman, S. Williams, and R. L. Byer. LED deep UV
source for charge management of gravitational reference sensors. Classical and
Quantum Gravity, 23:S141–S150, 2006.

[144] A. Temkin. Internuclear dependence of the polarizability of N2. Physical Review
A, 17:1232–1235, 1978.

[145] T. O. Tiernan and R. E. Marcotte. Collision-induced dissociation of NO+ and
O+

2 at low kinetic energies: Effects of internal ionic excitation. The Journal of
Chemical Physics, 53:2107–2122, 1970.

[146] X. Tong, T. Nagy, J. Y. Reyes, M. Germann, M. Meuwly, and S. Willitsch.
State-selected ion-molecule reactions with Coulomb-crystallized molecular ions
in traps. Chemical Physics Letters, 547:1–8, 2012.

[147] D. Townsend, A. L. Goodgame, S. R. Procter, S. R. Mackenzie, and T. P.
Softley. Deflection of krypton Rydberg atoms in the field of an electric dipole.
Journal of Physics B: Atomic, Molecular and Optical Physics, 34:439–450, 2001.

[148] D. Ugolini, R. Amin, G. Harry, J. Hough, I. Martin, V. Mitrofanov, S. Reid,
S. Rowan, and K.-X. Sun. Charging issues in LIGO. In R. Caballero, J. C.
D’Olivo, G. Medina-Tanco, L. Nellen, F. A. Sánchez, and J. F. Valdés-Galicia,
editors, Proceedings of the 30th International Cosmic Ray Conference, volume 3,
pages 1283–1286, 2008.

324



[149] A. J. C. Varandas and Rodrigues S. P. J. Internuclear dependence of static
dipole polarizability in diatomic molecules. Chemical Physics Letters, 245:66–
74, 1995.

[150] M. Vervloet, A. L. Roche, and C. Jungen. Observation of high-ℓ Rydberg states
of nitric oxide. Physical Review A, 38:5489–5493, 1988.

[151] Inc. Virginia Diodes. Virginia diodes custom transmitters.
http://vadiodes.com/en/products/custom-transmitters. Accessed: 2019-
10-16.

[152] N. V. Vitanov, A. A. Rangelov, B. W. Shore, and K. Bergmann. Stimulated
Raman adiabatic passage in physics, chemistry, and beyond. Reviews of Modern
Physics, 89:015006, 2017.

[153] N. V. Vitanov, B. W. Shore, L. Yatsenko, K. Böhmer, T. Halfmann, T. Rickes,
and K. Bermann. Power broadening revisited: theory and experiment. Optics
Communications, 199:117–126, 2001.

[154] E. Vliegen and F. Merkt. Normal-incidence electrostatic Rydberg atom mirror.
Physical Review Letters, 97:033002, 2006.

[155] E. Vliegen, H. J. Wörner, T. P. Softley, and F. Merkt. Nonhydrogenic effects
in the deceleration of Rydberg atoms in inhomogeneous electric fields. Physical
Review Letters, 92:033005, 2004.

[156] M. J. J. Vrakking. Lifetimes of Rydberg states in ZEKE experiments. III.
Calculations of the dc electric field dependence of predissociation lifetimes of
NO. The Journal of Chemical Physics, 105:7336, 1996.

[157] M. J. J. Vrakking and Y. T. Lee. Enhancements in the lifetimes of NO Ry-
dberg states in dc electric fields: Implications for zero-electron-kinetic-energy
photoelectron spectroscopy experiments. Physical Review A, 51:894–897, 1995.

[158] M. J. J. Vrakking and Y. T. Lee. Lifetimes of Rydberg states in zero-electron-
kinetic-energy experiments. I. Electric field induced and collisional enhancement
of NO predissociation lifetimes. The Journal of Chemical Physics, 102:8818,
1995.

[159] J. K. G. Watson. Effects of a core electric dipole moment on rydberg states.
Molecular Physics, 81:277–289, 1994.

[160] J. K. G. Watson. Rotation-electronic coupling in diatomic Rydberg states. In
C. Sándorfy, editor, The role of Rydberg states in spectroscopy and photochem-
istry. Kluwer Academic Publishers, 1999.

[161] J. D. Weinstein. Magnetic Trapping of Atomic Chromium and Molecular Cal-
cium Monohydride. PhD thesis, Harvard University, Cambridge, MA, 2001.

325



[162] W. H. Wing. Electrostatic trapping of neutral atomic particles. Physical Review
Letters, 45:631–634, 1980.

[163] R. N. Zare. Angular Momentum. John Wiley & Sons, Inc., 1988.

[164] R. Zhao. Vibrational autoionization from 𝑛𝑓 Rydberg states of nitric oxide.
PhD thesis, Stanford University, 2004.

[165] R. Zhao, I. M. Konen, and R. N. Zare. Optical-optical double resonance pho-
toionization spectroscopy of nf Rydberg states of nitric oxide. The Journal of
Chemical Physics, 121:9938, 2004.

[166] V. Zhelyazkova, M. Z̆es̆ko, H. Schmutz, J. A. Agner, and F. Merkt.
Fluorescence-lifetime-limited trapping of Rydberg helium atoms on a chip.
Molecular Physics, 117:298–2989, 2019.

[167] Y. Zhou. Cooperative effects in a dense Rydberg gas. Molecular Physics,
110:1909–1915, 2012.

[168] Y. Zhou. Direct observation of Rydberg-Rydberg transitions via CPmmW spec-
troscopy. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA,
2014.

[169] Y. Zhou, D. D. Grimes, T. J. Barnum, D. Patterson, S. L. Coy, E. Klein, J. S.
Muenter, and R. W. Field. Direct detection of Rydberg-Rydberg millimeter-
wave transitions in a buffer gas cooled molecular beam. Chemical Physics Let-
ters, 640:124–136, 2015.

[170] Y. Zhou, K. B. Ng, L. Cheng, D. N. Gresh, R. W. Field, J. Ye, and E. A.
Cornell. Visible and ultraviolet laser spectroscopy of ThF. Journal of Molecular
Spectroscopy, 358:1–16, 2019.

[171] M. L. Zimmerman, M. G. Littman, M. M. Kash, and D. Kleppner. Stark struc-
ture of the Rydberg states of alkali-metal atoms. Physical Review A, 20:2251–
2275, 1979.

[172] A. Zutz and D. J. Nesbitt. Angle-resolved molecular beam scattering of NO at
the gas-liquid interface. The Journal of Chemical Physics, 147:054704, 2017.

326


