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Abstract

This thesis investigates the unimolecular vibrational dynamics of acetylene with
up to 15,000 cm−1 of internal energy, as encoded by dispersed fluorescence spectra of
the acetylene S1 → S0 system. Above 10,000 cm−1 of vibrational energy, these spectra
are extremely congested and cannot be analyzed using conventional spectroscopic
assignment procedures. Instead, a numerical pattern recognition technique entitled
Extended Cross Correlation (XCC) is introduced which utilizes methods of robust
estimation to identify a priori unknown patterns that are repeated in multiple spectra.
In particular, the XCC identifies spectroscopic patterns in the dispersed fluorescence
spectra that are associated with approximately conserved polyad quantum numbers.

This pattern recognition analysis makes possible detailed modelling, using an ef-
fective Hamiltonian, of the acetylene unimolecular vibrational dynamics up to 15,000
cm−1. Of special interest are the large-amplitude bending motions of acetylene at
high energy (22 quanta of bend excitation), which are investigated using techniques
of quantum, semiclassical, and nonlinear classical mechanics. At 15,000 cm−1, the
classical mechanics associated with the bending system is profoundly different from
that at low energy, where normal mode motions (trans and cis bend) dominate.
Specifically, classical chaos coexists with stable classical motions that are unrelated
to the normal mode motions. The most stable large amplitude bending motions
include “local bend” (one hydrogen bending) and “counter-rotation” (the two hy-
drogens undergoing circular motion at opposite ends of the molecule) motions. The
existence of these stable motions at high energy is a manifestation of a normal-to-local
transition in the bend degrees of freedom that is analogous to, but substantially more
complicated than, the well-known normal-to-local transitions in the stretch degrees
of freedom of ABA molecules.

In addition to the XCC, two additional numerical tools for spectroscopic analysis
are discussed: Hybrid Linear Pattern Analysis (HLPA) and Robust Baseline Estima-
tion (RBE). HLPA is a hybrid of conventional least-squares fitting and XCC which
is applicable when certain patterns contained in a spectroscopic data set are known
a priori but others are not. HLPA is applied to investigate the kinetics of inter-
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molecular energy transfer in atmospheric simulation experiments involving carbon
monoxide. RBE is a technique for baseline removal; that is, it permits the separation
of the sharp features in a spectrum from a continuous, slowly varying baseline.

Thesis Supervisor: Robert W. Field
Title: Professor of Chemistry

Thesis Supervisor: Robert J. Silbey
Title: Professor of Chemistry
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This thesis is divided into two major parts. Part I describes newly invented numerical

pattern recognition techniques for spectroscopy; Part II investigates the unimolecular

dynamics of acetylene at extreme levels of vibrational excitation. As the title of this

thesis suggests, these two parts of the thesis are closely related. This Introduction

outlines the major scientific questions posed in this thesis and the inter-relationships

among them, and foreshadows some of the key results.

1.1 Numerical Spectroscopic Pattern Recognition

Pattern recognition lies at the heart of spectrum interpretation. The patterns that

are present in spectra range from simple, textbook examples, such as P , Q, and

R rotational branches or Franck-Condon vibrational progressions, to more complex

examples such as polyatomic bright state fractionation patterns (considered in Part

II of this thesis) that are parameterized in a complicated fashion. The identification

of patterns in spectra has most frequently been performed “by eye”. Traditional

spectroscopic assignment proceeds by visual identification of spectroscopic patterns

that permit the assignment of quantum numbers to the upper and lower energy levels

involved in each observed transition; the frequencies and intensities of the assigned

transitions can then be related to a quantum mechanical Hamiltonian model that

allows insight into the system being studied.

In complex or congested spectra, however, the process of manual assignment may

be difficult, tedious, or ill-advised. As an example, consider the simulated spectrum

in Fig. 1-1, which is a superposition of four copies of a single simple pattern (the

construction of the simulated spectrum is shown explicitly in Fig. 1-2). The repeated

pattern in the spectrum is not obvious; finite signal-to-noise and resolution, as well

as overlap between the patterns, cause the spectrum to appear complicated. In such

situations, a numerical pattern recognition method of recovering information from

spectra may be desirable, in particular to identify diagnostically important but a

priori unknown patterns that are obscured by the complexity of the nascent spectro-

scopic data.
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Figure 1-1: This simulated spectrum is composed of a single pattern repeated four
times. The underlying simplicity of the spectrum is obscured by finite signal-to-noise
and resolution, as well as overlap between the patterns. The patterns present in this
spectrum are depicted in Fig. 1-2.

Two specific advantages of numerical, as opposed to visual, techniques for spec-

troscopic pattern recognition can be advanced:

1. Numerical pattern recognition is fast. With modern spectroscopic techniques,

huge data sets can be recorded rapidly, and often one has no a priori knowl-

edge of the nature and number of the patterns present in the data. Efficient

numerical methods of preprocessing such data without human intervention are

often desirable.

2. Numerical pattern recognition is rigorous. Any application of pattern recogni-

tion, whether human- or machine-based, relies on certain assumptions about

the data in question. However, in a numerical approach, the assumptions can

be made concrete, thus making the process of pattern recognition reproducible

and reducing the number of “judgment calls”.

Much of the spectroscopic data considered in this thesis is quite complex and thus can

be expected to benefit from processing by numerical algorithms. Specific challenges

involved in interpreting the complex experimental spectroscopic data discussed in

Chapters 2, 3, and 5 motivated the following question, which underlies the work in

Part I:

• What numerical techniques can be used to identify a priori unknown patterns

13



   

in, and extract them from, spectroscopic data sets? A useful numerical tech-

nique must be applicable to a wide range of spectroscopic pattern recognition

problems and must be tolerant of finite signal-to-noise and spectral congestion.

Few numerical techniques for spectroscopic pattern recognition currently exist, and as

discussed in Chapter 2, the realm of applicability of many of these techniques makes

them unsuitable for the pattern recognition problems considered in this thesis.

The numerical pattern recognition techniques that I discuss in Part I are based

upon techniques of robust estimation [1, 2, 3] and are complementary to previously

existing techniques. The pattern recognition problems that are considered in this

thesis have in common the goal of identifying a priori unknown patterns that are

repeated in multiple spectra. The algorithm used to solve these problems is called

Extended Cross Correlation (XCC). Among the applications of the XCC considered

in this thesis are

1. Spectra of unknown mixtures [Chapter 2]. It is difficult to obtain spectra of

pure samples of the ammonia mixed isotopomers (ND2H and NDH2) because

of the strong adsorption of ammonia and water on most cell surfaces, which

causes rapid exchange of H and D. An alternate approach is to obtain spectra

of mixtures of ammonia isotopomers with varying (but not precisely known)

deuterium fractions. The spectrum of each pure isotopomer can be considered

a pattern that is repeated in each mixed spectrum with a different amplitude,

and the XCC can be used to extract the spectrum of each isotopomer from the

spectra of several mixtures.

2. Kinetic studies [Chapter 3]. Time-resolved infrared emission spectra of CO have

been obtained in atmospheric simulation experiments at the LABCEDE facility

(Air Force Research Laboratory, Hanscom Air Force Base) by S. J. Lipson,

R. B. Lockwood, P. S. Armstrong, D. L. Vititoe, and W. A. M. Blumberg.

These time-resolved spectra are highly congested and consist of poorly resolved

(0.5 cm−1), overlapping ∆v = 1 emission bands from v′ = 1 up to at least

v′ = 12. The analysis of the time-dependence of the emission bands is stymied

14



  

Figure 1-2: The spectrum in Fig. 1-1 is a superposition of four copies of a simple
three-line pattern, shown here. The patterns are offset vertically for ease of viewing.

by a severe optical opacity effect in the v = 1 → 0 emission which is difficult

to simulate. Thus, conventional least-squares fitting cannot be employed to

determine the time-dependence of this emission band, or that of at least three

other emission bands that overlap strongly with it. However, a hybrid least-

squares/XCC technique permits the v = 1 → 0 emission band to be treated

as a pattern, while the other bands continue to be analyzed using least-squares

fitting. This hybrid approach succeeds in determining the time-dependence of all

of the vibrational bands, as well as the frequency dependence of the v = 1 → 0

emission.

3. Quantum number assignments [Chapter 2]. The assignment of rotational quan-

tum numbers to spectral features is often aided by recording spectra at multiple

temperatures and noting the changes in intensity of the observed transitions.

Spectral features that share the same initial state can be considered patterns

in this context, and a variant of the XCC can be used as a preprocessing tool

for making rotational assignments in congested spectra. This application of the

XCC is illustrated using simulated spectra of OH radical at high temperatures

(>1500 K) and relatively low resolution (0.5 Å) that were provided by Dr. W.

Kreutner and Prof. K. Kohse-Höinghaus (U. Bielefeld, Germany).

The greatest motivating factor for developing the XCC, however, was to identify

patterns in dispersed fluorescence spectra of acetylene that encode the unimolecular
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dynamics of the molecule at high vibrational excitation. In fact, as discussed in the

next section, the XCC made possible the entirety of Part II of this thesis.

1.2 Acetylene Unimolecular Dynamics

The central scientific questions addressed in Part II of this thesis are the following:

• How are large-amplitude vibrational motions of small polyatomic molecules en-

coded in their gas phase spectra?

• To what extent can these vibrational dynamics be characterized as “chaotic” or

“regular”? [In the former case, statistical models of vibrational energy exchange

may be appropriate, whereas in the latter case, approximate constants of motion

exist.]

Both of these questions are given concrete answers in Part II of this thesis, with respect

to a single small polyatomic molecule—acetylene, which is an important prototype

molecule because of its importance in combustion; because as a tetratomic, it is a

relatively simple yet highly nontrivial organic molecule; and because it is one of the

simplest isomerizing systems.

Figure 1-3 is a schematic representation of the system under study. The most

stable configuration of acetylene in its ground electronic state (S0) is linear, but a

diradical called vinylidene exists as a quasi-stable species, whose zero-point level lies

∼15,000 cm−1 above the linear zero-point [4]. The acetylene ground electronic state

has previously been, and continues to be, extensively characterized by absorption

spectroscopy, which is sensitive primarily to CH stretch excitation (see Refs. [5] and

[6] for a review of available acetylene absorption data). However, as Fig. 1-3 makes

clear, the acetylene-vinylidene isomerization motion is more closely related to the

bending and CC stretch motions of acetylene than to the CH stretch motions; the

isomerization involves bending one of the hydrogens from one side of the CC core to

the other, and the conversion of the CC bond from a triple to a double bond.

16



   

kcal/
mol eV cm

-1vB

 P
U

M
P

 

S0 

S1 

0

15000

42000

46000

1.9

5.2

5.7

00

43

120

133

0

22

62

68

C C
H

H
:

C CH H

H

H

C C

C C

H

H

Figure 1-3: Schematic representation of the ground and first excited singlet states
of acetylene, with key structures and energies (accurate to two significant figures).
The most stable configuration of acetylene in its ground electronic state is linear,
but vinylidene exists as a quasi-stable species, whose zero-point level lies ∼15,000
cm−1 above the linear zero-point. The transition state for the acetylene-vinylidene
isomerization has a half-linear structure. The zero-point level of the trans-bent first
excited singlet state lies at ∼42,000 cm−1, ∼4000 cm−1 below the first dissociation
limit [7] of the ground electronic state. The units “vb” refer to the approximate
number of quanta of bend excitation.
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In order to obtain spectroscopic data more directly relevant to acetylene-vinylidene

isomerization, the Field group has for many years [8, 9, 10, 11, 12] recorded double

resonance spectra of acetylene using rovibrational levels of the S1 state as intermedi-

ates. It is not my intention to review all of the Field group’s research on acetylene,

other than to point out that the majority of the experiments that have been per-

formed have utilized the stimulated emission pumping (SEP) technique [13]. These

SEP studies were carried out by using a PUMP laser to populate single rovibrational

levels of the acetylene S1 state, and a DUMP laser to stimulate emission back down

to excited rovibrational levels of the S0 state. The large geometry change between

the S0 and S1 states allows the DUMP transitions to probe the S0 surface at rather

high internal energies (up to at least 26,000 cm−1). In particular, the Franck-Condon

principle suggests that, since the S1 state has a trans-bent geometry with a nom-

inal CC double bond, S0 vibrational levels with large degrees of excitation in the

CC stretch and trans-bend modes will be particularly prominent in double resonance

spectra that use S1 rovibrational levels as intermediates.

More recently, the SEP studies of acetylene have been complemented by dispersed

fluorescence (DF) spectra. The DF experiments differ from SEP in that a DUMP laser

is not used; instead, the intensity of the spontaneous emission is recorded as a function

of wavelength using a monochromator and an appropriate detector. The DF spectra

that have been recorded from the S1 state of acetylene have much lower resolution

(>4 cm−1) than the SEP spectra, in which the resolution is limited by the DUMP

laser bandwidth, which is ∼0.05 cm−1 for typical commercial dye laser systems. The

decreased resolution of the DF spectra makes it possible to map out large regions

of the S0 potential surface much more rapidly than is possible with SEP. Recording

a 1000 cm−1 region of spectrum using SEP requires weeks, if not months, of data

collection, whereas the same region can be recorded in minutes using DF. The lower

resolution of DF, of course, limits the level of spectroscopic detail. However, from the

standpoint of understanding unimolecular dynamics, low resolution corresponds to

short-time dynamics, and for polyatomic molecules at high internal energy, the short-

time dynamics (a few ps) can provide a wealth of insight into the potential energy
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surface under study. As can be seen in Fig. 1-4, high resolution, high sensitivity

techniques such as SEP generate enormous amounts of detail that relate to the long-

time dynamics of the molecule; the panoramic perspective afforded by DF spectra

provides the essential framework for understanding such details.

As can be seen in the top panels of Fig. 1-5 and 1-4, however, the DF spectra of

acetylene are by no means simple. These spectra will be analyzed in detail in Chapter

5; here I wish only to point out a few of the key qualitative features. The emission

tends to peak between 10,000 and 15,000 cm−1, but transitions to states at least as

high as 25,000 cm−1 can be recorded with reasonable signal-to-noise. The spectrum

becomes increasingly congested and complicated as internal energy increases. This

trend is, of course, conventionally considered to be due to increasingly rapid and un-

restricted intramolecular vibrational redistribution (IVR). The potential surface near

the global minimum can be approximated as a multi-dimensional harmonic oscilla-

tor, and the low-lying eigenstates can generally be assigned normal mode quantum

numbers. However, at higher internal energy, anharmonicities of the potential en-

ergy surface introduce resonant couplings among the normal mode states. In the

frequency domain, these couplings are manifested by increasing complexity of the

spectra; in the time domain, energy flow among the normal modes is possible. From

either perspective, the IVR reflects the nonconservation of the normal mode quantum

numbers.

Prior to the work reported in this thesis, the acetylene DF spectra were only

partially analyzed up to ∼10,000 cm−1. Above this energy, the spectra are simply

too complicated to yield to conventional spectroscopic analysis, which emphasizes

assignment of individual eigenstates. In this thesis, a detailed and essentially complete

analysis of the spectra up to 15,000 cm−1 is presented; recent work that is reported

in Chapter 10 has extended the analysis to even higher energy (up to ∼20,000 cm−1,

although this work is ongoing and the analysis is not yet complete).

The analysis of the extremely complicated DF spectra above 10,000 cm−1 has

been made possible by the use of numerical pattern recognition. Specifically, the

bottom panel of Fig. 1-5 depicts spectroscopic patterns that can be extracted from
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Figure 1-4: Complementary use of DF and SEP spectroscopy to study acetylene
dynamics. The spectra in each case are recorded using the Q(1) line of the V 2

0 K
1
0

band of 13C2H2 (see Chapter 5 for notation). Top and middle: DF spectrum (∼16
cm−1 resolution). Bottom: SEP spectrum (∼0.15 cm−1 resolution).
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Figure 1-5: Numerical pattern recognition (XCC) can be used to decompose acetylene
dispersed fluorescence spectra (top) into several series of patterns (bottom). Most of
the patterns consist of only a few intense lines, and clear trends can be observed
within and among the pattern progressions. Thus, the complicated appearance of the
acetylene DF spectrum obscures the (relative) simplicity of the patterns that can be
extracted from it.
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the acetylene DF spectra using the XCC technique that is discussed in Section 1.1.

The acetylene DF spectra can be seen to be similar to the simulated spectrum in

Fig. 1-1, in that the complicated appearance of the acetylene DF spectrum obscures

the (relative) simplicity of the patterns that can be extracted from it. The nature

of the patterns in the acetylene DF spectra is discussed in some detail in Chapter 5.

Here I wish to point out only that the patterns are associated with (approximately)

conserved quantum numbers.

The association of spectroscopic patterns with conserved quantities is a general

phenomenon. Consider, for example, the infrared absorption spectrum of acetylene

or other small molecules. The majority of the absorption bands are characterized

by the easily recognizable P and R branch (and in some cases Q branch) pattern of

lines. The existence of these regular patterns indicates that there exist approximately

conserved vibrational (i.e., normal mode) and rotational quantum numbers for the

molecule that can be used to label the transitions. However, for many molecules,

some of the absorption bands are perturbed, meaning that the usual spectroscopic

pattern is degraded in some way. The partial or localized breakdown of a spectroscopic

pattern indicates nonconservation of some nonrigorously conserved quantum number.

In acetylene, for example, the antisymmetric stretch fundamental absorption band is

strongly perturbed. In that case, the perturbation is due to an anharmonic resonance

between the (0, 0, 1, 00, 00) and (0, 1, 0, 1+1, 1−1) vibrational levels, which indicates

that the normal mode quantum numbers are at least locally nonconserved. In other

cases, the perturbation may be rotationally inhomogeneous (i.e., due to a Coriolis

mechanism), indicating that the approximately conserved rotational quantum number

(as opposed to the rigorously conserved total angular momentum) is nonconserved.

Note that the ability to detect a perturbation of the usual spectroscopic pattern

will in general be a function of resolution. That is, from a dynamical standpoint,

a perturbation that can be detected at low resolution indicates quantum number

nonconservation on a relatively short timescale.

In the case of the patterns in the acetylene DF spectra, the approximately con-

served quantum numbers associated with the patterns are referred to as polyad quan-
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tum numbers [14, 15, 16, 17], which can be thought of as generalized vibrational

quantum numbers that remain conserved even when the usual normal mode quantum

numbers are nonconserved, due to IVR. It should be made clear that the existence of

(approximately) conserved quantum numbers does not guarantee that patterns will

appear in the spectra in a form that is easily recognizable either by eye or with a

numerical technique. However, it is a necessary prerequisite. The destruction of all

nonrigorously conserved quantum numbers is of course associated with classical chaos

(and its quantum manifestations) [18]. If a molecule could be studied that approaches

this “bag of atoms” limit [19] at sufficiently high internal energy, one would expect to

be unable to identify any spectroscopic patterns, and the only insights to be gained

would be statistical in nature.

The ability to identify patterns in the acetylene spectra up to 20,000 cm−1 is

strong evidence that some vibrational quantum numbers remain at least approxi-

mately conserved up to that energy. This result is itself interesting since it implies

that acetylene-vinylidene isomerization, at least within the first several thousand

cm−1 above the isomerization barrier, is unlikely to be describable by statistical the-

ories. However, the majority of the work in Part II of this thesis is devoted to the

detailed analysis of the vibrational dynamics of acetylene at high internal energy

(>10,000 cm−1). As discussed in Chapter 5, many qualitative insights can be gained

from merely inspecting the patterns that are extracted from the acetylene DF spectra

(bottom panel of Fig. 1-5). One of the most surprising insights is that there exists a

series of vibrational levels up to at least 18,000 cm−1 that can be labeled with normal

mode quantum numbers (see Chapter 9). These account for only a small fraction

of the states at high internal energy, but their existence implies that IVR is highly

nonuniform, with some states experiencing virtually no IVR (on a timescale of at least

several ps) even when acetylene-vinylidene isomerization is energetically feasible.

However, the majority of the insights into acetylene unimolecular dynamics in

Part II are gained by developing an explicit numerical model for the acetylene vi-

brational structure. The separation of the DF spectra into patterns associated with

conserved quantum numbers, using numerical pattern recognition tools, makes the

23



    

task of developing such a model vastly simpler. In principle, one could determine

from the data a potential energy surface for the ground electronic state. That is, one

could define an appropriate analytical expression to represent the potential energy

surface, and adjust the parameters to achieve maximal agreement between the ob-

served eigenenergies and those calculated using the surface. However, six vibrational

degree of freedom systems (at high energy) currently represent the state of the art

in fully quantum mechanical, variational calculations. Thus, our results present a

challenge for both electronic and vibrational structure calculations (i.e., can a poten-

tial energy surface be constructed that reproduces our results, at least qualitatively,

to 15,000 cm−1, and can fully 6D variational [20, 21] or wavepacket propagation [22]

methods be used efficiently to investigate the spectra and dynamics of acetylene at

high internal energy?).

It should be noted that some work has been done to develop potential energy

surfaces [23, 24] and force fields [20, 25] for S0 acetylene and vinylidene, and in some

cases these potentials have been refined against (certain) experimental data. However,

no representation of the S0 potential energy surface has yet been demonstrated to

reproduce the highly excited bending states near 15,000 cm−1 that are a central

concern in Part II. In the absence of a potential surface with sufficient accuracy,

which becomes increasingly difficult for larger molecules, effective Hamiltonians1 can

provide substantial insights into quantum vibrational dynamics. In fact, even when

accurate potential energy surfaces are available, effective Hamiltonian models (which

can be derived from the potential by perturbation theory [26, 24]) are still frequently

found to provide insights that are complementary to calculations performed directly

with a potential surface; see recent work on acetylene [24, 27] and HCP [26, 28] for

examples.

In Chapters 9 and 6, an effective Hamiltonian model is developed that reproduces

the qualitative fractionation patterns that are observed in the acetylene DF spectra up

to 15,000 cm−1. Particularly good agreement is obtained for states with high bending

1In this thesis, an effective vibrational Hamiltonian will be defined as a Hamiltonian that can be
expressed entirely in terms of (harmonic oscillator) raising and lowering operators for the various
vibrational degrees of freedom.
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excitation; 83 bending vibrational energy levels of acetylene, with up to 22 quanta of

excitation, are reproduced with 1.4 cm−1 RMS error, which is approximately equal

to the average measurement error for frequencies in the DF spectra. The vibrational

dynamics associated with this effective Hamiltonian are then investigated from several

different perspectives, which are summarized in Fig. 1-6.

In Chapter 6, the quantum bending dynamics of acetylene are explored. The

effective Hamiltonian is defined in a zero-order, normal mode basis set. Any given

zero-order state is not an eigenstate of the Hamiltonian, due to the existence of off-

diagonal resonant couplings in the model, and is thus nonstationary (i.e., it represents

a wavepacket that will evolve with time in the zero-order state space of the effective

Hamiltonian). Much of Chapter 6 is devoted to the time-dependent evolution of those

zero-order states (with nonzero excitation in the Franck-Condon active CC stretch

and trans bend modes) that are most directly relevant to the experimentally observed

DF spectra. In other words, Chapter 6 provides a time-domain interpretation of the

frequency domain experiments, focusing on the evolution of the bending dynamics

with increasing energy. One surprising result of this investigation is that the bending

dynamics are significantly more complicated at 10,000 cm−1 than they are at 15,000

cm−1, as judged by both qualitative and quantitative measures.

Although the exploration of state-space dynamics can provide substantial insight

into the bending dynamics of acetylene, one weakness of this approach is that it is

basis set dependent. That is, one understands the dynamics in terms of energy flow

among the zero-order normal mode states. However, Chapter 6 provides substantial

evidence that the normal mode basis set is a poor zero-order representation for the

bending states of acetylene above ∼10,000 cm−1, which limits the insights that can

be gained at high energy using the state-space approach. In Chapters 7 and 8, the

vibrational structure of acetylene is investigated using basis set independent meth-

ods. Specifically, in Chapter 7, the eigenfunctions of the effective Hamiltonian are

investigated and revealed to be qualitatively different at low and high internal energy.

As expected, at low vibrational energy the eigenfunctions have well-defined nodal co-

ordinates and can be assigned normal mode quantum numbers. More surprising is
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Figure 1-6: Spectroscopic patterns can be fit to an effective Hamiltonian model that
provides insights into the unimolecular vibrational dynamics. The zero-order states
in the effective Hamiltonian are represented by horizontal lines; the dotted lines rep-
resent resonant couplings among the zero-order states. Measures of the quantum
dynamics, such as the survival probability, are often used to describe IVR, but semi-
classical interpretations may yield greater insights.
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that at high internal energy (15,000 cm−1), many of the eigenfunctions also have sim-

ple, well-defined nodal coordinates, but these nodal coordinates are entirely distinct

from those at low internal energy which are organized by the normal modes. That

is, the eigenfunctions show strong evidence for the existence of new types of stable

vibrational motions at high internal energy.

Two specific classes of vibrational motion are demonstrated to be particularly

important at high internal energy, as depicted in Fig. 1-7. The first is called “local

bend”, which involves the bending of one hydrogen atom while the other remains

colinear with the CC bond. The second is called “counter-rotation”, in which the two

hydrogen atoms undergo circular motions on opposite ends of the CC bond. Both of

these motions are a natural result of a transition from normal to local mode behavior

in the bending dynamics of acetylene that occurs near 9,000 cm−1. As reviewed in

Chapter 7, local mode behavior has been demonstrated previously for a wide variety

of molecules with coupled stretching modes [29, 30, 31, 32, 33]. The typical behavior

of a local stretching system is illustrated in the left column of Fig. 1-7. At low

internal energy, the normal mode motions dominate (symmetric and antisymmetric

stretch), but as vibrational energy increases, new stable motions emerge that involve

the stretching of just one bond (local stretch). In this thesis I demonstrate that

an analogous effect occurs in acetylene when the trans and cis bend motions are

replaced by local bend and counter-rotation at high internal energy. Not surprisingly,

the normal-to-local transition for the acetylene bend modes is substantially more

complicated than the analogous effect for stretch modes, since each bend mode is two-

dimensional, while stretch modes are one-dimensional. A local mode Hamiltonian is

also derived for the acetylene bends in Chapter 7 and is demonstrated to be equivalent

to the normal mode Hamiltonian, in the sense that either can be used to describe

the dynamics of the molecule at any energy. However, the normal mode model is a

better zero-order representation at low energy, while the local mode model is superior

at high energy.

All of the insights into the local mode bending behavior of acetylene in this thesis

are gained from an effective Hamiltonian model, but the local mode behavior must,

27



 

Coupled Stretches Coupled Bends

LOCAL MODE SYSTEMS

low E:
normal
modes

high(er) E:
origin of

local modes

C CH H

(local bend)

(counter-rotation)

C C

H

H

C CH H

(trans bend)

C CH H

(cis bend)

A AB

(sym. stretch)

A AB

(antisym. stretch)

A AB

(local stretch)

E
n
e
rg

y

Figure 1-7: In local mode systems, new stable vibrational motions arise at high in-
ternal energy that are distinct from the normal mode motions. Local stretch systems
have previously been studied extensively [29, 30, 31, 32, 33]; in this thesis it is demon-
strated that an analogous, but significantly more complicated, phenomenon can occur
for coupled bending modes, such as in acetylene.
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of course, be related to the structure of the potential surface. In the absence of

a potential surface that can reproduce the experimental results, it is not possible

to make any firm conclusions, but qualitative features of the S0 potential surface

certainly suggest that the emergence of the stable local bend motion is closely related

to acetylene-vinylidene isomerization. A representation of the S0 bending potential,

based upon the Halonen, Child, and Carter surface [23], is depicted in Fig. 1-8. The

two large wells marked by “A” represent the linear configuration, while “C” marks

the shallow vinylidene local minimum. The transition state between the two, marked

by “B”, has a half-linear configuration (as confirmed by numerous high-level ab initio

calculations [34]), in which one CCH angle is ∼60◦, while the other is ∼180◦.

Figure 1-9 provides a closer look at the minimum energy isomerization pathway

from acetylene to vinylidene, again as represented by the Halonen, Child, and Carter

surface [23]. The left panel depicts the vibrational energy along the minimum energy

isomerization path, and the right panel represents the vibrational motion along that

path. The motion of each atom is depicted, and the shading of the lines in the right

panel matches the shading in the left, such that black represents acetylene and light

gray represents vinylidene. Note that hydrogen #2 moves very little at all during

the early stages of the isomerization motion, from acetylene to the transition state,

while hydrogen #1 bends well past 90◦. That is, the early stages of the isomerization

motion are well-described as a local bend motion.

The overall picture that emerges from Figs. 1-8 and 1-9 is that, although nei-

ther pure trans nor pure cis bend motions are expected to promote isomerization of

acetylene to vinylidene, the local bend motions, which have been demonstrated to be

highly stable at ∼15,000 cm−1, are closely related to the isomerization. This obser-

vation may help to provide an explanation for some intriguing recent experimental

results by the group of Z. Vager (Weizmann Institute), who performed Coulomb Ex-

plosion Imaging experiments (CEI) on S0 vinylidene, which was prepared by electron

photodetachment [35]. The vinylidene rovibrational states that are prepared in such

an experiment are not eigenstates of the full S0 state Hamiltonian; the vinylidene local

minimum is shallow, and tunnelling interactions between acetylene and vinylidene are
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Figure 1-8: The planar bending potential energy surface of acetylene, as represented
by the Halonen, Child, and Carter surface [23]. The trans and cis bend axes represent
Jacobi coordinates (the positions of the hydrogens are defined from the center of
the CC bond), and the values of the stretching coordinates are optimized for every
pair of bending coordinates. Four stationary points of the S0 surface are depicted.
“A” is the linear configuration, which is the most stable. “C” is the quasi-stable
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plotted every 5000 cm−1.
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Figure 1-9: Energetics and dynamics of the acetylene-vinylidene isomerization, as
represented by the Halonen, Child, and Carter surface [23]. The isomerization coor-
dinate is defined by the path of steepest descent from the transition state, which is
marked by an arrow in both panels. The early stages of the isomerization motion,
from acetylene to the transition state, are well-described as a local bend motion—one
hydrogen bends well past 90◦, while the other remains nearly colinear with the CC
bond.

expected to be substantial even for the vibrationless level of vinylidene [36, 37]. Thus,

the preparation of nominally vinylidene vibrational levels will lead to wavepacket dy-

namics that sample both the vinylidene and linear acetylene wells. Based upon the

much larger density of linear acetylene than vinylidene vibrational levels at the same

energy, one might expect the vinylidene character to be highly fractionated among

many linear acetylene states (i.e., to fall within the “strong coupling” limit [38]); in

the time domain, this would correspond to rapid and irreversible isomerization from

vinylidene to acetylene.

In the Vager et al. experiments, the molecular structure associated with the evolv-

ing wavepacket was probed by CEI 3.5 µs after the photodissociation of the vinylidene

anion. If the isomerization from vinylidene to acetylene were in fact rapid and irre-

versible, very few of the probed molecules would be found in a configuration similar

to vinylidene. However, the CEI experiments indicated that ∼50% of the molecules

could be classified as having structures more similar to vinylidene than to linear

acetylene. From this observation, Vager et al. conclude that “the observed vinyli-

31



      

dene structure corresponds to 2–3 exact states”. This conclusion may be reworded

somewhat more precisely: The vinylidene character of the zero-order states that are

prepared in the electron photodetachment experiment are distributed, on average,

over 2–3 eigenstates of the S0 surface, the remainder of the eigenstate character being

accounted for by linear acetylene states.2

The Vager et al. results are perhaps less surprising given the conclusion of this

thesis that the vibrational structure of acetylene near 15,000 cm−1 does not approach

the statistical/chaotic limit, even for the low frequency bending modes, and that a

handful of stable large-amplitude vibrational motions dominate the dynamics. If the

conclusion of Vager et al. is proven to be correct, then the 2–3 states of linear acetylene

into which the vinylidene states are strongly coupled will almost certainly have a

large degree of local bending character; the density of such states at high internal

energy is of course rather small compared with the total density of vibrational states.

Theoretical studies of acetylene-vinylidene isomerization [37, 39, 40] will be critical in

establishing more rigorously the connections between the work reported in this thesis

and the Vager et al. experiments.3

The final chapter of this thesis is devoted to recent work on acetylene that I have

not yet published. Two major ongoing lines of research discussed in this final chap-

ter are the analysis of the acetylene spectra above 15,000 cm−1 (with the goal of

identifying spectroscopic signatures of acetylene-vinylidene isomerization), and the

investigation of isotopically substituted acetylene species, such as 13C2H2, which are

described by the same potential energy surface as 12C2H2 but may undergo substan-

tially different unimolecular dynamics.

2Even more precisely, one can state that the average dilution factor (see Section 6.4) of the
prepared zero-order vinylidene states is ∼0.5, a point which Vager et al. make, although they do not
use the term “dilution factor”.

3I wish to point out that previous semiclassical calculations of Miller et al. on vinylidene-acetylene
isomerization [37] are not necessarily antithetical to the Vager et al. results. The semiclassical
calculations investigate the early-time decay of the vinylidene wavepacket, which may be quite fast,
even if the vinylidene character is distributed over only 2–3 eigenstates. The fast early-time decay,
however, would have to be followed by a series of strong and regular partial recurrences.
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Part I

Spectroscopic Pattern Recognition
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Chapter 2

Extended Cross Correlation
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This chapter describes a spectroscopic pattern recognition technique entitled Ex-

tended Cross Correlation (XCC) that was jointly invented by Steve Coy and myself.

The majority of this work has been published as two articles [41, 42] in the Journal

of Chemical Physics. The work in Section 2.5 has not been published; this work was

stimulated by an informal collaboration with the group of Prof. Katharina Kohse-

Höinghaus, who have an interest in applications of pattern recognition to combustion

spectroscopy.

2.1 Motivation for XCC

Recent improvements in spectrum excitation, recording and processing capabilities

have led to an enormous enhancement in the quality and quantity of spectroscopic

data sets. These data sets generally contain a prodigious amount of information. The

task of extracting this information is made difficult by extrinsic (resolution, signal-

to-noise, spectral coverage) and intrinsic (unknown or overlapping patterns) factors.

One traditional approach to understanding the information encoded in spectro-

scopic data has been first to assign approximate quantum numbers to the upper and

lower energy levels involved in each observed transition and then to relate the frequen-

cies and intensities of the assigned transitions to a quantum mechanical Hamiltonian

model that allows insight into the system being studied. In complex or congested

spectra, however, the process of manual assignment may be difficult, tedious, or ill-

advised. In such situations, a pattern-recognition based, rather than model based,

method of recovering information from spectra may be desirable, in particular to

identify diagnostically important but a priori unknown patterns that are obscured

by the complexity of the nascent spectroscopic data.

Extended Cross Correlation (XCC) is a pattern recognition technique that is well

suited to take advantage of large, high quality data sets. Spectra are used to decode

each other without any advance knowledge of or assumptions about the nature and

number of patterns that are sought. More specifically, the XCC permits the rapid

identification and extraction of patterns that are repeated in multiple spectra.
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One of the simplest examples of the application of the XCC, which will be consid-

ered in some detail in this chapter, is to identify, in spectra of mixtures of chemical

species, which peaks correspond to which chemical species. This application of the

XCC is of considerable practical importance. Certain chemical species (e.g. transient

molecules, single isotopomers) are difficult to isolate. If it is desired to characterize

such a species spectroscopically, then frequently one must be content with obtaining

spectra of unspecified mixtures of chemical species, one of which is the species of

interest. A number of approaches are possible to determine which features in the

spectra of such mixtures correspond to the species of interest. One straightforward

method is to obtain spectra of several mixtures, each of which contains the species of

interest in a different (but not precisely measured) fractional abundance. Peaks in the

spectra that belong to the species of interest will have intensities that vary linearly

with its fractional abundance; the relative intensity of a peak in the various spectra

can be used to assign it to a chemical species. The process of assigning spectral fea-

tures to distinct chemical species thus represents a type of pattern recognition: the

spectrum of one chemical species is a pattern which is identified in several spectra

simultaneously.

This application of the XCC is illustrated in this chapter with both synthetic data

and experimental spectra of mixtures of ammonia isotopic species. Other applications

of the XCC are reported in subsequent chapters. In Chapter 3, the XCC is applied to

atmospheric emission simulation experiments with carbon monoxide. All of Part II

of this thesis was also made possible by the XCC, and Chapter 5 in particular reports

the application of the XCC to identify fractionated bright states that are repeated in

multiple dispersed fluorescence spectra of the acetylene S1 → S0 system. Note that,

although all of the applications of the XCC that are discussed in this thesis involve

spectroscopic data, the XCC is applicable to other types of data as well, as long as

the data fulfill certain criteria that are discussed in Section 2.2.

This chapter proceeds as follows. Section 2.2 describes the motivation for the

XCC, and illustrates its use for identifying patterns that are repeated in two syn-

thetic spectra. Section 2.3 discusses the application of the XCC to data sets which
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consist of more than two spectra. Section 2.4 illustrates the use of the XCC with real

experimental data, namely, spectra of mixtures of deuterated ammonia isotopomers.

In Section 2.5, a variant of the XCC entitled “windowed XCC” is introduced and used

to identify rotational progressions in congested absorption spectra of OH. Section 2.6

concludes with comments on the complementarity between the XCC and other pat-

tern recognition techniques that have been used in spectroscopic applications.

2.2 XCC in Two Dimensions

The XCC is introduced in this section and applied to a synthetic data set that il-

lustrates one of the simplest applications of the XCC: the partitioning of spectra of

mixtures of chemical species into separate spectra of each species. In this application,

the patterns to be identified are the spectra of the individual species.

Figure 2-1 depicts two patterns (the spectra of two individual chemical species)

and two synthetic spectra that are generated by taking distinct linear superpositions

of the patterns. That is,

I1(x) = a1IA(x) + b1IB(x) (2.1)

I2(x) = a2IA(x) + b2IB(x) . (2.2)

Note that numbers are used to label spectra, and letters to label patterns. The pa-

rameter “x” in a real experimental spectrum would represent (for example) frequency,

wavelength, or internal energy. In this synthetic example, the discrete intervals xk at

which the spectra are sampled will be referred to generically as “spectral elements”.

The coefficients a1, a2, b1, and b2 describe the amplitudes of the patterns in each

spectrum, and in this particular example have the values of 1.00, 1.11, 1.00, and 0.33

respectively. In addition, to make the spectra resemble real, experimental data sets,

Gaussian random noise is superimposed upon each of the synthetic spectra.

Understanding the point of view used in the XCC requires a bit of mental gymnas-

tics to invert the way in which the experimental data is organized. A spectroscopic
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Figure 2-1: The XCC technique is illustrated using synthetic spectra. Top left: Pat-
terns A and B, which contain features with Gaussian line shapes of half-width at
half maximum (HWHM) of 30. Bottom left: Synthetic spectra 1 and 2, which are
constructed by taking two different linear combinations of the patterns, and adding in
Gaussian random noise. Top right: Recursion map of the synthetic spectra. The axes
of the recursion map represent intensity values in each of the two spectra. The inset
shows the (R,d) coordinates that are used to define the XCC merit function. Ratio
directions optimized from the merit function are shown as dotted lines. Bottom right:
XCC merit function (Eq. 2.7) computed for the synthetic data set for ratio directions
making angles between 0◦ and 90◦ with the axis for intensity in spectrum 1. Locating
ratio directions in the recursion map is equivalent to finding peaks in the XCC merit
function.
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data set is conventionally regarded as a group of spectra, each of which consists of a

set of (usually discrete) measurements. The XCC regards a spectroscopic data set as

groups of measurements, each of which is made in all spectra at a single measurement

position (i.e., frequency, wavelength, etc.). To make this idea concrete, a recursion

map1 is defined in Fig. 2-1 for the two synthetic spectra. The recursion map in this

case is two-dimensional, with the coordinates representing the intensity values in the

two spectra. That is, the spectra are represented on the recursion map by plotting

each spectral element of the entire data set as a point; the coordinates of the point

are the intensities in the two spectra of the given spectral element. No information

about spectral elements (frequency, wavelength, etc.) appears on the recursion map.

The points on the recursion map can be categorized as follows:

1. Points near the origin. These points correspond to spectral elements that have

low intensities in both spectra. Although these points may have some signal

content, this signal content is too weak relative to the noise to be useful in

identifying patterns. The scatter of these points about the origin is due to the

Gaussian random noise that is added to the synthetic spectra.

2. Points that cluster about “rays” that pass through the origin. The points that

scatter about these rays have signal content that can be associated with one of

the two patterns. That is, these points correspond to spectral elements that lie

on spectral features which are not overlapped. The scatter of the points about

the rays is due to noise. The most distant points from the origin represent the

strongest features in a pattern.

3. Points that cross between, and possibly through, rays. These points correspond

to spectral elements at which two or more patterns overlap.

For the goal of identifying patterns from the synthetic spectra, the points in

category 2 are of the greatest interest. The presence of two rays of points in the

1The word recursion is used because a connection is made between measurements taken in inde-
pendent experiments.
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recursion map clearly indicates that two patterns are present in the data set. The

upper of these rays comprises points that are well-described by

I1 ≈ a1IA (2.3)

I2 ≈ a2IA (2.4)

while the lower ray comprises points well-described by

I1 ≈ b1IB (2.5)

I2 ≈ b2IB. (2.6)

Note that these rays of points appear in the recursion map only if there exist regions

in the spectra which can be accounted for by just one pattern. As will be seen below,

the XCC is capable of disentangling overlapped patterns, but well-defined “pattern

rays” must exist in the recursion map representation. Thus, one criterion for the

success of the XCC is that some part of the line shape of at least some of the fea-

tures in each pattern must not overlap with features from other patterns. Data in

which the patterns are poorly resolved and highly overlapped are generally not ideal

for analysis by XCC, and other, complementary pattern recognition techniques (such

as those based upon principal component analysis) may provide a more satisfactory

solution. As discussed in Ref. [42], however, when the XCC is applicable, it gen-

erally provides superior results to pattern recognition techniques based on principal

component analysis when the XCC is applicable.

Prior to defining a numerically rigorous technique for identifying the patterns, it

is clear that one could crudely identify which features in the spectra correspond to

which patterns simply by partitioning the points into those that scatter about one

or the other of the two rays of points in the recursion map. The task of the XCC

is to provide a numerically rigorous method for this process of pattern identification.

Following Eqs. 2.3 and 2.5 above, each pattern is considered to be defined by sets of

spectral elements in which the ratio of intensities in the two spectra is nearly constant.
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This ratio of intensities is referred to as the ratio direction, and each pattern contained

in the spectra can be uniquely labeled by a ratio direction. The simplest numerical

definition of the ratio direction for a given pattern is the slope of the ray of points

that define the pattern. In the case of the synthetic data, the ratio directions are

known a priori , and can be expressed in terms of the coefficients a1, a2, b1, and b2

defined in Eq. 2.1. Specifically, pattern A has a ratio direction of a2/a1 = 1.11 and

pattern B a ratio direction of b2/b1 = 0.33.

In experimental data, however, the ratio directions are not known a priori and

it is the task of the XCC to determine an unbiased estimate of the ratio direction

for each pattern. At first glance, conventional least-squares fitting algorithms might

appear to be appropriate, since finding an unbiased estimate of a ratio direction is

equivalent to finding the slope of a best-fit line that is constrained to pass through

the origin. However, linear least-squares fitting is a global optimization technique in

the sense that it determines one set of model parameters which best describes all of

the data. By contrast, for the synthetic data, unbiased estimates are desired for two

ratio directions. Linear least-squares fitting with the recursion map data results in a

best-fit line with a slope of 0.91, intermediate between the two correct ratio directions.

Obviously, since least-squares provides a single best-fit line, the “best-fit slope” does

not provide a good estimate for either ratio direction.

From a different perspective, least-squares fitting is undesirable for the purpose

of obtaining estimates of the ratio directions because of its well-known sensitivity

to “outliers”. Least-squares fitting uses the χ2 statistic as the figure-of-merit func-

tion; since χ2 is defined as the sum of squares of deviations from the model, outliers

strongly influence the best-fit parameters. Thus, when attempting to estimate the

ratio direction for pattern A in the synthetic data, all of the points which are de-

termined primarily by pattern B would be outliers in the least-squares fit, and vice

versa.

Least-squares fitting has become firmly entrenched in spectroscopic practice. As

a result, alternative merit functions often are not considered. However, other classes

of merit functions, which minimize the effects of outliers but still provide an unbiased
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estimator of the desired parameters, have been used in optimization on entire data

sets [43]. Fitting techniques that are based on merit functions that are influenced by

outliers to a lesser degree than χ2 are often referred to as robust fitting techniques.

One common robust technique uses as a merit function the sum of the absolute

deviations from the model [44]. A special class of robust estimators is referred to

as redescending robust estimates [1, 2, 3]. In contrast to the the chi-squared merit

function used in least-squares fitting, the redescending robust merit functions consist

of point-by-point sums of weight functions that have small magnitudes for outliers and

larger magnitudes for points that are well-described by the model. A redescending

robust estimator is desirable for the task of identifying the two model ratio directions

in the recursion map precisely because extraction of more than one model estimate

is desired.

The XCC is based on a redescending robust estimate, G, which in the case of two

data records takes the form

G(α) =
∑
k

gk(α) =
∑
k

Rk ∗ exp(−d2
k/2V

(d)
k ) . (2.7)

Since the “fit line” is constrained to pass through the origin, the merit function is

taken to be a function of just one parameter, α, which represents the ratio direction.

In practice, α may represent either the slope of the fit line, or, equivalently, the angle

between the fit line and one of the axes. The sum over k represents a sum over all

spectral elements (all points on the recursion map). The gk are referred to as weight

functions; thus, the merit function takes the form of a sum of weight functions which

are computed for each point on the recursion map.

The weight function in Eq. 2.7 consists of a product of two terms. The second

term takes the form of a Gaussian function of d. As can be seen in the inset in

Fig. 2-1, d represents the distance of any point in the recursion map from the fit

line, and thus points that are more distant from the fit line are weighted less than

those near the fit line. This provides the merit function with the property that it can

estimate ratio directions for more than one pattern (i.e., this second term in the weight
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function makes the merit function a redescending robust estimate). V
(d)
k represents

the expected variance of a point k on the recursion map along the d-direction. The

next section considers how to calculate this quantity in general; for now, it is noted

that if the noise amplitude in the two spectra is identical and independent of intensity,

then V
(d)
k = σ2

0, where σ0 is the baseline noise amplitude associated with the spectra.

By incorporating V
(d)
k into the weight function, not only are points that are irrelevant

to the fit automatically excluded, but the weights of each point are also determined

in a statistically optimal manner, based on knowledge of the noise in the spectra.

The first term in the weight function, R, is simply the projection of the point on

the recursion map onto the fit line (see the inset in the recursion map in Fig. 2-1).

The justification for the form of this term is less rigorous than that for the second

(Gaussian) term, and rests on the assumption that the spectral elements with the

strongest intensities are the least likely to be corrupted by overlap with other patterns,

or by noise or other experimental artifacts. Some function of R could, in theory, be

substituted for R; other options have been discussed previously [45]. However, the

use of simply R in the weight function provides accurate estimates of pattern ratio

directions in tests on synthetic data with many different characteristics. In addition,

the inclusion of R in the weight function makes possible the “weights method” for

pattern reconstruction that is described below.

Note that R can have both positive and negative values. The only points that

generate negative values of R are those that can be categorized as baseline noise

points (i.e., those accounted for purely by random noise). It can be shown that for

any ratio direction, one-half of all baseline points will have positive values of R and

one-half will have negative values of R, which results in a suppression of the effects

of baseline noise points on the merit function.

Figure 2-1 shows the XCC merit function as a function of ratio direction for the

simulated spectra, using the known variance of the added noise. Two maxima are

observed in the merit function at 20.1◦ and 47.5◦. These values differ only slightly

from the values of 18.4◦ and 48.0◦ used to construct the synthetic spectra.

With the number of patterns and the ratio directions identified, it is now possible
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to assign spectral features to patterns. Several approaches to this task are feasible.

Among them are the following two:

1. XCC Weights Method . In this method, the value of the weight functions are

plotted (for each spectral element) with the value of α set equal to one of the

optimized pattern ratio directions. Because the weight functions are largest for

those spectral element that are well described by intensity derived from only one

pattern, it is simple to identify those features in the spectra that are assignable

unambiguously to one pattern.

2. Inversion Method . Note that Eq. 2.1 is invertible and that therefore the pattern

intensities at any given spectral element can be determined from the spectral

intensities if the coefficients a1, a2, b1, and b2 are known. The coefficients a, b

are equivalent to the pattern ratio directions determined by XCC. Although

it may appear that we are attempting to use two pattern ratio directions to

determine four coefficients, any two of the coefficients (such as a1 and b1) can

be assigned arbitrary values; this is equivalent to introducing arbitrary scaling

factors for the patterns, Ia and Ib.

The results from the weights method are shown in Fig. 2-2. The weights eval-

uated at the maxima of the XCC function clearly identify features in the original

spectra as belonging to one or the other of the patterns. Note that the overlapped

spectral feature (near spectral element 750) is correctly separated into two compo-

nents. The nearly 100/That is, some points will happen to have larger values of d

(and thus smaller weights) due purely to random spectral noise. These noise-induced

fluctuations in the weights can be reduced by smoothing. In the bottom panel of

Fig. 2-2, the weights are convolved with a Gaussian line shape with a width equal

to one-half of the width used in constructing the data set; this provides smoothing

without significantly broadening the features. The result is “reconstructed patterns”2

that resemble quite closely the original patterns used to construct the synthetic data,

2Note that the ability of the smoothed weight functions to reconstruct the patterns is made
possible by the inclusion of R in the definition of the weight functions.
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although the shapes and widths of the two lines that were overlapped in the synthetic

spectra are only approximately reproduced.

The results of linear inversion are shown in Fig. 2-3. Although the intensities

and line shapes of the peaks in the patterns are reproduced excellently, note that the

signal-to-noise in the “reconstructed patterns” using the linear inversion technique is

lower than that in the synthetic spectra. This “noise amplification” can be understood

in terms of the transformation between the spectrum representation of the data and

the pattern representation, but first consider two extreme cases:

1. If the ratio directions for the patterns are identical, then the patterns are indis-

tinguishable (in essence, the signal-to-noise of the patterns after linear inversion

is zero, and the noise amplification is infinite).

2. If the ratio directions for the patterns are 0◦ and 90◦, then the patterns are

already separated in the spectra, and no linear inversion is necessary. The

signal-to-noise of the patterns is identical to that of the spectra (the noise

amplification is zero).

Thus, it is clear that this noise amplification effect will be greater when the ratio

directions for the two patterns are closer together.

To put this discussion on a mathematical foundation, consider the explicit ex-

pressions for the patterns in terms of the spectra, which result from the inversion of

Eqs. 2.1:

Ia =
1

a1b2 − a2b1
[b2I1 − b1I2] (2.8)

Ib =
1

a1b2 − a2b1
[−a2I1 + a1I2]. (2.9)

Using these relationships, the noise in the patterns is related to the noise in the

spectra according to

σ(Ia) =

√
b21 + b22

a1b2 − a2b1
σ0 (2.10)
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Figure 2-2: Reconstruction of the patterns from the spectral data using the “weights
method”. Top: XCC weights calculated for the two patterns identified in the synthetic
data set. Bottom: XCC weights after convolution with a Gaussian to reduce the noise
and replicate approximately the lineshapes in the synthetic spectra in Fig. 2-1. The
vertical bars in the bottom panel represent the positions and intensities of the features
in the patterns used to create the synthetic spectra.
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Figure 2-3: Reconstruction of the patterns from the spectral data by the linear inver-
sion method. Linear inversion results in a worse S/N ratio than the weights method
(Fig. 2-2), but provides a better line shape for overlapped features. The vertical bars
represent the positions and intensities of the features in the patterns used to create
the synthetic spectra.

σ(Ib) =

√
a2

1 + a2
2

a1b2 − a2b1
σ0 , (2.11)

where σ0 is the standard deviation of the noise in the spectra. For the specific values

of the coefficients a1, a2, b1, and b2 used in the example here, the explicit noise

amplification factors are

σ(Ia) = (1.35)σ0 (2.12)

σ(Ib) = (1.92)σ0 . (2.13)

The interpretation of these noise amplification factors depends on how the patterns

are normalized. In the example here, the amplitude of the extracted patterns was

chosen to be equal to the intensity of the patterns in spectrum one, by choosing

a1 = b1 = 1. Thus, a precise interpretation of the noise amplification factor in this

case is the ratio of the signal-to-noise of a given peak in the extracted pattern to the
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signal-to-noise of the same peak in spectrum 1. Since the absolute intensity of the

patterns is arbitrary, one can always make this choice (other possible choices include

square normalizing the ratio directions to a value of one; this is the “natural scale”

referred to in Ref. [42]). For a more thorough discussion of noise amplification, see

Ref. [42], where this treatment is extended to consider arbitrary numbers of spectra,

although only cases where the number of patterns equal the number of spectra are

considered.

Note that despite the noise amplification of the linear inversion method, it recon-

structs the lineshapes, line positions, and intensities of the original patterns much

more accurately than the weights method, even with smoothing. Thus, because the

XCC determines ratio directions by the least overlapped portions of strong features,

linear inversion can determine the correct intensity and line shape of features that are

completely obscured by overlap. On the other hand, the weights method can be used

without modification when there are more patterns than spectra; the linear inversion

technique cannot be employed in a straightforward way in such a case.3

2.3 Generalization of XCC to Multiple Dimen-

sions

Although it is simplest to define and visualize the XCC in two dimensions (i.e., two

spectra, as considered exclusively in Section 2.2), the technique is readily generalized

to any number of spectra. The dimensionality of the recursion map will of course

be equal to the number of spectra (Ns); see Ref. [42] for an example of a three-

dimensional recursion map. The definition of the XCC merit function G in Eq. 2.7

3It is not strictly impossible to use linear inversion when the number of patterns exceeds the
number of spectra. One useful approach that will not be discussed here is a “dimensionality reduction
approximation”. The key idea is that, except in highly congested spectra, the number of patterns
that contribute strongly at any given spectral element is typically quite small (usually one or two) and
thus less than or equal to the number of spectra. The XCC weights method can be used to determine,
in an automated fashion, which patterns contribute significantly to any given section of spectrum,
and then the linear inversion technique can be used to extract just the strongly contributing patterns.
See Chapter 5 for an application of the reduced dimensionality approximation.
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can be used for any number of dimensions, although the quantities d, R, and V (d) are

somewhat more complicated to compute.

To compute these quantities in arbitrary dimensions, and also to provide a some-

what more rigorous conceptual foundation for the XCC, it is useful to introduce a

vector notation in which each point on a multi-dimensional recursion map is repre-

sented by a vector �Ik, where the index k refers to the particular spectral element

in question. Ratio directions are likewise denoted by a unit vector �α. To evaluate

gk for arbitrary Ns, it is necessary first to define a coordinate transformation from

the Ns-dimensional recursion map space to a two-dimensional space defined by the

coordinates (R, d). These coordinates are illustrated graphically in the inset in the

upper right panel of Fig. 2-1 for the 2D case. The first axis (R) coincides with the

ratio direction vector �α; the projection of a recursion map point on this axis is

Rk = �Ik · �α. (2.14)

The coordinate d is defined to be orthogonal to R and to point towards the recur-

sion map point. Gram-Schmidt orthogonalization permits the computation of the

magnitude dk and direction (defined by a unit vector �βk) according to

dk �βk = �Ik −Rk · �α . (2.15)

Note that the unit vector �α is the same for every recursion map point k for a given

ratio direction, but �β is different for each point on the recursion map.

The final quantity needed to compute the XCC in arbitrary dimensions is V (d),

the variance associated with the recursion map points in the d direction. That is, the

XCC is defined as a function of both the set of recursion map points as well as their

variances (i.e., the experimental uncertainties in each measurement). If the variances

associated with each point in each spectrum are defined to be �Vk, then the component

of the variance along d is

V
(d)
k = �βk · �Vk. (2.16)
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Note that, using this definition, the XCC can accommodate data in which the mea-

surement error is different in each of the spectra, or even cases in which the measure-

ment error changes from one spectral element to the next. Such a case might occur

if the noise level in a spectrum varies as a function of wavelength/frequency, or if the

measurement error depends on the intensity in the spectrum, through a relationship

such as

V (I) = σ2
0 + σ2

1I
2, (2.17)

where σ1 represents a component of the experimental noise that is (directly) propor-

tional to intensity.

At this point, it should be clear that the XCC can be utilized to identify patterns

in any number of spectra. However, working with more than three spectra creates

new challenges, and I wish to conclude this section by outlining strategies that I have

found useful for working with large numbers of spectra.

With more than three spectra, it becomes impossible to visualize the recursion

map or XCC merit function. Visualization of the merit function is convenient because

it permits facile determination of the number of patterns and reasonable initial guesses

for the ratio directions. One strategy for dealing with more than three spectra is to

sample the merit function as evenly as possible over non-negative values of the Ns−1

independent coordinates that describe the ratio directions. Local maxima in the XCC

merit function can then be identified and optimized, each of which corresponds to one

pattern. This “brute force” technique, however, is computationally tedious and may

not be practical for more than a handful of spectra.

In practice, this sort of multidimensional sampling is often unnecessary. Fre-

quently, all of the patterns in a data set can be identified in a small subset of the full

Ns-dimensional data set. That is, each of the desired patterns often can be identified

as a maximum in the XCC merit function using just two or three of the available

spectra. Once the patterns have been identified in a subspace of the full data set,

then the rest of the spectra in the data set can be incorporated, one at a time, to

refine the patterns. I have found this technique to be effective with very large data
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sets (more than 100 spectra). However, this technique could be risky if the number of

patterns in the data set is not known a priori . In such a case, one cannot be sure that

all of the patterns contained in the full data set have been identified in a subspace of

the data set, and one could conceivably “miss” a pattern entirely in this way.

Finally, it should also be noted that the linear inversion technique that is de-

scribed in Section 2.2 can also be used when number of spectra is greater than the

number of patterns. In these cases, the term “inversion” of the equations is used in

a generalized least-squares sense (the inversion being accomplished by singular value

decomposition, for example). Moreover, it should be recognized that the noise ampli-

fication associated with linear inversion will be mitigated when the number of spectra

exceeds the number of patterns, because of the averaging which occurs when “extra”

spectra are included in the inversion.

2.4 Application to Spectra of Deuterated Ammo-

nia Isotopomers

To illustrate the application of the XCC to real experimental data, the technique is

used to extract the spectra of pure isotopomers from infrared spectra [46] of mixtures

containing ND3, ND2H, NDH2, and NH3. It is difficult to obtain spectra of pure

samples of the ammonia mixed isotopes (ND2H and NDH2) because of the strong

adsorption of ammonia and water on most cell surfaces, which causes rapid exchange

of H and D. The XCC, however, can extract the spectra of ND2H and NDH2 as pat-

terns from a data set consisting of mixtures of ammonia isotopomers with varying

deuterium ratio. The analysis of the mixed isotopomer spectra would make a consid-

erable contribution to the understanding of the potential energy surface of ammonia,

shedding light on the normal-to-local mode transition, stretch-bend interactions, and

other vibrational couplings [47, 48].

Figure 2-4 depicts a small section of three spectra obtained by Hernandez, Leh-

mann and Lafferty [46] of mixtures of the ammonia isotopomers. The lower spectrum

was obtained by introducing ND3 into a cell that was preconditioned with D2O. In
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Figure 2-4: Infrared spectra of mixtures of deuterated ammonia isotopomers. The
lower spectrum is of a sample of ND3 in a sample cell pretreated with D2O, so that
ND3 is expected to be the most abundant species. The other two spectra are mixtures
of ND3 and NH3 in 1:2 (upper) and 2:1 (middle) ratios in a cell pretreated with D2O
and H2O in the same ratio.

the absence of contamination, this sample should contain only the ND3 isotopomer;

however, low levels of contamination by H often prove difficult to avoid. The upper

two spectra were obtained with samples that consisted of a mixture of ND3 and NH3

in ratios of 1:2 (upper) and 2:1 (middle). The cell in these cases was preconditioned

with a mixture of D2O and H2O in the same ratio, and the relative abundances of

each of the ammonia isotopomers can be estimated by the binomial distribution.

The full spectra recorded by Hernandez et al. [46] contain several thousand features

and cover the entire ND and NH stretch fundamental regions. For ease of presentation,

only a 2.0 cm−1 section between 2596 cm−1 and 2598 cm−1 is considered here. This

region contains absorption due to the N-D stretch chromophore; because the N-H

stretch does not contribute in this region, the only patterns that are expected are

those due to ND3, ND2H, and NDH2. Even in this small section of spectrum, and

with only three of the four species contributing, the number of lines is large. Without

a technique for labeling the lines according to which species produced them, it would

be difficult to apply traditional spectrum assignment techniques such as combination-

differences.
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In Section 2.3, the XCC was defined for arbitrary dimensions. However, before

applying these definitions to the ammonia data considered here, it is instructive first

to employ the more intuitively simple tools of Section 2.2, in which the discussion

was restricted to pairs of spectra. Figure 2-5 depicts the recursion maps for each

possible pair of spectra in Fig. 2-4. Three rays of points are clearly observed in each

recursion map, although these rays of points are better separated in some of the

recursion maps than others. These rays of points, of course, indicate the presence

of three patterns in the spectra, one corresponding to each contributing isotopomer.

Since ND3 is expected to contribute more strongly to the more highly deuterated

samples, and NDH2 to contribute more strongly to the less deuterated samples, one

can immediately assign each of the patterns to one of the isotopomers (it is evident

that the sample of “pure ND3” must have been contaminated to some extent by

H2O or NH3 due to the presence of ND2H, and NDH2 in this sample). The noise

characteristics of the data can also be estimated by inspecting the recursion maps.

The XCC, of course, is successful in identifying all three patterns in each of the

pairs of spectra, and in principle, the weights method could be used with any one of

the pairs to identify the three patterns. However, it is to be expected that utilizing all

of the spectra simultaneously to identify the patterns will yield the best results. The

techniques outlined in Section 2.3 can be applied directly to calculate the XCC merit

function, as a function of ratio direction, for all three of the spectra in Fig. 2-4. In

this case, the ratio direction can be visualized as a vector in a three-dimensional space

that originates from the origin. In the case of the two-dimensional XCC discussed

in Section 2.2, the angle of the fit line with one of the axes of the recursion map

was found to be a convenient coordinate for plotting the XCC. In the case of three

spectra, two such angles are needed to uniquely define a ratio direction.

A contour plot4 of the XCC merit function, as a function of two such coordinates,

is depicted in Fig. 2-6. Three maxima are clearly observed in the XCC merit func-

4The best way to visualize the XCC merit function in the case of three spectra is as a contour
plot on an octant of a sphere, as in Ref. [42]. However, this type of plot requires specialized software.
The contour plot represented here can be thought of as the octant of a sphere projected onto a plane,
much like the projections used for wall maps of the Earth.
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Figure 2-5: Application of the XCC method to all possible pairs of spectra in Fig. 2-
4. Left column: Recursion maps, indicating the presence of three patterns, that
correspond to the three deuterated ammonia species. Right column: XCC merit
function plotted as a function of the ratio direction (angle between the “fit line” and
the x-axis). Each ratio direction can be assigned to a specific isotopic species using
knowledge of how the samples were prepared.
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Figure 2-6: Contour plot of the XCC merit function for the ammonia mixed isotope
data, labeled with the associated isotopomer pattern.

tion, and it is once again trivial to assign these to deuterated ammonia isotopomers.

Optimized ratio directions for each pattern can be obtained by using standard maxi-

mization routines [44].

Having identified the maxima in the XCC merit function, the weights method can

be used to separate immediately the spectra into three patterns. The weights, after

convolution with a Gaussian to replicate approximately the lineshapes observed in

the spectra, are depicted in Fig. 2-7. Virtually all of the lines in the spectra can be

assigned to one of the isotopomers using these plots. As noted in the previous section,

the weight functions will not necessarily accurately represent the intensities of the

patterns (in this case, the intensities in the spectra of the individual isotopomers). In

this particular case, although the spectra are reasonably congested, there is minimal

overlap between peaks and the weights method can be expected to perform reasonably

well.

The second technique that was discussed in Section 2.2 for partitioning the spectra

into patterns is entitled linear inversion. The strength of the linear inversion tech-
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Figure 2-7: Results of the XCC weights method for identifying the patterns present
in the ammonia mixed isotope data. Each trace corresponds to one of the pattern
ratio directions determined as a local maximum in the merit function in Fig. 2-6.
This plot permits assignment of most of the lines in Fig. 2-4 to one of the isotopic
species.

nique is its ability to determine accurate intensities and lineshapes for the patterns

even when features from more than one pattern overlap. However, the discussion of

noise amplification in Section 2.2 indicates that linear inversion is most successful

when the ratio directions are widely separated in the recursion map space. Although

the three maxima in Fig. 2-6 are well-resolved, they fall close to lying on a line in re-

cursion map space. In this sense the three pattern ratio directions poorly “span” the

recursion map space, which suggests that the three mixed ammonia isotope spectra

are not ideal for purposes of extracting three patterns by linear inversion. For this

reason, the linear inversion method will not be used here. Note that Ref. [42] pro-

vides a thorough discussion of noise amplification for ammonia mixed isotope spectra,

including a calculation of the optimal deuterium fractions that would result in the

best pattern identification by linear inversion. For other examples of linear inversion

applied to three or more spectra, see Chapters 3 and 5.
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2.5 Windowed XCC

In this section I propose a variant of XCC called “windowed XCC” that may be

a useful preprocessing tool for assigning rotational transitions in congested spectra,

among other possible applications.

To motivate the windowed XCC, Fig. 2-8 depicts a pair of simulated absorption

spectra of OH, at two different temperatures (1500 K and 2000 K, which are typical

in combustion experiments), that were provided to me by W. Kreutner and K. Kohse-

Höinghaus. The challenge of interpreting these spectra is that, at the high tempera-

tures of the simulation, many rovibrational states of OH are populated, leading to a

congested spectrum that is difficult to assign.

From the standpoint of the XCC, the patterns that are repeated in the two spectra

are groups of lines that originate from the same rovibrational state; as the temperature

is varied, the relative amplitudes of the patterns vary due to different Boltzmann

factors. These patterns, however, are not clearly identifiable in the recursion map

for the two spectra, and in fact all of the points on the recursion map cluster closely

around the line I1 = I2. The XCC merit function does clearly indicate the presence

of the expected patterns, although the ratio directions of these patterns cluster in a

narrow range, and several local maxima in the merit function appear to overlap.

Since the number of patterns greatly exceeds the number of spectra, the weights

method must be used to identify the patterns. The results are shown in the bottom

panel of Fig. 2-8 for several of the pattern ratio directions identified by the XCC. The

patterns that are identified consist of a small number of peaks; all of the peaks in

each pattern are expected to originate from the same initial state. By stacking these

patterns on top of each other in order of descending ratio direction, it is clear that

the patterns are closely related and form a (rotational) progression; that is, adjacent

patterns likely correspond to levels originating from rotational states differing in J ′′

by one.

Thus, the XCC technique appears to be of some utility in assigning the initial

rotational states of the lines observed in these spectra. However, the large number
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Figure 2-8: Top: Simulated absorption spectra of OH at 2000 K (upper) and 1500
K (lower). Middle left: Recursion map of the two simulated spectra. Middle right:
XCC merit function indicating the existence of several patterns with similar ratio
directions. Bottom: XCC weights calculated at a few of the local maxima in the
XCC merit function.
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of patterns identified by the XCC makes using the weights method a bit awkward,

and it is difficult to be certain that one has not “missed” a pattern in the congested

XCC merit function. Real experimental data are expected to present even greater

challenges due to measurement error, other interfering patterns, and experimental

artifacts such as baseline drift.

For these reasons, I have pursued a somewhat different approach for this and

related problems that I entitle windowed XCC. As the name suggests, the windowed

XCC algorithm performs the XCC over a limited range of spectrum, specifically

within a window whose width is roughly equal to that of one peak in the spectrum.

This may seem counterintuitive, since the XCC is designed to group even widely

separated peaks together into patterns. The windowed XCC is not, however, strictly

speaking a pattern recognition technique; it is, rather, a preprocessing tool that makes

spectroscopic patterns easier to identify.

The windowed XCC algorithm proceeds as follows. At each window position, the

XCC merit function is optimized as a function of ratio direction. Because the window

generally includes only one or two peaks, it is generally simple to locate the global

maximum of the merit function, if in fact there are multiple maxima at all. The

window is then shifted slightly, and the optimization is performed again, until the

windowed XCC has been performed across the entire spectrum. At each step, three

values are recorded: the window position, the optimized ratio direction, and Gmax,

the value of the XCC merit function at the optimum ratio direction.

These results are summarized in Fig. 2-9 for the OH absorption data. Note that the

value of Gmax achieves a local maximum at every window position which is centered

around a peak that appears in both spectra; this is due to the inclusion of R in the

definition of the XCC merit function (Eq. 2.7). The value of the optimized ratio

direction at one of the local maxima of Gmax thus corresponds to the approximate

ratio direction for one peak in the pair of spectra. In this sense, the windowed XCC

can be thought of as simply an “automated ruler” that can identify the relative

intensities of the peaks which appear in a pair (or more) of spectra.

Although this might seem like a fairly trivial use of the XCC, the ability to per-
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Figure 2-9: Illustration of the windowed XCC algorithm. Maximum value of the
XCC merit function (top) and corresponding optimum ratio direction (bottom) at
each window position for the simulated OH spectra.
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Progressions Revealed by Windowed XCC

Figure 2-10: Results of the windowed XCC algorithm for the simulated OH data. The
gray trace is one of the two spectra. The vertical sticks mark the frequencies at which
a local maximum is observed in Gmax, while the bars on top of the sticks indicate
the optimized ratio directions (right axis) at these frequencies. Two progressions of
states, which appear to form band heads, are immediately obvious

form such a preprocessing task in an automated and rapid way can be very useful,

as revealed in Fig. 2-10. One of the two simulated spectra is shown in gray. The

vertical sticks mark the frequencies at which a local maximum is observed in Gmax.

The bars on top of the sticks indicate the optimized ratio directions (right axis) at

these frequencies. Two progressions of states, which appear to form band heads, are

immediately obvious, even more so than in the application of the weights method

depicted in Fig. 2-8. It can be envisioned that the windowed XCC could be coupled

with other algorithms to identify automatically combination-differences and thus pro-

vide rotational assignments; in this example, the rotational temperatures of the two

samples could also be estimated.

Although only considered synthetic data have been considered here, it is hopefully

clear that spectroscopic pattern recognition techniques like the XCC and windowed

XCC may be useful in the field of combustion spectroscopy. Many different chem-

ical species are present in flames. This chemical complexity, combined with high
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temperatures, makes absorption or emission spectra of flames rather congested. Pre-

processing such spectra using pattern recognition algorithms may make their analysis

much simpler. One can envision using the XCC in particular to decode spectra that

are recorded from different spatial positions in a flame, or spectra recorded from

flames with different fuel mixtures.

2.6 Conclusion

A spectroscopic pattern recognition technique entitled Extended Cross-Correlation

has been introduced in this chapter. The XCC permits the identification of patterns

that are repeated in multiple spectra and can be applied in a model-free way, meaning

that the forms and number of patterns to be identified can be completely unknown

at the outset. The XCC permits the identification of multiple patterns within a set

of spectra, including the possibility of identifying larger numbers of patterns than the

number of spectra. Finally, the XCC takes into account knowledge about noise in the

spectroscopic data in a natural fashion.

The examples of the application of the XCC technique that have been presented in

this chapter are simple ones, and it would be possible to identify by eye the patterns

that are present in both the synthetic data in Section 2.2 and the deuterated ammonia

isotopomer data in Section 2.4. However, the ammonia spectra that were presented in

Section 2.4 represent only a small fraction of the total available spectra. The spectra

extend over hundreds of cm−1, and the numerical pattern recognition techniques can

easily be automated to provide isotopomer assignments for most of the lines in the

entire data set. In addition to avoiding tedious analysis of large data sets, a numerical

pattern recognition technique such as the XCC can also be particularly useful for

analyzing complex data sets which consist of many spectra and/or contain a high

density of overlapping peaks. Finally, even when a pattern recognition task can be

accomplished “by eye”, the numerical rigor of a technique such as the XCC can reduce

human error and the necessity for “judgement calls” in analyzing a spectroscopic data

set.
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The XCC is similar in spirit to several other pattern recognition techniques that

have been reported, particularly those that are based on principal component anal-

ysis, such as classification analysis [49] and Iterative Target Transformation Factor

Analysis (ITTFA) [50, 51]. These techniques start from the same assumption as the

XCC: that a set of spectra can be considered to be linear superpositions of patterns.

Another similarity is that principal component analysis can, in principle, be used to

determine the number of patterns that are contained in a data set without any a

priori knowledge. However, the “patterns” that are obtained directly from principal

component analysis generally do not have any physical meaning, although techniques

have been reported that permit the transformation of the abstract principal compo-

nents into physically meaningful patterns [50, 51]. In addition, the successful use of

PCA-based techniques generally requires the availability of many more spectra than

the number of patterns to be identified. In this respect, XCC provides an attractive

alternative to pattern recognition techniques based on PCA. In cases in which spectra

do not consist primarily of well-resolved features, however, PCA techniques may hold

an advantage [42].

A number of other numerical techniques have been employed to identify and ex-

tract patterns from spectroscopic data sets; techniques whose goals or procedures are

at least tangentially related to the XCC include

• robust estimation (non-least squares estimators) [1, 2, 3],

• covariance mapping [52],

• genetic algorithms [53],

• neural network pattern recognition [54],

• two frequency correlation [55],

• wavelet transformations [56],

• multidimensional scaling [57],

• tree analysis [58].
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These methods have in common with this work the desire to extract related patterns

from the midst of unrelated structures and to generate compact representations of

large quantities of data. Each of these techniques, however, differs significantly from

the XCC in capabilities and domains of application. Indeed, in researching these

techniques, I was struck by two things: 1) the complementarity between the vari-

ous pattern recognition techniques available, and 2) the minimal intercommunication

among the groups of chemists, physicists, biologists, applied mathematicians, and

engineers (among others) who use/invent pattern recognition tools in their research.

Certainly much would be gained by increased interdisciplinary discussion of pattern

recognition techniques and their applications.
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Chapter 3

Hybrid Linear Pattern Analysis
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This chapter represents the results of a long-term collaboration with a group of re-

searchers at what is now called the Air Force Research Laboratory, Space Vehicles

Directorate, at Hanscom Air Force Base. The researchers with whom we (myself,

Steve Coy, and Bob Field) collaborated include Steven J. Lipson, Ronald B. Lock-

wood, David L. Vititoe, Peter R. Armstrong, and William A. M. Blumberg. A slightly

modified version of this chapter has been submitted to the Journal of Physical Chem-

istry for publication.

3.1 Motivation for HLPA

A technique entitled Hybrid Linear Pattern Analysis (HLPA), which represents a

combination of model-based and pattern recognition-based approaches to the analysis

of spectroscopic data, is introduced in this chapter and applied to analyze the kinetics

associated with time-resolved emission spectra of CO.

Consider a spectroscopic data set in which each spectrum is a linear superposition

of a finite number of patterns. These patterns might be associated with, for example,

different chemical species (Chapter 2), polyad quantum numbers (Chapter 5), or

different vibrational bands of a single species (this chapter). A “model-based” analysis

of such a data set is possible if the patterns (relative intensity vs. frequency) that

are contained in the spectra can be predicted a priori . The relative amplitude of

each pattern in each spectrum can then be determined by conventional optimization

procedures. Least squares fitting algorithms [44] are by far the most commonly used

for such optimizations, although robust methods of estimation [1, 2, 3] can reduce the

sensitivity of the fit to outliers (which could be due to either experimental artifacts

or deficiencies in the model).

If, on the other hand, it is not possible to predict a priori the number or appear-

ance of the patterns, then pattern recognition techniques may provide a successful

approach to the analysis of the data set. A wide variety of pattern recognition tech-

niques have by now been applied to spectroscopic data. Among the most common are

techniques based on principal component analysis (PCA) (see, for example, Refs. [49],
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[50], [51], and [59]); other approaches include applications of neural networks [54], ge-

netic algorithms [53], covariance mapping [52], and the Extended Cross Correlation

(XCC) technique that was introduced in Chapter 2. These various pattern recognition

techniques differ greatly in terms of their assumptions about the data to be analyzed,

their realms of applicability, and the numerical algorithms employed. However, the

majority of these share the goal of identifying unknown patterns that are repeated

either within one spectrum or among multiple spectra.

The case in which some of the patterns contained in a data set can be predicted a

priori , but others cannot, has received less attention in the literature. One possible

approach to this type of problem would be to apply one of the pattern recognition

techniques discussed above in an attempt to identify all of the patterns in the data

set, including those that are previously known. However, it is of course advantageous

to incorporate any a priori knowledge of the patterns into the spectral analysis.1 The

HLPA technique makes this possible. It employs techniques of pattern recognition to

identify the unknown patterns but explicitly incorporates a priori knowledge of the

remaining patterns.

The use of this technique is illustrated in Section 3.2 with synthetic data, and

in Section 3.3 with time-resolved emission spectra of CO that were recorded in at-

mospheric emission simulation experiments conducted at the LABCEDE facility at

the Air Force Research Laboratory, Hanscom AFB. Details of the experimental setup

have been reported previously [61, 62]. In brief, an electron beam is pulsed through

a 10 mTorr sample of CO in a cryogenic chamber. Time-resolved infrared emission

spectra of CO are recorded both during the 10 ms electron pulse and for 50 ms after-

wards. The time-resolved spectra provide information about the nascent populations

and collisional deactivation rates of the excited vibrational levels of the ground state

of CO. At least twelve excited vibrational levels of the electronic ground state of CO

1I wish to point out the existence of a technique called hybrid linear analysis (HLA) [60] that
is conceptually similar to HLPA. HLA is not a pattern recognition technique, but rather a tech-
nique for linear multivariate calibration (used to determine the concentration of one species in a
multicomponent sample, for example) that improves upon standard partial least-squares methods
by incorporating the spectrum of the desired species into the calibration procedure.
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can be observed to be populated by processes initiated by the electron beam, and

at the resolution of the experiment (∼2.5 cm−1), the overlapping emission bands are

only partially resolved.

Previously, this data has been partially analyzed using standard least squares

procedures. As discussed in Section 3.3, the rotational distribution of the sample can

be modeled to a good approximation by a Boltzmann distribution that is independent

of time. Thus, vibrational emission band “basis functions” can be constructed (the

emission frequencies are well-known from spectroscopic studies of CO), and least

squares algorithms can in principle be utilized to fit the relative contribution of each

basis function to each spectrum and thereby to recover the intensity of emission from

the various vibrational bands as a function of time.

However, this analysis has been stymied by an optical opacity effect in the v =

1 → 0 emission band. That is, although the rotational distribution of the v = 1

vibrational level can be assumed to be described by the same Boltzmann distribution

as the higher vibrational levels, the frequency dependence of the emission from this

band as seen at the detector cannot be easily predicted due to strong self-absorption

of the emission by ground vibrational state molecules, which are present at much

higher concentration than all excited vibrational levels. The inability to construct a

“basis function” for this v = 1 → 0 emission band prohibits the use of least squares

fitting to determine the time-dependence of the emission intensity as well as that of

every vibrational band that overlaps substantially with it . Thus, prior to this work,

only a limited analysis of this data has been possible.

Here, a complete analysis of the CO atmospheric simulation data is reported using

the HLPA technique. The optically thick v = 1 → 0 emission band is considered to

be a pattern that is repeated in over 100 time-resolved spectra. As a first step in the

HLPA technique, the XCC pattern recognition technique is used to determine the

time-dependent intensity of the v = 1 → 0 emission with no knowledge of its band

profile. The HLPA technique also permits a statistically rigorous determination of

the time dependences of the remaining (a priori known) emission bands, as well as

the band profile of the optically thick v = 1 → 0 emission.
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3.2 The HLPA Technique

In the case of the CO atmospheric simulation experiments that are analyzed in Section

3.3, the information to be extracted from the data is kinetic in nature: How do

the emission intensities of various vibrational emission bands change with time? To

illustrate how pattern recognition (in particular, XCC) and the HLPA technique can

assist in this analysis, a simulated data set is defined in Fig. 3-1 that mimics several

key properties of the real experimental data. Each synthetic spectrum is a linear

superposition of the two “emission bands” in the top left panel of Fig. 3-1. That is, if

the spectra are designated by numbers and the individual emission bands by letters,

then

I1(ω) = a1Ia(ω) + b1Ib(ω)

I2(ω) = a2Ia(ω) + b2Ib(ω) (3.1)

I3(ω) = a3Ia(ω) + b3Ib(ω) ,

in which ω represents frequency (spectral element) and the coefficients {a} and {b}
represent the relative amplitudes of the emission bands in each spectrum. Gaussian

random noise has been superimposed upon each of the spectra such that the signal-

to-noise is approximately 100. In addition, in spectrum 1, the intensity of one of

the spectral elements (number 75) has been increased by 50%. The purpose of this

deliberate corruption of the data is to illustrate the way in which the XCC and HLPA

methods deal with deviations from Eq. 3.1 that are neither small nor random; the

ability of these techniques to identify patterns even in the presence of such “corrup-

tions” of the data is critical to the successful analysis of the CO data set in Section

3.3.

The simulated spectra can thus be considered to represent three time-resolved

emission spectra, and the goal of the analysis is to determine the time dependence

of the two emission bands, as represented by the coefficients {a} and {b}. Note that

that the intensity vs. frequency profiles of the bands are assumed not change as a
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Figure 3-1: Top row: The simulated spectra (right) are each linear superpositions of
the two patterns (left), plus noise. Middle left: The XCC merit function G for spectra
1 and 3, as a function of the ratio direction I3/I1. Middle right: Weight functions, gi,
computed at the two largest maxima in the XCC and plotted as a function of spectral
element. Bottom left: Results of the inversion of the patterns (vibrational emission
bands) from the spectra utilizing the coefficients determined by XCC. Bottom right:
Weighted residuals of the inversion procedure for spectrum 1.
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function of time; a similar assumption will be made in the analysis of the CO data

set in Section 3.3. If the intensity profiles of the emission bands were known a priori ,

then the task of obtaining the coefficients would be straightforward using standard

linear least squares fitting routines. When at least one of the two emission bands A

and B is unknown, then techniques of pattern recognition must be employed. The

case in which both patterns are unknown will be considered first; the XCC can be

used to determine the coefficients {a} and {b}, as well as the frequency dependence

of the emission bands (Ia(ω), Ib(ω)), if so desired.

From the standpoint of the XCC, the emission bands constitute patterns that are

repeated in three different spectra. As described in Chapter 2, the XCC is a model-

free pattern recognition technique, and in principle no prior knowledge is necessary

of either the form or the number of patterns that are present in the data. However,

there is one important condition for the success of the XCC: some portion of the

features in each pattern must not be overlapped with any other pattern. In the case

of the synthetic data in Fig. 3-1, note that although the two patterns overlap heavily

in the central portions of each spectrum, the intensity in the “wings” of the spectrum

arises almost entirely from one of the two patterns. For example, consider spectral

elements 0 through 30. To a good approximation, the intensity in each of the spectra

over this range arises solely from vibrational band A:

Ik(ω) ≈ akIa(ω); (k = 1, 2, 3). (3.2)

Conversely, for spectral elements 70-100,

Ik(ω) ≈ bkIb(ω); (k = 1, 2, 3). (3.3)

Thus, one could imagine determining the {a} and {b} coefficients by simply integrat-

ing the intensities of the spectra over these spectral ranges. However, the patterns

are assumed to be unknown a priori , which makes it difficult to judge, in the absence

of a numerical tool, precisely which regions of the spectra contain contributions from

just one pattern (the real experimental data analyzed in the next section are even
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more challenging).

The XCC can be used to identify, in a numerically rigorous and automated way,

those regions of spectra that can be accounted for by just one pattern. The middle

left panel of Fig. 3-1 depicts the use of the XCC merit function G to identify the

patterns that are present in spectra 1 and 3 of the synthetic data set. Since only

two spectra are used for this illustration, the search for patterns occurs in a one-

dimensional space that represents the relative amplitude of each pattern in the two

spectra (the ratio I3/I1 has been chosen, arbitrarily, to represent the “ratio direction”;

see Chapter 2). Two pronounced maxima can be observed in the merit function,

which occur at I3/I1 = 1.604 and 0.604; these correspond to vibrational bands B

and A respectively, and compare quite favorably with the values of 1.6 and 0.6 which

were used to construct the synthetic spectra. As described in Section 2.3, the XCC

can also be used to identify the patterns in all three of the spectra simultaneously;

although the resultant contour plot of the XCC merit function is not depicted, the

results are similarly excellent, with the relative pattern amplitudes (ratio directions)

again determined by XCC to within 1% of the correct values.

The XCC weights functions gk (Eq. 2.7) make it easy to identify those portions

of the spectra which represent fragments of the patterns that are uncorrupted by

overlap with other patterns. In the middle right panel of Fig. 3-1 are plotted the

weight functions at the ratio directions corresponding to the two largest maxima in the

merit function G. Note that neither set of weight functions includes any substantial

amplitude over the central spectral elements (40-60) in which the two patterns overlap

substantially. Note also that spectral element number 75, which was deliberately

corrupted in spectrum 1, has a weight of nearly zero in both traces; the XCC has

automatically excluded this point from its determination of the time-dependence of

the pattern amplitudes. This insensitivity of the XCC to nonidealities in the data

and its ability to identify multiple patterns simultaneously are consequences of its

definition as a redescending robust estimator [2].

At this point the XCC has been successfully used to determine the time depen-

dence of the emission from the two different vibrational bands with no knowledge of
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what the vibrational bands look like. The linear inversion method, described in Sec-

tion 2.2, can now be used to extract the patterns from the spectra. That is, since the

coefficients {a} and {b} are now known from the application of the XCC, the set of

equations labelled as Eq. 3.1 above is overdetermined. At any given value of ω, there

exist three equations with only two unknowns (Ia(ω) and Ib(ω)), and the spectra can

be inverted (in a least squares sense) to determine the patterns, one spectral element

at a time.

The bottom panels of Fig. 3-1 depict the result of this inversion process. The

emission band patterns (bottom left) that are inverted from the spectra are nearly

identical to the patterns that were used to construct the synthetic spectra originally.

One notable discrepancy is observable at spectral element number 75; the intensity

of this spectral element in the reconstructed emission band B differs significantly

from its true value. This discrepancy is due, of course, to the deliberate corruption

of spectrum 1 at spectral element 75. It was noted previously that the XCC is

insensitive to this corruption of the data in its determination of the ratio directions

(time dependence of the emission bands). It may seem paradoxical that the inversion

from spectra to patterns is sensitive to the corruption of the data, but it should

be kept in mind that the inversion is mathematically equivalent to a linear least

squares fit, which implicitly assumes that any deviations from the model conform to

a Gaussian distribution; clearly this is not true for spectral element 75. However, the

results of the inversion themselves indicate that spectral element 75 should be treated

with suspicion. In the bottom right panel of Fig. 3-1 are plotted the residuals of the

inversion for spectrum 1. The residuals are mostly comparable to the noise level in

the spectra, except at spectral element 75, indicating that the model (Eq. 3.1) cannot

accurately represent the data at this spectral element.

Thus, the pattern recognition approach to the synthetic “time-resolved emission

spectra” proceeds by first identifying the number of patterns (vibrational bands)

present in the data set along with their time-dependent amplitudes, and then using

this time-dependence to extract, if desired, the frequency dependence of the bands

(i.e., their shape). This pattern recognition approach is conceptually distinct from
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the least squares fitting techniques that are commonly applied to this type of data set.

In the standard least squares approach, the intensity profiles of the emission bands

A and B must be calculable from a model, and these “basis functions” are fit to each

individual spectrum in order to determine the time-dependent emission intensities of

the vibrational bands.

A hybrid between the least squares and pattern recognition approaches is possible

if a situation arises in which some, but not all, of the patterns that are represented

in a data set are known a priori . It has already been suggested in the introduction

to this chapter that such is the case with the CO atmospheric simulation data. Such

a hybrid approach would also be applicable to the synthetic example considered in

this section if, for example, the frequency dependence of vibrational band A could be

predicted a priori but that of vibrational band B could not. To motivate the HLPA

technique, the emission intensity in the synthetic spectra is expressed as a function

of both frequency (spectral element) and time (t):

I(ω, t) = a(t)Ia(ω) + b(t)Ib(ω) (3.4)

in which a and b refer to the two emission bands as before. Experimentally, the

frequency- and time-dependences of the emission are sampled only at discrete inter-

vals. In the case of the synthetic data, there are 3 time intervals, and 101 spectral

elements (frequency intervals). Thus, 303 equations of the form

I(ωj, tk) = a(tk)Ia(ωj) + b(tk)Ib(ωj) (3.5)

are necessary and sufficient to describe the data set. Of the parameters in this set

of equations, b(t1), b(t2), and b(t3) can be determined from the application of the

XCC, and the full set of {Ia(ωj)} are assumed to be known a priori . The parameters

to be determined are a(t1), a(t2), and a(t3), and the set of {Ib(ωj)}: a total of 104

parameters. Thus, the system of equations represented by Eq. 3.5 is overdetermined,

and standard least squares algorithms can be used to determine the 104 parameters

of interest from the set of 303 equations. This somewhat unconventional application
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of linear least squares is referred to as Hybrid Linear Pattern Analysis.

The time-dependent amplitude of vibrational band A is determined by the HLPA

approach to be a(t1) = 0.992, a(t2) = 1.303, and a(t3) = 1.593, in close agreement

with the values of 1.0, 1.3, and 1.6, respectively, which were used to construct the

synthetic spectra. The remaining 101 parameters determined from the fit represent

the frequency dependence of vibrational band B, and are not depicted since they are

nearly identical to the parameters determined from the purely pattern recognition

approach.

3.3 HLPA Analysis of CO Atmospheric Simula-

tion Experiments

Evidence for very high rotational excitation, with over 2 eV of energy in rotation

alone, has been observed in infrared spectra of the diatomic molecules NO [63] and

OH [64] in the atmosphere. In order to model the rotationally excited populations

of such species in the atmosphere, it is necessary to measure the formation and loss

rates for the relevant molecular states, and thus it is necessary to produce measurable

populations in the laboratory. The experiments on CO considered here represent one

approach to the study of these rotationally excited species. CO itself is an important

infrared-active species in the upper atmosphere, and significant effects on the infrared

spectra of atmospheric CO due to optical opacity, isotopic concentrations, and the

temperature structure of the atmosphere have been observed [65, 66].

The experimental apparatus for the CO atmospheric emission simulation exper-

iments (the LABCEDE facility at the Air Force Research Laboratory at Hanscom

AFB) has been described previously [61, 62]. In the data to be analyzed here, a 4.0

kV, 10.0 ms electron beam is pulsed through a sample of CO at 10.0 mTorr in the

cryogenic chamber. A Michelson interferometer is utilized to obtain time-resolved,

infrared emission spectra at 0.25 ms intervals, both during the electron beam exci-

tation pulse, and for ∼50.0 ms after the electron beam pulse is terminated. Two of

these spectra are depicted in Fig. 3-2. The time-resolved emission spectra consist
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of overlapping ∆v = 1 emission bands from at least 12 excited vibrational states

(v′ = 1 − 12) of the ground electronic state (X1Σ+) of CO. At the ∼2.5 cm−1 res-

olution of the spectra, the individual emission bands are not well resolved in the

data.

Above 2200 cm−1, several prominent band heads are evident in the emission spec-

tra. The band heads in CO are known to occur at J ≈ 90 in the R-branch, and thus

the rotational distribution of the CO resulting from processes initiated by the electron

beam includes very high-J states. On the other hand, the majority of the emission be-

low 2200 cm−1 can be accounted for by low-J (J < 15) emission. Thus, the rotational

distribution of the CO is believed to be bimodal. This behavior is consistent with the

expectation that the rates of rotational relaxation of the high- and low-J levels are

quite different. For the low-J levels, rotational equilibration occurs quickly (µs) with

respect to the timescale of the experiment (ms), and thus the low-J rotational distri-

bution is expected to conform to a Boltzmann distribution. Further, this distribution

is, to a good approximation, invariant over the course of the experiment, since only a

small fraction of the CO molecules are excited by the electron beam, while the “bath”

of molecules that are not excited are rotationally equilibrated to the temperature of

the walls of the cryogenic chamber. An effective rotational temperature of 90 K can

be empirically determined to reproduce optimally the observed low-J emission (other

than the v = 1 → 0 emission; see below). The high-J molecules experience rotational

relaxation at a slower rate than lower-J molecules because the level spacings at high-J

are comparable with vibrational spacings. Thus, a small fraction of the excited state

population can become “trapped” in the high-J states, although the exact rotational

distribution (and its time-dependence) are difficult to predict.

On the other hand, the five “band heads” observed in the data above 2200 cm−1

do not overlap each other substantially, and can easily be integrated to determine

their time-dependent amplitudes. The band heads are not explicitly analyzed in the

analysis presented here, except insofar as they overlap with the low-J bands. A more

serious obstacle to the analysis is an optical opacity effect that is associated with

the v = 1 → 0 low-J emission band. Although the v = 1 molecules are expected to
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have an effective low-J rotational temperature that is identical to that of the v ≥ 2

molecules, the large relative concentration of v = 0 molecules leads to an optical

opacity in the v = 1 → 0 emission band as seen at the detector . This optical opacity

is extremely difficult to model under the measurement conditions because, while the

density of molecules in the ground vibrational state is essentially uniform throughout

the chamber, the spatial distribution of excited state molecules is highly nonuniform

and forms an irregular cloud of varying density along the one meter path of the

electron beam. This path in turn obliquely intercepts the conical viewing region.

The optical opacity in the v = 1 → 0 emission is clearly evident in Fig. 3-2. The

majority of the emission observed in the time-resolved spectra between 2130 and 2190

cm−1 is due to the v = 1 → 0 emission, but the observed band shape does not even

approximately match the band shape predicted by a Boltzmann-distribution assump-

tion, neglecting self-absorption. The inability to predict the frequency dependence

of the v = 1 → 0 emission band implies that the time dependence of this emission

cannot be determined in a simple fashion by least squares fitting. In addition, the

v = 1 → 0 emission overlaps substantially with several other emission bands, partic-

ularly the v = 2 → 1, v = 3 → 2, and v = 4 → 3 emission bands. For this reason,

the time dependence of the emission from these bands is not easily determined using

standard least squares techniques, despite the fact that their band profiles are known.

The HLPA technique that was outlined in Section 3.2 provides an alternative data

analysis approach, in which the v = 1 → 0 emission band can be treated as a pattern

to be identified by XCC. The remaining low-J vibrational emission bands, however,

need not be treated by pattern recognition, since their shapes have been accurately

determined by synthetic spectral fitting. Thus, the HLPA technique permits the

utilization of the known band shapes, together with the time-dependence of the v =

1 → 0 band determined by pattern recognition, to determine simultaneously the

remaining parameters of interest: the frequency-dependence of the v = 1 → 0 band,

and the time-dependences of the remaining low-J bands.

It should be noted that the pattern recognition approach to the CO data set

implicitly assumes that the band shape of the optically thick v = 1 → 0 emission

78



   

does not change as a function of time. The exact band shape is governed by the

relative populations of the v = 1 and v = 0 states, the oscillator strengths of the

various v = 1 → 0 rotational transitions, collisional deactivation rates, transport of

molecules out of the field of view, the rotational distribution of the v = 1 molecules,

and geometrical considerations. Of these parameters, only the population of the v = 1

excited state is expected to change with time (as with the other excited vibrational

states, the low-J rotational distribution of the v = 1 molecules is expected to conform

to a time-independent Boltzmann distribution). However, the population of the v = 1

excited state remains a small fraction of that of the ground vibrational state, and thus

all changes in the band shape are expected to be minor. The results of the HLPA

analysis presented below support this argument.

The first step in the HLPA analysis of the CO data set is the pattern recognition

determination of the time-dependent amplitude of the optically thick v = 1 → 0

band. As explained in Section 3.2, the XCC identifies patterns within a data set by

searching for fragments of the patterns that are repeated uncorrupted (by overlap

with other patterns) in each of the spectra. As is clear in Fig. 3-2, the optically thick

v = 1 → 0 emission band overlaps heavily with other emission bands. At frequencies

above ∼2165 cm−1, the v = 1 → 0 emission band should be relatively free from

overlap, although it almost certainly overlaps with the v = 5 → 4 band head above

2190 cm−1. In addition, the existence of a v = 6 → 5 band head around 2180 cm−1,

obscured by the much stronger v = 1 → 0 band, cannot be ruled out. Finally, it is

difficult to determine the exact frequency at which the optically thick band can be

assumed to be free from overlap with the v = 2 → 1 emission band.

The XCC can be used to determine the amplitude of the v = 1 → 0 emission

band in over 100 spectra, a result that will be discussed below. First, however,

this application of the XCC is illustrated with just two spectra, in particular, the

two spectra depicted in the top panel of Fig. 3-2, over the frequency range 2165–

2215 cm−1 (also depicted in the upper left panel of Fig. 3-3). Two maxima are

observed in the XCC merit function (upper right panel of Fig. 3-3), indicating the

presence of two “patterns”, and in the lower left panel of Fig. 3-3, the weight functions
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corresponding to each of these maxima are plotted as a function of frequency. As

explained in Section 3.2, the weight functions indicate those portions of patterns that

are repeated, uncorrupted by overlap with other patterns, in each of the spectra.

Thus, on the basis of these weight functions, the two maxima observed in the merit

function are clearly assignable as the v = 1 → 0 optically thick emission and the

v = 5 → 4 band head emission. The v = 2 → 1 emission band is not identified as a

distinct pattern, because no regions of the spectra exist within which this emission

band is uncorrupted by overlap with other vibrational bands. Notice, however, that

the weight functions for the v = 1 → 0 optically thick pattern are very nearly zero

at two resolution elements below 2170 cm−1. This observation is consistent with the

v = 1 → 0 optically thick pattern overlapping with the “tail” of the v = 2 → 1

emission band below this frequency.

In addition, the XCC weights provide evidence for the existence of a v = 6 → 5

band head near 2180 cm−1. Although the XCC weights for the optically thick pattern

are not zero near 2180 cm−1, they are substantially lower than the weights at higher

and lower frequencies; this observation is consistent with a slight “corruption” of

the pattern by overlap with a weak band head. This evidence is augmented by the

application of the linear inversion technique for pattern reconstruction (Section 3.2) to

this frequency region. In this case, it is not expected that the two identified patterns

will account for 100% of the intensity observed within the frequency interval chosen,

but the linear inversion method can be applied naively to this region anyway, and

the results are depicted in the bottom panel of Fig. 3-3. As expected, the “tail” of

the v = 5 → 4 band head is observed to extend to below 2190 cm−1. Intriguingly,

a small bump is also observed in this “reconstructed pattern” around 2180 cm−1.

Although it is possible that this bump might represent an unexpected feature in the

v = 5 → 4 band head, the bump occurs at the frequency at which the maximum of the

v = 6 → 5 band head is predicted to be located. Thus, a reasonable inference is that

the v = 6 → 5 band head is present, although the emission is weak, and that it has a

time dependence that is approximately the same as that of the v = 5 → 4 band head.

As far as either the XCC or the linear inversion methods are concerned, patterns with

80



  

22002180

cm
-1

Patterns by Linear Inversion

v=5→4
band head

v=6→5
band head

v=1→0
low-J band

22002180

cm
-1

XCC weights

G
 

0.1
2 4 6 8

1
2 4 6 8

10

I(t=2.5)/I(t=12.5)

XCC Merit Function

v=5→4
band head

v=1→0
low-J band

22002180

cm
-1

 12.5 ms
 2.5 ms

Spectra

Figure 3-3: Upper left: Two of the time-resolved CO emission spectra over the fre-
quency interval 2165–2215 cm−1. Upper right: XCC merit function G as a function of
ratio direction for these two spectra. The two maxima correspond to the v = 5 → 4
band head emission, and the optically thick v = 1 → 0 low-J emission. Lower left:
XCC weight functions plotted as a function of frequency at ratio directions corre-
sponding to the two maxima in the XCC merit function. Lower right: Results of the
linear inversion method.
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identical time-dependent amplitudes (ratio directions) are indistinguishable, and thus

the v = 6 → 5 and v = 5 → 4 band heads may be lumped together into one pattern.

The ability of the XCC to isolate those portions of the emission spectra that are

due only to optically thick v = 1 → 0 pattern makes in possible to determine the

time-dependent amplitude of this band. The top left panel of Fig. 3-4 depicts the

time-dependence of the v = 1 → 0 emission intensity that is determined by applying

the XCC to 100 spectra simultaneously. Thus, by adopting a pattern recognition

analysis of the data set, the time-dependence of the v = 1 → 0 emission intensity

has been determined without any knowledge of the band profile. At this point, it

remains to determine the time-dependent amplitudes of the v = 2 → 1, v = 3 → 2,

and v = 4 → 3 emission bands, which also could not be determined by standard least

squares techniques due to their overlap with the optically thick band.

The HLPA approach outlined in Section 3.2 provides a conceptually straightfor-

ward way to determine these time-dependences. Numerically, the HLPA technique

relies on the fact that the data set can be described by a set of equations of the form

in Eq. 3.5, except that in the present application, there are many more than two pat-

terns. If all 100 of the spectra were included in the HLPA analysis, the total number

of equations would be ∼20,000, with ∼1400 unknown parameters. Obviously, the

problem is highly overdetermined, but in practice such a large fit is computationally

tedious, and unnecessary. The time-resolved spectra change slowly from one time-

interval to the next, and it is sufficient to choose a small subset of the data that evenly

spans the time interval in which the kinetics of interest is played out. The calcula-

tions reported here utilize ten of the time-resolved spectra, which were chosen at 2.0

ms intervals, from 2.0 to 20.0 ms (after the electron beam is turned on). Figure 3-5

depicts one of these time-resolved spectra decomposed into its constituent patterns

by HLPA.

The bottom left panel of Fig. 3-4 examines in greater detail the frequency de-

pendence of the optically thick v = 1 → 0 band determined by the HLPA method,

by juxtaposing it with the band shape that is predicted by neglecting the effects

of optical opacity. This comparison underscores the enormity of the optical opac-
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ity, and may aid in the modeling of the self-absorption, transport, and deactivation

effects that lead to the optical opacity. The right column of Fig. 3-4 depicts the time-

dependent emission intensity from selected low-J vibrational bands, as determined

by the HLPA technique. As mentioned previously, only ten time-intervals were in-

cluded in the HLPA calculations, but the intensities of the various vibrational bands

at all other times can be determined in a straightforward manner by least squares

fitting (since the frequency dependence of the optically thick v = 1 → 0 band has

been determined). The smoothness of the curves in Fig. 3-4 constitutes evidence that

the HLPA technique provided a physically reasonable solution. The kinetics of the

system will be analyzed in a future publication by the Hanscom group.

Finally, in the left panel Fig. 3-6 are depicted the residuals of the HLPA calculation

for three of the ten time-resolved spectra that were included in the analysis, along

with a spectrum taken before the electron beam was turned on, for comparison. The

residuals of the fit are similar in amplitude to the “background” spectrum at most

time intervals. However, at early and late times, the residuals above 2075 cm−1

are significantly larger than the background noise. Intriguingly, the structure in the

residuals appears to invert from 4.0 ms to 20.0 ms, and the two prominent “lobes”

in this structure line up in frequency with the P - and R-branches of the v = 1 low-J

emission band, which likely implies that the optically thick v = 1 → 0 band profile

changes slightly with time. It should be emphasized that the structures observed in

the residuals are small relative to the integrated intensity of the v = 1 → 0 band, and

the corresponding changes in the shape of the optically thick band are subtle. The

right panel of Fig. 3-6 depicts the change in band shape of the v = 1 → 0 emission

between 4.0 ms and 20.0 ms, assuming that the structure in the residuals is due

entirely to the breakdown of the assumption of constant band shape. That is, the

band shapes that are depicted in the right panel of Fig. 3-6 were generated by adding

the residuals (above 2075 cm−1) to the v = 1 → 0 band shape that was determined

by the HLPA technique (in Fig. 3-4). The difference in band shape between 4.0 ms

and 20.0 ms is subtle but noticeable; the band shapes at intermediate times vary

smoothly between these extremes.
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Figure 3-6: Left panel: Residuals (observed minus calculated) of the HLPA calculation
for three of the ten time-resolved spectra included in the fit. The bottom trace, for
comparison, is a spectrum taken 5.0 ms before the electron beam is turned on, which
provides a measure of the experimental noise. Right panel: The change in the shape of
the optically thick v = 1 → 0 band as a function of time, assuming that the structure
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shape. That is, the band shapes depicted here were generated by adding the residuals
(above 2075 cm−1) to the v = 1 → 0 band shape that was determined by the HLPA
technique (lower left panel in Fig. 3-4).

86



  

3.4 Conclusion

Numerical pattern recognition algorithms (and in particular the Hybrid Linear Pat-

tern Analysis (HLPA) technique that is introduced here) have played a critical role in

the successful analysis of CO atmospheric emission simulation experiments. Similar

techniques may also be useful for analyzing “field data”, such as the infrared emission

spectra of the Earth’s atmosphere that were recently obtained from the CIRRIS 1A

instrument aboard the Space Shuttle [65]. Analysis of such data is complex, due to

the large number of emitting species, each of which may have substantial populations

in highly excited rovibrational states. Spectroscopic pattern recognition techniques

such as the Extended Cross Correlation (XCC) and HLPA may be valuable in extract-

ing from such data sets the relative contributions from individual chemical species,

as in Chapter 2, and the various vibrational bands belonging to a single species, as

done here. Other potential applications of these techniques include spectra that are

obtained for purposes of surveillance or in atmospheric remote sensing experiments.

The spectra that are obtained in both cases frequently contain features which result

from unknown species, as well as optical opacity effects. As a result, such spectra

often cannot be analyzed with standard least-squares techniques, and the ability of

the XCC and HLPA to identify and extract unknown patterns may prove useful in

these cases [67].
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Chapter 4

Robust Baseline Estimation
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The work in this chapter has not been published and should be considered a work in

progress. However, the technique introduced here, Robust Baseline Estimation, has

already been used by a number of scientists, and for this reason I wish to document

the technique as it currently stands. This chapter represents the starting point for a

collaboration with Dr. Andreas Ruckstuhl (Australian National University), concern-

ing applications of robust estimation to spectroscopic problems, but this collaboration

is still in a nascent stage.

4.1 Motivation for RBE

The Robust Baseline Estimation (RBE) technique that is presented in this chapter

is not, strictly speaking, a pattern recognition technique. RBE is a technique for

baseline removal; that is, in spectra that consist of sharp features superimposed upon

a continuous, slowly varying baseline, it is designed to permit the separation of the

two components, spectrum and baseline. There exist, of course, numerous techniques

for baseline removal from spectra, because the problem is ubiquitous within spec-

troscopy. In many cases, baselines are simply removed “by eye”. There is nothing

inherently wrong with this approach, but I believe that, even for a “mundane” task

such as baseline removal, it is beneficial to use numerical tools which minimize the

need for judgement calls and permit reproduction of the results by others. Among the

most common numerical techniques for baseline removal are those based upon digi-

tal filtering; a “high pass” filter can be successful in suppressing a relatively slowly

varying baseline, although often at a cost of distorting the remaining “sharp” compo-

nents of the spectrum. Many other numerical techniques have been used for baseline

subtraction, too numerous to mention here.

The technique presented here for baseline removal, RBE, is based upon principles

of robust estimation, as the acronym suggests. These principles of robust estimation

also underlie the Extended Cross Correlation (XCC) technique that was discussed in

Chapters 2 and 3, and in fact, the RBE technique was inspired by the XCC; it is for

this reason that the RBE technique is presented here. No specific claims are made
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that the RBE technique is better or faster or more accurate than other techniques for

baseline removal, but the RBE does appear to be an attractive alternative to other

techniques with which I am familiar, particularly when accurate baseline removal is

critical to the interpretation of spectroscopic results. Among the attributes of the

RBE technique are that it

1. uses techniques of robust estimation to provide, insofar as possible, an unbiased

estimate of the baseline;

2. takes into account the measurement error in the data in a natural way;

3. can be applied to a wide variety of baseline subtraction problems; and

4. requires minimal human intervention.

In Section 4.2, the RBE technique is introduced and its properties established using

synthetic spectra; in Section 4.3, RBE is applied to real experimental data.

4.2 The RBE Technique

It is important to realize from the outset that the question “what is the baseline in

my spectrum” is, in the absence of further information, an ill-defined question—in

general, there exist an infinity of possible models for the baseline that are consistent

with the data. A more well-defined question is, given a model for the baseline function,

what is the probability that the observed spectroscopic data could have occurred?

However, the presence of peaks superimposed upon the baseline makes answering even

this question difficult. In essence, only some of the data is useful for determining the

baseline function; data points on top of peaks are generally useless for determining

the baseline.1 If it is possible to estimate the baseline function at all, then the baseline

must be assumed, at the very least, to be smooth and to vary slowly. In this way,

1A possible exception would occur if the line shapes and, perhaps, relative intensities of the peaks
were known a priori . In this chapter, I will make no assumptions about the peaks observed in the
spectra, other than that they must be sufficiently narrow that the baseline changes minimally across
the width of the peak
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the baseline can be safely interpolated across the width of a peak. The baseline

also cannot in general be estimated if the peaks which are superimposed upon the

baseline are so congested that there are few regions in the spectrum that represent

the contribution of only the baseline.

Given these caveats, I believe that techniques of robust estimation may be quite

useful for estimating the baselines present in spectra in a great many cases. Robust

estimation is something of a catch-all term which, in the simplest sense, refers to

techniques of estimation that are less sensitive to outliers than the conventional least-

squares approach. From the standpoint of estimating the baseline in a spectrum,

the points in the spectrum that lie on top of peaks can be considered outliers, and

thus one can imagine using a robust estimator to determine a baseline function by

more-or-less ignoring those points that lie on peaks.

There are several nontrivial issues which face implementation of this simple idea.

The first is to choose a functional form for the baseline to fit to the spectrum. In

practice, this is generally not an insurmountable problem; it is usually possible to

determine a fairly good functional form, such as a low order polynomial, by inspecting

the data, and the results of using several functional forms can be compared. In the

case of an irregularly oscillating baseline, the baseline can usually be estimated locally

by a low order polynomial; see Section 4.3. A more difficult problem is, having chosen

a functional form for the baseline estimation, the choice of initial parameters for the

fit. Robust estimators in general have multiple local minima as a function of the

model parameters; the global minimum is the solution that is desired. Sophisticated

minimization techniques such as simulated annealing [44] can generally be counted on

to determine the global minimum of a hypersurface in finite time, although they are

not guaranteed to do so and are computationally intensive. Thus, a more productive

strategy might be to attempt to obtain initial estimates for the model parameters for

the baseline that are as close as possible to the global minimum; standard optimization

routines can then be used to determine precisely the global minimum.

To illustrate how such a strategy can be achieved, two synthetic spectra are ana-

lyzed in Figs. 4-1 and 4-2. Figure 4-1 is the simpler of the two examples. A synthetic
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spectrum, shown in gray, is superimposed upon a broad baseline generated by a third

order polynomial. The solid black line is the baseline determined by robust estima-

tion. The robust estimator used to determine the baseline was

Γ =
∑

i

ρ(δi) =
∑

i

[1 − exp(−δ2
i /2)] (4.1)

where

δ =
Iobs − Icalc

σ
; (4.2)

σ is the estimated measurement error, and thus δ is a unitless, noise-weighted de-

viation from the model. The figure-of-merit function is thus chosen to be a sum of

Gaussian functions of δ; note the resemblance to the XCC merit function (Eq. 2.7).

The Gaussian function is “inverted”, by subtracting it from one, in order to make

the estimator compatible with most optimization routines, which are designed to

minimize functions; the inversion of the Gaussian is otherwise irrelevant to the per-

formance of the estimator. This merit function can be classified as a redescending

robust estimator. The hallmark of a redescending robust estimator is that measure-

ments far from the model prediction are weighted minimally (in this case the peaks

in the spectrum), while those close to the model prediction are weighted strongly

(hopefully, the baseline points). For a more thorough discussion of robust estimators

and their application to spectroscopic problems, see Refs. [1], [2], and [3].

In the case of the synthetic data in Fig. 4-1, the baseline can be fit to a third-

order polynomial, by construction. The starting values of the baseline parameters for

the robust fit were those determined by a least-squares fit to the baseline, shown as a

dotted line in Fig. 4-1. The least-squares fit, of course, does a poor job of reproducing

the baseline, because of the sensitivity of least-squares to outliers (peaks). However,

the least-squares result does appear to be adequate in this case as starting parameters

for the fit, and the final solution is quite satisfactory.

Figure 4-2 provides an example of when this simple procedure (using the least-

squares fit as starting parameters for a robust fit) fails. The spectrum in Fig. 4-2 is an

extremely congested synthetic spectrum, superimposed upon a third-order polynomial
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Figure 4-1: Simple example of RBE. Top: A synthetic spectrum (gray) that is super-
imposed upon a broad baseline generated by a third order polynomial. The dotted
line is the baseline determined by least-squares fitting; although this solution is clearly
incorrect, it is an adequate starting point for a robust fit, which generates the solution
indicated by the solid black line. Bottom: the error in the robust baseline estimation;
note the expanded y-scale.
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Figure 4-2: Difficult application of RBE. In gray is a very congested synthetic spec-
trum that is superimposed upon a broad baseline generated by a third order poly-
nomial (dotted line). The dashed line is the baseline determined by RBE, using as
initial parameters for the robust fit the results from a least-squares fit; obviously, the
robust fit became trapped in a local minimum, and the results are inadequate. The
solid line represents a more satisfactory solution, obtained by an iterative series of
fits using asymmetrically weighted merit functions.

baseline. The dashed line shows the result of using RBE (with least-squares initial

values) for this spectrum. Obviously, the robust fit became “trapped” in a local

minimum that is nowhere close to the optimal solution, and the least-squares results

are inadequate starting values in this case.

Two modifications of the RBE technique help it to avoid local minima during the

robust fit. The first is to define a family of robust estimators with varying behavior

depending on the value of a single parameter. Again, the merit function is defined to

be a sum of “ρ-functions”, Γ =
∑

i ρ(δi), but in this case the family of ρ-functions is

defined as

ρα(δ) = δα[1 − exp(−δ2/2)]. (4.3)

The parameter α is limited to 0 ≤ α ≤ 2. Note that when α = 0, then the ρ-function

becomes the simple inverted Gaussian of Eq. 4.1. Less obvious is that when α = 2,
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Figure 4-3: Right: The family of symmetric functions ρα for several values of α. Note
that for α = 0, the merit function is an inverted Gaussian. For α = 2, the merit
function is quite close to the χ2 function in least-squares. Left: Asymmetric family
of ρ-functions.

the merit function behaves very similarly to the the χ2 function used in least-squares

fitting, particularly for large δ:

ρ(δ; 2) = δ2[1 − exp(−δ2/2)] ≈ δ2 (δ � 1). (4.4)

This family of ρ-functions, for various values of α, is depicted in the right panel of

Fig. 4-3.

This family of merit functions provides a more sophisticated solution to the prob-

lem of starting parameter values for the robust fit. Instead of simply using least-

squares results as the starting point, one can use an iterative procedure in which α

is varied in steps from 2.0 (essentially least-squares) to 0.0 (inverted Gaussian robust

estimator), using the results of the previous step as the initial parameters for the next

step. The number of steps usually does not need to be large; ten is almost always

more than sufficient. The fit at each step generally converges rapidly, since the merit

function changes in minor ways from one value of α to the next (outliers are weighted

slightly less in each step).
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One additional modification to the RBE technique that is extremely useful for

accelerating convergence is to utilize asymmetric merit functions—i.e., the functions

ρ(δ) are defined such that they weight a positive deviation from the model differently

than a negative deviation. One possible family of asymmetric ρ-functions are those

depicted in the left panel of Fig. 4-3, which are described by

ρα(δ) = δα[1 − exp(−δ2/2)] (δ ≥ 0) (4.5)

ρα(δ) = δ2 (δ < 0). (4.6)

In other words, they are identical to the symmetric family of ρ-functions (right panel

of Fig. 4-3) for positive deviations from the model; for negative deviations, ρ is simply

the square of the error, as in least-squares fitting. The rationale for the asymmetric

merit functions is simple—in the vast majority of spectra, signal is represented by

peaks that point in one direction, usually the positive direction. Thus, in order to

determine the baseline accurately, the RBE technique need only be unidirectionally

robust; that is, the RBE need only ignore “outliers” in the positive direction, because

only these could be due to peaks in the spectrum. Any outliers that lie below the fit

line (negative δ) cannot be due to peaks in the spectrum and indicate that the fitted

baseline is too high. The asymmetric merit function ensures that any such negative

outliers have a strong influence on the fit at all stages, and in general the use of the

asymmetric merit function ensures rapid convergence towards a reasonable solution.

One serious concern about the use of asymmetric merit functions is that, by

treating positive and negative outliers differently, they might bias the final fitted

solution. One can, of course, use the family of asymmetric merit functions to obtain

an initial estimate of the baseline, and then use the symmetric merit functions in a

final fit to obtain a less biased solution. In practice, however, this may be unnecessary.

It is important to keep in mind that the data itself imposes a bias on the baseline

fit, since all of the peaks point in one direction. Using a robust estimator helps to

minimize that bias, but it is generally impossible to completely eliminate it. The bias

introduced by the asymmetric merit function partially counteracts the bias of the
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data itself, and the asymmetric merit functions performs better than the symmetric

merit functions in many tests on simulated spectra.

The solid line in Fig. 4-2 depicts the results of the modified RBE technique (using

the asymmetric merit functions and iteratively reducing α to 0) for a very difficult syn-

thetic test case. Overall, the RBE solution appears to be quite acceptable, although

it does diverge from the “true baseline” (dotted line) below spectral element 300.

The RBE fitted baseline passes through the spectrum at spectral element 0, whereas

the baseline upon which the peaks were superimposed lies substantially lower at this

spectral element. However, in the absence of any additional knowledge other than

the observed spectrum (in gray), the RBE solution is completely reasonable. The

synthetic spectrum considered here is an extreme case; it is so congested that only

∼10% of the spectral elements are of any use in determining the baseline. In addition,

end points of a spectrum present a special challenge for baseline estimation; a spectral

element can generally only be determined to be “baseline” or “peak” in relation to

other points around it.

4.3 Applications of the RBE Technique

We consider in this section a few applications of the RBE technique to real spec-

troscopic data. Since the “true baseline” is unknown for any real spectrum, it is

impossible to judge in a quantitative way the performance of the RBE technique, al-

though it is clear that the RBE solutions are reasonable. The emphasis here is on the

wide range of problems to which RBE can be applied, with minimal human interven-

tion and minimal assumptions about the spectra. In all cases, the asymmetric merit

functions are utilized and α is iteratively reduced from 2.0 to 0.0 in ten increments.

Fig. 4-4 depicts a Raman spectrum of human breast tissue that was provided by

the group of Prof. M. S. Feld (MIT Department of Physics and George R. Harrison

Spectroscopy Laboratory). The baseline upon which the sharp features are super-

imposed is an unavoidable result of performing spectroscopy on a condensed phase

substance of such complex composition as human tissue. The sharp features are due
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Figure 4-4: Application of the RBE technique to estimate a baseline function for a
Raman spectrum of human breast tissue (dotted line), which was provided by the
group of Prof. M. S. Feld, MIT Department of Physics and George R. Harrison Spec-
troscopy Laboratory. The black line is the baseline determined by RBE (asymmetric
family of merit functions), assuming that the baseline can be represented by a second
order polynomial.

to specific chemical constituents of the tissue, the relative abundances of which are

expected to be related to the health of the tissue (i.e., malignancy is associated with

distinct spectroscopic signatures). In order to analyze spectra such as this one, it is

highly desirable to isolate the sharp features from the continuous baseline.

This Raman spectrum is reminiscent of the synthetic spectrum in Fig. 4-2, in

that it is very congested and few spectral elements can be considered useful for de-

termining the baseline. Without any knowledge of an appropriate functional form

for the baseline, any estimate of the baseline should be approached with caution.

Nonetheless, the baseline appears to be rather smooth and a second order polynomial

likely provides a reasonable functional form. The baseline determined using RBE is

represented by the solid line in Fig. 4-4. Clearly, the RBE has found a reasonable

solution, although it is impossible to determine whether it is correct .

Figure 4-5 provides another example of an experimental spectrum in which sharp

features are superimposed upon a smooth baseline that appears to be representable

by a low order polynomial. The spectrum in this case is the dispersed fluorescence
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Figure 4-5: Application of the RBE technique to remove the quasi-continuous baseline
from the acetylene dispersed fluorescence spectra. In gray is the DF spectrum, which
is the same as the one shown in Fig. 5-2. The spectrum is scaled such that the tallest
peak has intensity 1.0. In black is the result of the RBE technique, assuming that
the baseline can be represented by a third-order polynomial. The diamonds mark
the estimated baseline at discrete positions using a localized version of the RBE
(assuming that the baseline is quasi-linear over a range of ∼3000 cm−1). The dotted
line is a cubic spline interpolation between the diamonds. In all applications of RBE,
the asymmetric family of merit functions was employed.

spectrum from the V 2
0 K

1
0 band of acetylene, which is also depicted in Fig. 5-2. As

explained in Section 5.3, the quasi-continuous baseline is believed to be unrelated

to the emission of the isolated molecule in which we are interested and should be

removed. A second order polynomial is clearly not adequate to model the baseline,

but a third order polynomial may be reasonable. The baseline estimate from RBE is

represented as the solid line, and appears to be an adequate solution, except possibly

near 13,000 cm−1, where it lies significantly below the lowest points in the spectrum.

One could, of course, try higher order polynomials for the fit, but a more generally

useful strategy is to estimate the baseline locally . That is, over a relatively small

region of the spectrum, the baseline can be assumed to be quasi-linear. The strategy

employed here is to perform a linear RBE fit within a sufficiently narrow window,

and then use the amplitude of the baseline at the center of the window as the local

estimate of the baseline (by only using the baseline estimate at the center of the
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window, edge effects are minimized). The window can then be translated across the

spectrum in small steps, and a baseline function can be built up one point at a time.

When there are a sufficient number of baseline points, they can be interpolated, using

a cubic spline for example, to create a continuous baseline function.

The results of this local RBE fit algorithm are also depicted in Fig. 4-5. The

diamond-shaped markers indicate the local estimates of the baseline that were deter-

mined by performing linear RBE fits within 3000 cm−1 windows. The dotted line is

a cubic spline interpolation through these points. This local RBE solution is quite

similar to the third-order polynomial solution, except in the ∼12,000–14,000 cm−1

region. Although the local RBE solution appears to be more reasonable (due to the

increased flexibility of not having to choose a functional form for the baseline), it

is once again important to emphasize that it is an ill-defined question to ask which

solution is better. Each solution is optimal (hopefully) given the assumptions made

about the data. In the case of the global fit, the assumption is that the baseline

conforms to a third order polynomial. In the case of the local fit, the assumption

is that the baseline can be considered linear over 3000 cm−1 regions. Both solutions

will depend on the estimate of the measurement error (a value of 0.002 was used in

these calculations), as well as the implicit assumption that the spectrum is not so

congested that it is impossible to determine a reasonable baseline function.

Figure 4-6 presents a final example of the application of the RBE technique to

real experimental data. This experiment, which was carried out by J. A. Dodd,

R. B. Lockwood, and co-workers (Air Force Research Laboratory, Space Vehicles

Directorate, Hanscom Air Force Base), detected OH arising from the reaction H + O3

→ OH + O2 by laser induced fluorescence. The goal of the experiment is to quantitate

the populations of OH radical in various X-state rovibrational levels. The accuracy

of the derived populations depends on an accurate measurement of the intensities of

the peaks in the spectrum, which in turn relies on determining an accurate baseline

function.

This data is particularly intriguing from the standpoint of numerical baseline esti-

mation because the measurement error varies across the spectrum. This is deliberate;
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Figure 4-6: Application of the RBE technique to data in which the noise amplitude
varies from one spectral element to the next. This data was provided to me by
J. A. Dodd, R. B. Lockwood, and co-workers at the Air Force Research Laboratory,
Space Vehicles Directorate, at Hanscom Air Force Base. Top: Spectroscopic data
(dotted line) and fitted baseline (solid line), using local RBE. Bottom: Relative noise
amplitude in the spectroscopic data.
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the data collection routine slows down the scan rate near the peaks of interest to

improve the signal to noise. It is undesirable to scan at a slow rate across the entire

spectrum because to do so would take a prohibitively long time.

The RBE technique has no difficulty in treating data in which the measurement

error varies from one spectral element to the next. In Eq. 4.2, the measurement error σ

is simply taken to be a function of spectral element. The relative measurement errors

can be estimated from the scan rate, which is recorded along with the spectrum.

The absolute measurement error is unknown but can be estimated from the data.

Clearly, the baseline cannot be represented by a low order polynomial; it oscillates in

a seemingly random way. Thus, the baseline is fitted locally using RBE. The resultant

fitted baseline is shown as a solid line. In the regions of highest signal-to-noise, the

fitted baseline appears to be quite reasonable, cutting just beneath the bases of the

peaks. In regions where the noise level is higher it is more difficult to assess the

quality of the fitted baseline. The nature of the noise-weighted fit, however, is that

the regions with highest signal-to-noise influence the baseline estimate the most, and

that is precisely what is desired in this case.
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Part II

Acetylene Unimolecular Dynamics
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Chapter 5

XCC Analysis of Acetylene DF

Spectra
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The work in this chapter resulted from a collaborative effort between myself and

Jonathan P. O’Brien. The majority of this work has been published in the Journal

of Chemical Physics (Ref. [68]).

5.1 Introduction

This chapter is concerned with the identification of spectroscopic patterns in dispersed

fluorescence spectra recorded from rovibrational states of trans-bent S1 acetylene.

These patterns are associated with approximately conserved vibrational quantum

numbers called polyad numbers. The concept of polyads is, by now, well-established

[14, 15, 16, 17]. At low internal energy, molecular eigenstates are generally well-

described as harmonic oscillator normal mode product states, but as internal energy

increases, anharmonicities in the potential energy surface introduce resonant cou-

plings among the zero-order states; when the strength of these couplings increase

to the point that they can no longer be treated within the nondegenerate perturba-

tive limit (i.e., |H12/E
◦
1 − E◦

2 | > 1), then the normal mode quantum numbers can

no longer be considered to be even approximately good. However, Fried and Ezra

[14], and Kellman [15, 16, 17], have demonstrated that, given a set of dynamically

important anharmonic resonances, certain generalized vibrational quantum numbers,

called polyad numbers, may remain conserved.

Consider as a simple example a hypothetical molecule with two vibrational modes

(one stretch mode, vs, and one bend mode, vb, for concreteness) that are coupled by a

Fermi 2:1 resonance. That is, ωs ≈ 2ωb, and anharmonic terms in the potential energy

surface couple states with 2∆vs = −∆vb = 2, which are nearly degenerate. Figure 5-1

depicts the matrix form of an effective Hamiltonian for this hypothetical molecule,

assuming that the 2:1 resonance is the only important resonance. The (vs, vb) quan-

tum numbers of the zero-order states in the model Hamiltonian are depicted along

the diagonal, and the off-diagonal matrix elements, due to the Fermi 2:1 resonance,

are represented generically by Hs,bb (the numerical values of the off-diagonal matrix

elements would be determined by harmonic oscillator scaling rules). The effective
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Figure 5-1: Matrix representation for the effective Hamiltonian of a hypothetical
molecule with two modes, one bend and one stretch mode, in a Fermi 2:1 resonance.
The effective Hamiltonian is block diagonal, and the states in each block can be
labelled with the same polyad number, Np = 2vs + vb.

Hamiltonian is block diagonal, and all states within one block can be labelled with

the same value of Np = 2vs + vb, which is the polyad number for this hypothetical

system. Thus, the existence of polyad numbers places constraints on the vibrational

dynamics of the molecule, since only relatively small groups of states interact with

each other; from a semiclassical perspective, the polyad numbers are constants of the

motion (see Chapter 8). The block diagonalization of the effective Hamiltonian is also

of course convenient from the standpoint of numerical computation since each finite

block of the Hamiltonian can be diagonalized exactly; when polyad numbers do not

exist, then one must in principle truncate an infinitely large matrix.

The case of acetylene is significantly more complicated than the hypothetical two-

mode molecule. Acetylene has seven normal modes, which are conventionally labeled
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Mode Motion
ν1 symmetric CH stretch
ν2 CC stretch
ν3 antisymmetric CH stretch
ν4 trans bend
ν5 cis bend

�4/�5 vibrational angular momentum

Table 5.1: Normal mode notation for the acetylene S0 state.

(v1, v2, v3, v
�4
4 , v�55 ) (see Table 5.1), and 11 anharmonic resonances [69, 5, 70] have been

identified through S0 state absorption and Raman spectroscopy. Nonetheless, it can

be demonstrated [15, 16, 17] that this set of resonances does not destroy all of the

vibrational quantum numbers, and three conserved polyad numbers survive:

Nres = 5v1 + 3v2 + 5v3 + v4 + v5 (5.1)

Ns = v1 + v2 + v3 (5.2)

� = �4 + �5. (5.3)

The physical meanings of the Ns and � quantum numbers are simple; they represent

the total number of quanta of stretching excitation and the total vibrational angu-

lar momentum, respectively. The Nres quantum number has a slightly more subtle

meaning; it reflects the approximate ratios among the normal mode frequencies, and

thus represents a restriction under which only states with approximately the same

zero-order energy may interact.

It should be emphasized that polyad quantum numbers are approximately but not

rigorously conserved, and the conservation or nonconservation of the polyad numbers

is a function of both internal energy and spectroscopic resolution (or, equivalently,

timescale of the dynamics being probed). That is, the early-time dynamics of the

molecule could be adequately described within the framework of the polyad model,

whereas an understanding of the longer time dynamics might require the incorpora-

tion of inter-polyad couplings into the model. A number of mechanisms could lead to
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breakdowns in the goodness of the polyad quantum numbers. As has been discussed

previously [5, 71], various Coriolis interactions, in addition to rotational �-resonance,

can lead to rotationally induced breakdowns of the polyad quantum numbers. The DF

spectra analyzed here sample low rotational quantum numbers (J = 1,2), so that rota-

tionally induced polyad breakdown is not expected to be significant. However, purely

vibrational breakdown of the polyad quantum numbers is also possible. The polyad

model incorporates only the strong anharmonic resonances that have been definitively

demonstrated to exist by studies at relatively low internal energy (<10,000 cm−1).

Certain higher order anharmonic resonances, that are currently uncharacterized and

not incorporated in the polyad model, are likely not to conserve the polyad quantum

numbers. If these unaccounted-for resonances are relatively weak, then their existence

will be manifested primarily through local perturbations at low internal energy, but

due to their quantum number scaling, could lead to a global breakdown of the polyad

numbers at higher internal energy.

Prior to this work, substantial experimental evidence had been presented that the

polyad numbers remain approximately conserved to at least 10,000 cm−1 [69, 5, 70].

In particular, a preliminary analysis of acetylene DF spectra in the Field group [69]

resulted in the assignment of polyad numbers to 75 spectral features below 10,000

cm−1. In this chapter, polyad assignments are provided for hundreds of spectral

features up to 15,000 cm−1, and no evidence is found for the destruction of the

polyad numbers, on a timescale of ∼1 ps, up to at least 15,000 cm−1. In Chapter 10,

the analysis of the DF spectra is continued above 15,000 cm−1, where the energetic

feasibility of acetylene-vinylidene isomerization [72, 37, 34] might be expected to

destroy some or all of the polyad quantum numbers (the destroyed polyad numbers

might also be replaced with new approximately conserved quantities). However, no

evidence of global breakdown of the polyad quantum numbers is observed to at least

20,000 cm−1.

The ability to probe the polyad structure of acetylene at such high internal energy

is made possible by the use of numerical pattern recognition algorithms, based upon

the XCC (Chapter 2). The rationale for using pattern recognition to apportion the
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DF spectra into polyad patterns is discussed in Section 5.4; see also Refs. [69], [9],

and [8]. Prior studies of the acetylene DF spectra utilized visual pattern recognition

to assign polyad number to observed spectral features. There are several advantages

to using numerical, as opposed to visual, pattern recognition in this context. The

XCC performs the identification and extraction of patterns in an automated and

numerically rigorous fashion and thus minimizes the number of “judgment calls”. The

XCC requires no a priori knowledge of either the number or nature of the patterns,

and, as described in Section 5.5, is capable of identifying and extracting an arbitrary

number of patterns from the DF spectra. In addition, the technique is capable of

extracting multiple overlapped patterns, which would be difficult to recognize by eye;

this advantage of the XCC becomes especially important at high internal energy (i.e.,

above 10,000 cm−1). Finally, the XCC can accommodate any number of spectra,

whereas visual pattern recognition becomes increasingly difficult as the number of

spectra increases.

However, the XCC technique does require that the spectral data be well-calibrated.

In particular, the XCC algorithm requires that the spectra to be analyzed are fre-

quency calibrated to within the spectral resolution. In addition, as described in Sec-

tion 5.5, the XCC identifies patterns using the intensity information in the spectra,

and thus accurate relative intensities are also essential. For these reasons, a new DF

data set for the acetylene S1 → S0 system has been recorded for the express purpose

of analysis by numerical pattern recognition algorithms (Section 5.2). DF spectra

have the distinct advantage that both frequencies and relative intensities can be ac-

curately measured. In terms of frequency calibration, the advent of sensitive array

detectors, such as diode arrays and charge coupled devices (CCDs), has obviated the

stick-slip problems that hampered the frequency calibration of DF spectra that were

recorded with many scanning monochromators. As for intensity calibration, although

many spectroscopic techniques can boast sensitivity and/or dynamic range vastly su-

perior to that of DF spectroscopy, the relative intensities of different transitions in

the majority of these techniques are inherently either nonlinear or non-reproducible,

making it difficult or impossible to calibrate the intensities in such a spectrum. By
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contrast, the intensities in DF spectra are linear and can be calibrated by taking into

account instrumental effects such as the wavelength dependences of the grating and

detector.

One of the primary limitations of DF spectroscopy is resolution, which is deter-

mined by the dispersion of the grating used, the path length of the monochromator,

and, in the case of array detectors, the pixel size of the array. However, from the

standpoint of understanding dynamics, low resolution corresponds to short-time dy-

namics. For polyatomic molecules at high internal energy, the short-time dynamics

(a few ps) can provide a wealth of insight into the potential energy surface under

study, as will hopefully be clear in the chapters that follow. High resolution, high

sensitivity techniques often generate enormous amounts of detail that relate to the

long-time dynamics. The panoramic perspective afforded by DF spectra provides a

necessary framework for understanding the details provided by higher resolution and

higher sensitivity techniques.

5.2 Acetylene DF Spectra

A new DF data set for acetylene S1 → S0 emission has been recorded. This data

set consists of DF spectra excited via Q(1) (J ′
Ka,Kc

= 11,0) lines of the V 0
0 K

1
0 (origin

band), V 1
0 K

1
0 , 21

0V
1
0 K

1
0 , V 2

0 K
1
0 , and 21

0V
2
0 K

1
0 vibrational bands (V represents the trans

bending mode, v′3 in the S1 state and v′′4 in the S0 state, “2” represents the CC

stretch, and K has its conventional meaning as the unsigned, body-fixed projection

of the total angular momentum). Selection rules for electronic transitions specify that

all eigenstates observed in the DF data set possess g symmetry with respect to the

center of inversion. The values of the angular momentum quantum numbers, J and

�, are also determined by selection rules. The emission from the selected S1 state

(J ′ = 1, K ′ = 1, f parity) rotational levels consists of two rotational components,

(J ′′ = 1, �′′ = 0, e parity), and (J ′′ = 2, �′′ = 2, f parity). As discussed previously

[69], the signs and magnitudes of the g44 and x44 parameters in the standard Dunham
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expansion for the S0 state of acetylene create a tendency1 for these two lines to collapse

into a single feature at the resolution of the DF spectra.

The DF spectrum from each of these five vibrational levels was recorded at two

resolutions: ∼7 cm−1 and ∼18 cm−1 (as measured at 350 nm). Thus, the complete

data set consists of a total of 10 DF spectra. The higher resolution spectra are

particularly valuable for extracting highly fractionated and partially overlapping pat-

terns above 10,000 cm−1. The experimental conditions for the origin band spectra

have been reported previously [69]; the experimental conditions for the DF spectra

recorded from the other four vibrational levels of the S1 state are briefly reviewed

here.

A XeCl excimer laser (Lambda-Physik LPX-210icc), running at 65-85 Hz, was

used to pump a grating-tuned dye laser (Lambda-Physik FL2002) containing either

Coumarin 440 or 450 dye. The dye laser beam was frequency doubled in BBO to

produce ∼1 mJ of tunable, 215-230 nm, radiation with a spectral width of ≤0.05

cm−1. The frequency doubled laser light was spatially separated from the residual

fundamental by two 60◦ prisms. The residual fundamental laser beam was passed

through a frequency-calibration cell containing 130Te2, and the dye laser was scanned

and locked onto the 12C2H2 S1 ← S0 rovibronic transition of interest.

The frequency doubled dye laser output was passed through a static gas cell

charged with 5.0 Torr of acetylene, which was obtained from 99.8% pure acetylene-h2

(Matheson), which had been purified by at least five freeze-pump-thaw cycles. The

emission from the static gas cell was imaged onto a monochromator entrance slit. In

the case of the lower resolution (∼18 cm−1) spectra, the emission was imaged by f/5.8

fused silica optics onto the entrance slit of a Jobin-Yvon HR 640 mm monochromator

equipped with a ruled grating (1200 gr/mm, blazed for 500 nm); the entrance slit

width was set to ∼100 µm and the grating was used in first order. For the higher

resolution (∼7 cm−1) DF spectra, the total spontaneous emission was imaged by f/10

fused silica optics onto the entrance slit of a Spex 1802 1000 mm monochromator

1Exceptions to this trend, particularly at high (>10,000 cm−1) internal energy, are noted in
Chapter 6.
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equipped with an identical grating; the entrance slit width was set to ∼100 µm and

the grating was used in second order.

The dispersed emission in either case was recorded on a Princeton Instruments

intensified charge coupled device (ICCD), Model 1024-M059413, which has 256×700

active pixels. The number of laser shots recorded on the ICCD for each DF segment

was varied to obtain similar signal-to-noise for each of the spectra, but was on the

order of 104-105. The DF spectra were recorded in overlapping segments, such that

adjacent segments overlap by at least 20 Å. In order to permit the identification and

subtraction of spurious noise spikes caused by cosmic rays, the dispersed emission

at each grating position (each segment) was recorded twice. All intense but narrow

features that appeared in only one of the two segment spectra were assumed to be

due to a cosmic ray and removed.

Frequency calibration was achieved by recording for each segment (grating posi-

tion) the emission from a series of wavelength calibration lamps (Fe, Ne, Hg, Kr, Ar,

Xe) immediately after recording the acetylene emission and without moving the grat-

ing . The calibration methodology utilized has been described previously [69, 73, 8]

and permits compensation for systematic errors in the calibration, as well as the non-

linearity that is inherent in the dispersion of the grating. The frequency calibration

errors were estimated to be ∼2 cm−1 (2σ) for the higher resolution series and ∼5

cm−1 for the lower resolution series.

Intensity calibration was achieved by recording for each segment the emission from

an Optronic Laboratories standard of spectral irradiance lamp, Model (OL-220M-

M877). The emission recorded from this lamp is compared to its calculated emission

intensity to determine an instrument response function, which reflects the wavelength

dependence of the ICCD response and the grating throughput. In addition, in order

to correct for fluctuations in the power of the excitation laser, the total spontaneous

emission from the acetylene static gas cell was collected by f/1.7 fused silica optics and

imaged through a Schott glass filter (UG11) onto a solar blind photomultiplier tube

(Hamamatsu R166UH). The PMT signal was averaged on an oscilloscope during the

period of signal integration of each DF segment to provide an intensity normalization
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factor.

The accuracy of the intensity calibration is a function of the wavelengths of the

transitions being referred to, in the sense that transitions observed at similar wave-

lengths have more accurate relative intensities than transitions at very different wave-

lengths. As a conservative upper bound, it can be estimated [8] that the intensity

ratio of any pair of peaks within one DF spectrum (i.e., peaks separated by up to

20,000 cm−1) will always be accurate to within 20%. This number is a conservative

upper bound and refers to pairs of peaks that are separated by ∼20,000 cm−1. The

intensity ratios for pairs of peaks that lie within 1000 cm−1 of each other are accu-

rate to within ∼2%. [Even more accurate intensity calibration is possible using the

methods described in Section 10.2.]

It should be noted that the complete intensity calibration procedure may only be

properly applied to spectra recorded in first order on the grating. That is, since the

intensity calibration lamp has continuous emission over 2000–9000 Å, the recorded in-

tensity response at the grating positions used for the second-order (higher resolution)

series of DF spectra would include contributions from both first and second order.

Therefore, only the lower resolution series of DF spectra have the property that peaks

separated by several thousand cm−1 have accurate relative intensities. Note, however,

that the XCC can still be used to analyze the higher resolution spectra, despite their

poorer intensity calibration, because each fractionated bright state pattern typically

extends over a range of internal energy of <1000 cm−1.

5.3 Quasi-Continuous Baseline

Figure 5-2 depicts the calibrated, concatenated DF spectrum that was obtained at 18

cm−1 resolution (first order) from the V 2
0 K

1
0 band. Note that the intensities depicted

here have been corrected for both the instrument response function and the ω3 factor

in the Einstein A-coefficient. Thus, the y-axis represents the relative Franck-Condon

factors for the observed transitions (assuming constant electronic transition moment).

One notable feature is what appears to be a quasi-continuous baseline (QCB) that
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Figure 5-2: Dispersed fluorescence spectrum excited via the Q(1) line of the V 2
0 K

1
0

band in the S1 → S0 transition. Notice the quasi-continuous baseline above 6,000
cm−1.

commences at approximately 6,000 cm−1. That is, the emission intensity never reaches

zero at internal energies greater than 6,000 cm−1.

Several experiments have been performed to help elucidate the origin of the QCB.

These experiments were performed using the Q(n)e line2 of the V 3
0 K

1
0 band, which

is not one of the transitions used to record the DF spectra in the data set discussed

in this chapter. However, the DF spectrum recorded using this absorption transition

displays a very large QCB (see Fig. 7.2 of Ref. [8]), roughly 5 times more intense

(relative to the intensities of the sharp features) than the QCB in Fig. 5-2.

The amplitude of the QCB in the Q(n)e, V
3
0 K

1
0 DF spectrum was found to be

independent of laser power, and thus the QCB is unlikely to represent emission from

a species created through multiphoton excitation. On the other hand, as can be seen

in Fig. 5-3, the intensity of the QCB does vary as a function of pressure and as a

function of the time window (relative to the laser pulse passing through the sample

cell) used to record the spectra. That is, the QCB has a larger amplitude relative

2The “e” refers to an extra line, which is presumably due to an anharmonic perturbation of the
3v′3 vibrational level, and the “n” refers to the fact that the Q(1)e and Q(2)e lines are not resolvable
at the ∼0.05 cm−1 resolution of the laser.
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to the sharp features at high pressures, and the intensity of the QCB emission varies

with time differently than the emission to the sharp features, with the QCB emission

dominating at later times.

Both of these results are consistent with the hypothesis that the QCB is associated

with intermolecular energy transfer. As mentioned in Section 5.2, the spectral width

of the laser is sufficiently narrow to permit the excitation of single rotational transi-

tions in the vibrational bands selected. However, at ∼1 Torr of pressure, each excited

state molecule is expected to undergo several, O(101), collisions during the several

hundred nanosecond lifetimes of the excited rovibrational levels accessed. These col-

lisions may result in a change in rotational and vibrational states, and emission from

a distribution of rovibrational states could result in a QCB composed of a conglomer-

ation of poorly resolved transitions. However, rotational energy transfer alone cannot

account for the QCB; rather, the emission from a distribution of J ′ levels (in the same

vibrational state) would result primarily in a broadening of the observed transitions,

and not a QCB.3 Collisional energy transfer resulting in changes in K ′ is discussed in

Section 10.1 and also cannot be responsible for the QCB.

Thus, the QCB emission is likely related to collisions that change the vibrational

and/or electronic states of the excited molecules. Triplet states are may play a key

role in this energy exchange. The vibrational density of triplet states (from the T1,

T2, and T3 surfaces) that are isoenergetic with the singlet vibrational levels used to

record the DF spectra is ∼10 per cm−1 [74]. Substantial intersystem crossing has also

been observed [74, 75, 76], which implies that the molecular eigenstates are mixtures

of singlet and triplet (due to spin-orbit coupling). Thus, all states populated by the

laser in S0 → S1 transitions are believed to have substantial triplet character, and the

high density of triplet states may promote relatively rapid vibrational energy transfer

into a distribution of singlet/triplet mixed states. The resultant emission from this

distribution could result in a QCB.

The QCB is a subject of ongoing investigation. Of particular interest is the widely

3This prediction can be easily verified by recording the dispersed fluorescence from different
rotational lines of a single vibrational band and averaging the spectra. Several such experiments
have been performed; see, for example, Fig. 10-23.
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Figure 5-3: Dispersed fluorescence spectra excited via the Q(n)e line of the V 3
0 K

1
0

band in the S1 → S0 transition. Top: The amplitude of the QCB relative to the
sharp features varies as a function of the time window (relative to the laser pulse
passing through the sample cell) used to record the spectra. Bottom: The QCB
has a larger relative amplitude at higher pressures. The pressure study spectra are
normalized such that the tallest peak in each has unity intensity.
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varying amplitudes of the QCB observed in the DF spectra recorded using different

vibrational bands. For the purposes of this study, the baseline was removed from

the spectra by subtracting out a baseline function, which was determined using the

Robust Baseline Estimation algorithm described in Chapter 4. The baseline-corrected

version of the spectrum in Fig. 5-2 is depicted in Fig. 5-4, along with the baseline-

corrected DF spectra obtained from the 21
0V

1
0 K

1
0 and 21

0V
2
0 K

1
0 vibrational bands. The

origin band spectrum has been reported previously [69] and is not depicted here.

Additionally, the V 1
0 K

1
0 spectrum is not shown because this spectrum could not be

recorded with signal-to-noise comparable to the other spectra. However, the V 1
0 K

1
0

spectrum is still valuable from the standpoint of identifying fractionated bright states

by numerical pattern recognition, because the XCC algorithm takes into account the

noise characteristics of each of the spectra and extracts patterns from them in a

statistically rigorous manner.

5.4 Theoretical Basis for Pattern Recognition

The DF spectra are ideal for gaining a broad perspective on the polyad structure

in the S0 state, since they span a large range of internal energy (see Figs. 5-2 and

5-4), from below 3,000 cm−1 to above 20,000 cm−1. However, a glance at the spectra

makes it clear that assigning polyad quantum numbers to observed transitions, and

attempting to detect breakdowns of the polyad structure, is not an easy task. There

are hundreds of observed transitions, and the features associated with several different

polyads often overlap in the DF spectra.

The ability to assign observed spectral features to polyads is made possible by the

fact that the zero-order states that are bright in our DF spectra (involving CC stretch

and trans bend) are distributed such that there exists at most one bright state in each

polyad [69]. To a good approximation, the Franck-Condon active modes in acetylene

S1 → S0 emission are CC-stretch and trans bend (i.e., acetylene in the S1 state is

trans-bent with a nominal CC double bond). Thus, the set of zero-order bright states

can be written as (0, v2, 0, v4
0/2, 00). Note that the restriction that �4 = 0 or 2, due to
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rotational selection rules, implies that v4 must be even. It can be demonstrated that

any given polyad contains at most one such zero-order bright state, which implies that

no interference effects will be observed between different bright states. That is, each

bright state fractionates into a unique set of dark states; conversely, each eigenstate

gains intensity from only one zero-order bright state.

It should be noted that the symmetric CH stretching mode is also, in princi-

ple, Franck-Condon active in the acetylene S1 − S0 system, although to a much

lesser degree than the CC-stretch or trans bend modes. If bright states of the form

(v1, v2, 0, v4
0/2, 00) were to have Franck-Condon factors comparable to those of the

(0, v2, 0, v4
0/2, 00) bright states, then the assumption of one bright state per polyad

would be incorrect. However, elementary Franck-Condon calculations [10] indicate

that bright states with the symmetric CH stretch excited should have substantially

smaller FC factors than bright states with zero quanta of symmetric CH stretch.

Specifically, the ratio of the Franck-Condon factors for any pair of states of the form

(0, v2, 0, v4
0/2, 00) and (1, v2, 0, v4

0/2, 00) (with the same v2, v4, and �4) is predicted

[10] to be ∼60:1.

However, pairs of states of the form (0, v2, 0, v4
0/2, 00) and (1, v2, 0, v4

0/2, 00) do

not belong to the same polyads. Rather, in every polyad with Ns 	= 0 there exists

a pair of states of the form (0, v2, 0, v4
0/2, 00) and (1, v2 − 1, 0, (v4 − 2)0/2, 00), and

the ratio of the Franck-Condon factors for this pair of states will vary from polyad to

polyad, and according to the S1 state vibrational intermediate used. In certain specific

cases, it is even possible that this ratio of Franck-Condon intensities could approach

1:1. That is, for the DF spectra recorded from any of the vibrational bands other

than the origin band , the excited state vibrational wavefunction has at least one node

along the trans-bend coordinate. According to simple Franck-Condon arguments, the

existence of this node implies that in any of these DF spectra, certain states of the

form (0, v2, 0, v4
0/2, 00) will have Franck-Condon factors that approach zero. On the

other hand, the (1, v2− 1, 0, (v4− 2)0/2, 00) zero-order states within the same polyads

could have among the largest Franck-Condon factors in the v1 = 1 progression. In

such a situation, one would have an optimal opportunity to observe a member of
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the rather weak v = 1 progression of states. However, the DF spectra have been

systematically searched for these types of effects,4 and there is no definitive evidence

of detectable Franck-Condon intensity for any states of the form (1, v2, 0, v4
0/2, 00).

This observation certainly does not rule out the possibility of minor interference

effects in the Ns 	= 0 polyads, but the weak Franck-Condon activity of the symmetric

CH stretching mode does not appear to affect in any substantial way the ability of the

numerical pattern recognition techniques to extract the fractionated (0, v2, 0, v4
0/2, 00)

bright states.

As depicted schematically in Fig. 5-5, the emission spectrum from each of the

Franck-Condon active vibrational cold bands of the S1 ← S0 absorption spectrum ac-

cesses the same optically bright states, and the absence of interference effects between

the bright states implies that each bright state must display the same fractionation

pattern in each of the spectra! Within any spectrum, the absolute intensity of a frac-

tionation pattern, born from a single bright state, arises from a unique Franck-Condon

factor (namely that connecting the selected upper level to the single bright state).

That is, each DF spectrum contains the same fractionated bright state patterns but

with different absolute intensities, and the fractionated bright state patterns can be

identified through cross-comparisons of the relative intensities in multiple DF spectra.

One caveat is that pairs of fractionated bright states that differ only in �4 and

J [i.e., (0, v2, 0, v4
0, 00), J = 1 and (0, v2, 0, v4

2, 00), J = 2] are extracted as a single

pattern. The relative intensities of these pairs of bright states are determined by

rotational line strength factors, and this ratio is invariant among the DF spectra;

thus, the numerical pattern recognition algorithms do not distinguish between these

pairs of bright states. Note, however, that this property of the pattern recognition

analysis does not imply any constructive/destructive interference between the � = 0

and 2 bright states. In addition, the fractionation patterns for the � = 0, 2 pairs of

bright states tend to be very similar, and, as mentioned previously, each observed

spectral feature tends to be composed of a nearly degenerate � = 0, 2 pair, at least

4This search was informed by the Franck-Condon trends that were elucidated in this work, see
Section 5.7.
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Figure 5-5: Theoretical basis for pattern recognition analysis of the DF spectra. Each
zero-order state that is bright in emission from the acetylene S1 state fractionates into
a unique set of dark states; conversely, each eigenstate gains intensity from only one
bright state. The bright states have different Franck-Condon factors in the DF spectra
recorded from different vibrational levels of the S1 state, and groups of transitions that
have the same relative intensities in multiple DF spectra can be identified as arising
from a single fractionated bright state. From the standpoint of pattern recognition,
the fractionated bright states are patterns that are repeated in multiple spectra and
can be extracted using the XCC.
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Figure 5-6: At Evib ≈ 14,200 cm−1, two fractionated bright states, (0, 2, 0, 160/2, 00)
and (0, 5, 0, 80/2, 00) can be visually identified in three dispersed fluorescence spectra,
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0 (dashed line), V 2

0 K
1
0 (dotted line), and 21

0V
2
0 K

1
0 (thin line).

at relatively low internal energy (<10,000 cm−1). At higher internal energy, the

ambiguity can be resolved using an effective Hamiltonian, as discussed in Chapter 6.

Figure 5-6 displays a 400 cm−1 region of three of the higher resolution DF spectra.

In this region two fractionated bright states are clearly identifiable. The first zero-

order bright state, (0, 2, 0, 160/2, 00), has significant Franck-Condon factors in the

emission from the V 2
0 K

1
0 (dotted line) and origin (thick line) bands, and is fractionated

over at least 300 cm−1. That is, this fractionated bright state can be identified

because the emission patterns from the V 2
0 K

1
0 and origin bands appear to be nearly

identical (other than a constant multiplicative factor) from 14,000 cm−1 to 14,300

cm−1. The sharp peak at the high internal energy end of this plot obviously belongs

to a different fractionated bright state because its ratio of intensities among the three

spectra is strikingly different from that of the peaks in the 14,000–14,300 cm−1 region.

The zero-order bright state that illuminates this peak has a relatively large Franck-

Condon factor in the V 2
0 K

1
0 and 21

0V
2
0 K

1
0 band spectra, and can be assigned to be

(0, 5, 0, 80/2, 00) based on its approximate zero-order energy.

One striking feature of this plot is that the (0, 2, 0, 160/2, 00) bright state appears
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to display substantial fractionation (fast IVR), while the (0, 5, 0, 80/2, 00) bright state,

at slightly higher internal energy, appears to exhibit little or no fractionation (slow

IVR). The fractionation pattern for the (0, 5, 0, 80/2, 00) bright state does not, in fact,

display substantial intensity above 14,400 cm−1, and thus is well-described as a single

peak. The existence of a bright state with such minimal fractionation at 14,400 cm−1

is surprising, and this and other instances of “anomalously simple IVR” are considered

in Chapter 9. The point here is simply that in certain regions of the DF spectrum,

the bright state fractionation patterns can be identified by eye. This type of visual

identification of fractionated bright states was the basis for the analysis of the origin

band DF spectrum published previously by the Field group [69].

At other ranges of internal energy, however, fractionated bright states cannot be

visually identified in as trivial a fashion. Figure 5-7 depicts the same three DF spectra

as in Fig. 5-6, but at slightly higher internal energy. In this region, it appears to be

difficult to determine visually even how many fractionated bright states are present.

The answer turns out to be two (as will be demonstrated below), but the source of the

difficulty in identifying them visually is that they overlap substantially, particularly

just below 14,700 cm−1. Overlap between bright state fractionation patterns is the

rule, rather than the exception, at high internal energy, making visual identification

of the fractionation patterns tentative. To avoid judgment calls, a numerical pattern

recognition approach has been developed to identify and disentangle from one another

the fractionated bright states in the DF spectra.

5.5 Application of Numerical Pattern Recogni-

tion

The numerical pattern recognition approach to identifying fractionated bright states

in the DF spectra is based on the Extended Cross Correlation (XCC), which is doc-

umented in Chapter 2. The XCC permits model-free identification and extraction of

patterns that are repeated in multiple data records when two conditions are fulfilled:
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Figure 5-7: At Evib ≈ 14,700 cm−1, it is difficult to separate the DF spectra into
individual fractionated bright state patterns by eye. The DF spectra shown originate
from the same upper levels as those in Fig. 5-6.

1. The data records (spectra) can be considered to be linear superpositions of

patterns (plus noise).

2. Some portion of the features (peaks) in each pattern must not be overlapped

with any other pattern.

In the context of the work discussed here, the patterns to be identified are the frac-

tionated bright states. As discussed in the preceding section, condition 1 will be

fulfilled if the acetylene S0 state polyad numbers are conserved and there is only one

bright state per polyad. Condition 2 can be fulfilled by recording DF spectra of suf-

ficient resolution that a substantial portion of the intensity in each of the DF spectra

resides in well-resolved peaks.

The central conceptual underpinning of the XCC is the recursion map. In the

simplest case of two DF spectra, a recursion map can be constructed by plotting

as the x- and y-values of the recursion map the intensities in the two spectra that

are observed at the same energy . From a practical standpoint, the construction of
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a recursion map necessitates the interpolation5 of the DF spectra so that they are

gridded identically (i.e., identical number and placement of resolution elements). For

concreteness, the left panel of Fig. 5-8 displays a recursion map that is generated

from the 21
0V

2
0 K

1
0 and V 2

0 K
1
0 spectra displayed in Fig. 5-6. These spectra have been

interpolated so that there are 800 resolution elements in each spectrum, one every 0.5

cm−1; thus, 800 points appear on the recursion map.

The clustering of the points on the recursion map into two rays that emanate from

the origin indicates the presence of two patterns (two fractionated bright states).

That is, this clustering occurs because ranges of energy can be identified in which

the intensity patterns are nearly identical in each of the spectra, except for a scaling

factor. The clustering is imperfect in the sense that the points do not all lie directly

along some straight line that passes through the origin. The scatter of the points

about these imaginary lines (the dashed lines in the left panel of Fig. 5-8) may be

caused by experimental noise, overlap with small peaks from other fractionated bright

states (which reside primarily at higher or lower internal energy than that depicted in

the Fig. 5-6), or, perhaps, minor breakdowns of the polyad model or the assumption

of one bright state per polyad. The right panel of Fig. 5-8 depicts the XCC merit

function as a function of θ, the angle between the fit line and the x-axis. Two maxima

are observed, each one corresponding to a particular fractionated bright state pattern.

The dashed lines in the left panel of Fig. 5-8 represent the “best-fit lines” for each

pattern, and it is clear that the XCC has performed well in distinguishing between

the two patterns.

In Chapter 2, two methods were presented for reconstructing the patterns from

the spectral data: the weights method and the linear inversion method. The weights

method applies primarily to cases in which most spectral features are well-resolved;

it performs poorly when substantial fractions of a given pattern are overlapped with

other patterns. At low internal energy, the weights method might be applicable, but

for the purpose of identifying fractionated bright state patterns up to as high an

5A four-point interpolation routine was utilized here; the choice of interpolation procedure is not
critical.
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Figure 5-8: Left: A two-dimensional recursion map that utilizes the intensity infor-
mation from the V 0

0 K
1
0 (y axis) and V 2

0 K
1
0 (x axis) DF spectra. The two rays of points

that intersect the origin indicate the presence of two fractionated patterns that cor-
respond to the (0, 2, 0, 160/2, 00) and (0, 5, 0, 80/2, 00) bright states. The dotted lines
represent the pattern ratio directions as determined from the XCC algorithm. Right:
Results of the XCC algorithm applied to this data. The two maxima in the XCC merit
function, at ∼30◦ and ∼12◦, correspond to the (0, 2, 0, 160/2, 00) and (0, 5, 0, 80/2, 00)
fractionated bright state patterns, respectively.
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internal energy as possible, it is preferable to use the linear inversion method, which

permits the disentanglement of heavily overlapped patterns.

One requirement of the linear inversion method is that the number of available

spectra be greater than or equal to the number of patterns which are desired to be

disentangled. The total number of bright state fractionation patterns below 15,000

cm−1 is ∼50. The problem of disentangling 50 fractionated bright states from 5

DF spectra would appear to be vastly underdetermined. However, each fractionated

bright state extends over a rather limited range of internal energy, such that at any

given internal energy, only a few bright states contribute significantly to the spectral

intensity. In principle, the range of internal energy over which each bright state frac-

tionates is unknown. However, a previously published [70] acetylene S0 state effective

Hamiltonian provides a suitable initial guess for the approximate zero-order energy

and extent of fractionation of any given bright state. To be conservative, the range of

internal energy over which each bright state was fractionated was initially assumed

to be ∼100 cm−1 greater than that predicted by the unrefined effective Hamiltonian.

Even with a conservative initial guess, the number of patterns (fractionated bright

states) that contribute significantly at any given energy is seldom greater than three.

The use of the linear inversion technique to determine a set of patterns from an

equal number of spectra was discussed in detail previously in Chapter 2. However,

the overdetermined case (more spectra than patterns) was not discussed thoroughly,

and I wish to mention two points of practical importance. First, the linear inversion

in the overdetermined case is equivalent to a linear least-squares problem, and the

covariance matrix that can be obtained from the “fit” contains information that is

useful in judging how well each pattern is determined by the data. Second, in each

overdetermined linear inversion problem, the values of the pattern intensities were

constrained to be positive (constrained least-squares). This assumption, of course, is

perfectly physically reasonable, and in certain cases helps to stabilize the fit.6

6The “noise amplification” effects for the linear inversion method are thus mitigated in the present
work both by always having more spectra than patterns and by constraining the values of the
patterns, for all spectral elements, to be positive.
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Efforts were made to automate the pattern recognition process as much as pos-

sible. This automation is important not only as a time-saving measure but also as

an attempt to make the pattern recognition as free from judgment calls as possible.

Specifically, the covariance matrix from the linear inversion was utilized in an auto-

mated fashion to determine from the experimental data the extent of fractionation

of a given bright state. As mentioned previously, the unrefined effective Hamiltonian

can provide a useful initial guess for the extent of fractionation for the purpose of ap-

plying the XCC to the data. However, it is desirable to determine from the data itself

the energy range over which each bright state fractionates. This was accomplished by

determining the point at which the amplitude of a given pattern (fractionated bright

state) falls below its estimated error (1σ), as obtained from the covariance matrix.

All portions of a fractionated bright state pattern that were not well-determined by

the data were constrained to zero.

Figure 5-9 illustrates the application of the numerical pattern recognition algo-

rithms to the DF data shown in Fig. 5-7 (although Fig. 5-7 depicts only three of the

DF spectra, the pattern recognition algorithms were applied to the full data set of

four spectra). The traces in Fig. 5-9 represent the individual bright state fractiona-

tion patterns that have been disentangled from one another, utilizing first the XCC

merit function to identify the two patterns, and then the linear inversion method

to disentangle them. With this result, the complex appearance of the raw data in

Fig. 5-7 can be understood. The sharp peak just below 14,600 cm−1 arises from

the (0, 3, 0, 140/2, 00) bright state, and the pair of peaks below 14,800 cm−1 from the

(0, 0, 0, 220/2, 00) bright state. The set of peaks below 14,700 cm−1 have an unusual

appearance because a pair of peaks from the (0, 0, 0, 220/2, 00) bright state overlap

with a single peak from the (0, 3, 0, 140/2, 00) bright state.

5.6 Spectral Features Not Assignable to Polyads

The top panel of Fig. 5-10 displays three of the lower resolution (∼18 cm−1) DF

spectra, just below 8,000 cm−1 of internal energy. In the bottom panel of Fig. 5-10
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Figure 5-9: Disentangled fractionated bright state patterns, (0, 3, 0, 140/2, 00) and
(0, 0, 0, 220/2, 00), as determined by the XCC linear inversion method. Note that the
substantial overlap between the two fractionated patterns just below 14,700 cm−1

inhibits visual pattern recognition.

are displayed the results of the application of the pattern recognition algorithms to

this energy region. Four patterns are identified, despite the fact that only two bright

state fractionation patterns are predicted to be present by any reasonable effective

Hamiltonian model! The patterns marked by the thick and thin smooth lines match

well with the zero-order energies and fractionation patterns predicted by the effective

Hamiltonian for the (0, 2, 0, 60/2, 00) and (0, 0, 0, 120/2, 00) bright states respectively,

but the other two patterns were completely unexpected.

These features had been observed in previous DF spectra but had not been iden-

tified as unusual. The ability to single out these features for further study rests

on having obtained an extensive, rigorously calibrated DF data set and having ana-

lyzed it using numerical pattern recognition algorithms. In the previous analysis of

the origin band spectrum, which utilized visual (as opposed to numerical) pattern

recognition and a less-extensive and less rigorously calibrated data set, these “extra”

patterns were incorrectly assigned as part of the fractionation pattern of one of the

expected bright state patterns [69, 70].

Other “extra” patterns were also identified that did not correspond to any pre-
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Figure 5-10: Top: The 7,500–7,900 cm−1 energy region of three dispersed fluorescence
spectra, V 0

0 K
1
0 (thin line), V 2

0 K
1
0 (thick line), and 21

0V
1
0 K

1
0 (dotted line). Bottom:

The results of the application of the numerical pattern recognition algorithms to this
data. Four patterns were extracted from the data using the XCC/linear inversion
method. Previous visual pattern recognition identified only two fractionated bright
states in this energy region, (0, 2, 0, 60/2, 00) and (0, 0, 0, 120/2, 00). The two “extra”
fractionated patterns were originally (incorrectly) assigned to these patterns.
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dicted bright state [8]. These unexpected patterns tend to be found close in inter-

nal energy to the expected fractionated bright states. However, there is no simple

trend that describes the relative intensities of any single one of these unexpected pat-

terns among the different DF spectra, although certain spectra demonstrate a greater

propensity for having intense extra patterns. These differences among the spectra

can be quantified by Ie/Itot, in which Ie is the total integrated intensity of all of the

extra patterns extracted from a given spectrum and Itot is the integrated intensity

of the spectrum. This quantity can thus be described as the fraction of the spectral

intensity that is accounted for by the extra patterns. Over the energy range 6,000–

15,000 cm−1, this fraction is calculated to be 9.5%, 20.8%, 21.4%, and 12.8% for the

21
0V

2
0 K

1
0 , 21

0V
1
0 K

1
0 , V 2

0 K
1
0 , and origin band DF spectra respectively (low resolution

series).

At the time that the work in this chapter was completed, the identity of the extra

patterns was unknown. Since that time, new experimental evidence has permitted

them to be identified; this evidence and its interpretation are outlined in Chapter 10

(the extra patterns arise from collisional energy transfer that changes the K ′
a quantum

number). Here, I will only briefly review the evidence that was available at the time.

• The relative amplitudes of the extra patterns in the DF spectra do not depend on

laser power. Varying the average power by a factor of 8 results in no perceptible

change in the relative intensities of the lines observed in emission. This result

rules out, as an explanation for the extra patterns, emission from some species

(C2H or C2, for example) created through a multi-photon absorption process.

• The relative amplitude of the extra patterns is insensitive to the intermediate

rotational state chosen. It is thus unlikely that the extra patterns represent

unexpected rotational transitions in emission due to either S1 state Coriolis

perturbations or S1 ↔ S0 axis-switching transitions [77, 78, 79]. If either of

these mechanisms were responsible for the extra patterns, their intensity would

scale as ∼J2; this prediction is inconsistent with the results of rotational studies,

which showed no increase in the amplitude of the extra features from J ′ = 1 to
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J ′ = 9.

• The amplitude of the extra patterns does not change as a function of how long

the sample of acetylene has been irradiated by the laser. Therefore, it is unlikely

that the extra patterns are due to emission from a stable molecule that is formed

photochemically upon irradiating acetylene at ∼225 nm.

• The extra features are not observed in SEP spectra. Prof. David Moss (Boston

U.) carried out SEP experiments in our laboratory that probed the acetylene S0

state from 7,000 to 10,000 cm−1 [80]. In these studies, no SEP transitions were

observed that corresponded to the extra features in the DF spectra, despite the

greater dynamic range of SEP than DF. This SEP study confirms that the extra

features do not arise from emission from the single rovibrational levels in the

S1 state that are populated by the laser in the DF studies.

Pressure studies were also performed, and the amplitude of the extra features was

found to decrease by only ∼10% when the pressure was decreased from 9.0 Torr to 1.0

Torr. In addition, the extra patterns have nonzero amplitude in the origin band DF

spectrum, which was recorded in a molecular beam [69]. These observations caused

us to reject the possibility of the extra patterns arising from simple intermolecular

rotational energy transfer. The new experimental results in Chapter 10 reveal that

this conclusion was premature. In terms of the work reported in this chapter, however,

the extra features were not a hindrance because they could be treated as patterns

and disentangled from the fractionated bright state patterns of interest.

5.7 Polyad Number Assignments

Using the numerical pattern recognition algorithms described in Section 5.5, the frac-

tionation patterns for 38 (0, v2, 0, v4
0/2, 00) bright states have been extracted from the

DF data set below 15,000 cm−1. Figure 5-11 illustrates the success of the numerical

pattern recognition approach in separating the 21
0V

2
0 K

1
0 DF spectrum into individual

fractionated bright states. The top trace of Fig. 5-11 is the DF spectrum as seen in
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Fig. 5-4. All of the extracted patterns that could be assigned as fractionated bright

states of the form (0, v2, 0, v4
0/2, 00) are arranged into progressions below this trace.

Each horizontal progression includes all of the bright states with the same number

of quanta of CC stretch, v2, but different number of quanta of trans bend, v4 (which

is labeled to the right of each pattern). Note that the ability to extract fractionated

bright state patterns in this way up to 15,000 cm−1 is strong evidence that breakdown

of the polyad quantum numbers is minimal on the timescale (∼1 ps) corresponding

to the spectral resolution.

All of the “extra” patterns that were identified, which are not assignable as ex-

pected acetylene S1 → S0 emission features, have been lumped together into the

“residuals” trace at the bottom of this plot. This residuals trace, in fact, contains

all of the intensity in the DF spectrum that is not accounted for by the fractionated

bright state patterns; the sum of the v2 = 0, 1, 2, 3, 4, 5 progressions plus the residuals

reproduces exactly the DF spectrum at the top of the figure.

By design, each of the DF spectra can be decomposed into the same set of frac-

tionated bright states, albeit with different relative amplitudes. The amplitude of

a given pattern in one of the intensity calibrated (low resolution) DF spectra is di-

rectly proportional to the Franck-Condon factor for the corresponding bright state.

Thus, it is possible to obtain the relative Franck-Condon factors for all of the bright

states in one DF spectrum by integrating the intensities of the extracted bright state

fractionation patterns. It is clear from Fig. 5-11 that the qualitative trends in the

Franck-Condon factors that are observed for the 21
0V

1
0 K

1
0 DF spectrum are consistent

with elementary Franck-Condon arguments. Specifically, the excited state vibrational

wavefunction in this case has one node along each of the CC stretch (Q2) and trans

bend (Q4) coordinates. These nodes are expected to be projected onto the observed

Franck-Condon factors, and one can, in fact, observe a clear dip in the Franck-Condon

factors in each of these two coordinates in Fig. 5-11, at v4 = 14 − 16 and v2 = 2.

Selected Franck-Condon factors for this DF spectrum and others are also plotted

in Fig. 5-12 as a function of v2 and v4. The consistency of the observed trends in inten-

sity with Franck-Condon arguments provides additional confidence that the extracted
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Figure 5-11: The top trace is the 5,000–15,000 cm−1 energy region of the 21
0V

1
0 K

1
0

dispersed fluorescence spectrum recorded via Q(1). The fractionated bright state
patterns, which were disentangled from the spectra using numerical pattern recog-
nition, are arranged into progressions below the DF spectrum. Each row contains
fractionated bright states with the same number of quanta of CC stretch (v2) but
different number of quanta of trans bend (v4). The bottom trace contains all contri-
butions to the spectral intensity that are not accounted for by the fractionated bright
state patterns. The features observed in this residual trace were referred to as “extra
features”, because they could not be identified as belonging to any of the expected
fractionated bright state patterns.
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and origin band (bottom) DF spectra. Right: Experimentally determined Franck-

Condon factors for the (0, 1, 0, v
0/2
4 , 00) bright states in the V 2

0 K
1
0 (top) and origin

band (bottom) DF spectra.

patterns have been assigned correctly. The deperturbed experimental Franck-Condon

factors for highly vibrationally excited CC stretch and trans bend overtone and com-

bination levels also provides a challenge for theory. J. K. G. Watson has performed

harmonic and anharmonic Franck-Condon calculations for the acetylene S1 → S0

system.[81], with good agreement with experiment for the anharmonic calculations.7

Two groups of theoreticians [82, 83] also plan to perform anharmonic Franck-Condon

calculations for acetylene using vibron models.

The polyad quantum number assignments for 134 spectral features below 15,000

7Watson points out that the intensities he calculates are not, strictly speaking, Franck-Condon
factors because the transition moment must be taken to be dependent on the trans bend angle in
order to achieve reasonable results.
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cm−1 are compiled in Tables 5.2 and 5.3. The internal energies in this table were

obtained from the fractionated bright state patterns extracted from the higher res-

olution (∼7 cm−1) set of DF spectra, due to the superior frequency calibration (∼2

cm−1) of these spectra. The relative intensities of the peaks within the polyads, on

the other hand, were determined from the lower resolution spectra, which have su-

perior intensity calibration. Both the energies and intensities were determined by

fitting Gaussians to individual transitions in the extracted fractionated bright state

patterns. A few words of caution regarding this list are in order. First, even in the

higher resolution spectra, certain transitions within many of the fractionated bright

state patterns were too poorly resolved to be amenable to peakpicking, and thus this

list should not be considered to be complete. Second, the relative intensities that are

quoted do not necessarily directly reflect the percent of bright state character in each

eigenstate. As mentioned previously, for each pair of Nres and Ns quantum numbers,

two polyads are observed, one with (J = 1, � = 0, e parity), and one with (J = 2,

� = 2, f parity). At low internal energy, it can be demonstrated that nearly every ob-

served transition in a DF spectrum corresponds to a nearly degenerate pair of these

two rotational lines [69]. However, at higher internal energy (i.e., >10,000 cm−1),

there is no guarantee that this will be the case, and observed DF transitions could

correspond to a single rovibrational line or a conglomeration of several lines. This

ambiguity can be resolved by fitting the observed data to an effective Hamiltonian

model [70, 84].

Despite these cautions, I believe that Tables 5.2 and 5.3 provide a useful summary

of the large quantity of information generated by the application of numerical pattern

recognition to the DF data set. The internal energies and relative intensities that

are listed for each polyad represent the key features of the observed fractionation

patterns. Notice also the sensitivity of the numerical pattern recognition technique.

Several spectral features are listed with “relative intensities” of 0.05 or less, meaning

that these peaks are observed with intensities of only a few percent of the most

intense peak within the polyad. It should be noted that a similar list has been

published previously with polyad assignments of spectral features up to 10,000 cm−1
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of internal energy, based on the application of visual pattern recognition to an earlier

DF data set (Table 4 of Ref. [69]). The Table presented here should be considered

to supersede this previous list, because certain polyad assignments made previously

were incorrect (one of these misassignments has been alluded to previously [70]). The

ability to correct these misassignments rests on both having obtained a new extensive,

rigorously calibrated DF data set and having used of numerical , as opposed to visual ,

pattern recognition.

Figure 5-13 summarizes the results in a somewhat different manner. The frac-

tionated bright states are arranged graphically according to the number of quanta

of CC stretch and trans bend. This arrangement of the fractionated bright states

is particularly convenient from the standpoint of studying trends in IVR, and is re-

ferred to within the Field group as an IVR map. Although it is possible to make

some qualitative conclusions about trends in IVR from inspecting Fig. 5-13, I have

found that quantitative modelling of the trends unearths quite a few insights that are

not obvious by eye. In Chapters 9 and 6, the previously published acetylene effective

Hamiltonian [5, 70] is refined against all of the progressions of fractionated bright

states enclosed in the dotted and dashed boxes in Fig. 5-13, including states with up

to 15,000 cm−1 of internal energy .

The dotted box encloses fractionated bright states with zero quanta of CC stretch,

which belong to polyads with Ns = 0 (the so-called pure bending polyads). The

previously published acetylene effective Hamiltonian reproduced this series of states

up to ∼10,000 cm−1 (v4 = 14) [70]. The refined effective Hamiltonian described

in Chapter 6 extends this agreement (1.4 cm−1 RMS error) to 15,000 cm−1 (v4 =

22). Among the surprising conclusions of this work is that within the sequence of

pure bending bright states, (0, 0, 0, v4, 0), IVR does not increase monotonically with

internal energy. Rather, the IVR appears to be the most “complicated”, as judged

from both frequency and time domain perspectives, at v4 = 16, whereas the dynamics

of the bright state with v4 = 22, at nearly 15,000 cm−1, displays a striking regularity

over the first few ps.

The sequence of fractionated bright states enclosed in the dashed box, with v4 =
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Table 5.2: Polyad quantum number assignments for eigenstates (Nres < 18). The
� quantum number is not specified because, for each pair of Nres and Ns quantum
numbers, a pair of polyads are observed: (J = 1, � = 0, e parity) and (J = 2,
� = 2, f parity). The observed internal energies (Eobs) are listed in units of cm−1.
“Rel. Intens.” refers to the intensities of the observed lines within a fractionated
bright state pattern, relative to the most intense peak within the pattern.

Nres Ns Eobs Rel. Intens. Nres Ns Eobs Rel. Intens.
5 1 3182.3 1.00 14 0 9090.3 0.42
6 0 3770.3 1.00 9102.6 0.34

3945.6 0.03 9136.2 1.00
7 1 4418.2 1.00 9143.5 0.84

4430.3 0.50 9162.5 0.45
8 0 5068.8 1.00 9238.0 0.10

5219.3 0.07 9258.0 0.18
9 1 5676.3 1.00 9266.1 0.17

5873.6 0.04 15 3 9449.4 1.00
10 2 6329.4 1.00 9665.8 0.07
10 0 6386.1 1.00 15 1 9527.5 0.07

6423.0 0.22 9586.2 1.00
6511.0 0.24 9619.3 0.33
6662.1 0.19 9673.8 0.32

11 1 6960.0 1.00 9700.0 0.35
7122.6 0.04 16 4 10107.5 1.00

12 2 7570.5 1.00 16 2 10111.5 0.54
7773.0 0.05 10132.7 1.00

12 0 7698.2 0.15 10167.4 0.19
7733.6 1.00 10271.6 0.29
7753.9 0.14 16 0 10374.0 0.16
7773.3 0.10 10474.8 0.70
7808.5 0.51 10492.7 1.00
7836.0 0.19 10549.1 0.17
7951.5 0.06 10565.0 0.36

13 3 8225.5 1.00 10577.9 0.48
13 1 8255.2 1.00 17 3 10698.1 1.00

8284.4 0.73 10886.4 0.10
8397.9 0.20 17 1 10914.8 0.77

14 2 8836.3 1.00 10998.9 1.00
9012.6 0.07 11015.9 0.68

14 0 9041.0 0.31 11070.7 0.18
9046.0 0.33 11122.8 0.17
9073.4 0.93
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Table 5.3: Continuation of Table 5.2, for Nres ≥ 18.

Nres Ns Eobs Rel. Intens. Nres Ns Eobs Rel. Intens.
18 4 11309.0 1.00 21 3 13384.4 0.25

11543.4 0.04 13409.5 0.08
18 2 11414.4 0.35 20 0 13224.7 0.15

11445.6 1.00 13238.9 0.44
11478.4 0.14 13327.3 1.00
11524.1 0.19 13356.5 0.13
11545.4 0.40 13341.4 0.36

18 0 11812.0 0.23 13428.7 0.25
11904.0 1.00 13552.9 0.04
11955.4 0.14 21 1 13641.2 0.40
12000.8 0.37 13737.9 1.00

19 3 11969.0 1.00 13790.4 0.81
12010.0 0.24 13840.2 0.55

19 1 12289.6 0.27 22 4 13795.4 1.00
12306.5 0.37 13845.1 0.18
12327.2 1.00 13965.1 0.30
12340.7 0.35 22 2 14053.5 0.37
12361.0 0.28 14101.2 0.25
12381.9 0.48 14147.1 0.80
12397.1 0.36 14157.3 1.00
12423.4 0.88 14222.8 0.28

20 4 12541.2 1.00 14256.6 0.48
12649.2 0.03 14279.3 0.25
12742.5 0.07 14332.5 0.15

20 2 12729.9 0.46 23 5 14368.3 1.00
12740.0 0.48 23 3 14571.1 1.00
12760.7 0.59 14671.1 0.81
12820.0 0.36 22 0 14663.4 0.63
12843.6 1.00 14677.5 0.39

21 5 13154.6 1.00 14736.0 0.24
21 3 13218.0 0.10 14755.8 1.00

13266.4 1.00 14767.5 0.59
13315.2 0.10 14856.2 0.22

24 6 14983.5 1.00
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Figure 5-13: IVR map. The fractionated bright state patterns that were extracted
by numerical pattern recognition below 15,000 cm−1 are arranged according to the
corresponding number of quanta of CC stretch and trans bend. The dotted box en-
closes the fractionated bright states with zero quanta of CC stretch, which belong
to polyads with Ns = 0, the so-called pure bending polyads. The sequence of frac-
tionated bright states enclosed in the dashed box, with v4 = 6 or 8 and v2 = 0–6,
is intriguing because increasing quanta of CC stretch appears to result in no notable
increase in fractionation.
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6 or 8 and v2 = 0–6, is intriguing because increasing quanta of CC stretch appears

to result in no notable increase in fractionation (IVR); if anything, IVR appears to

decrease slightly with increasing quanta of CC stretch. This trend in the fractionation

patterns has been noted previously [69, 85, 86], but a further refinement of the effective

Hamiltonian, which is reported in Chapter 9, permits a quantitative explanation for

why the effects of stretch-bend resonances appear to be absent for this series of states.

5.8 Conclusion

A new dispersed fluorescence data set for acetylene S1 → S0 emission has been

recorded. This data set includes the previously reported origin band spectrum [69]

and new DF spectra recorded from four different vibrational levels of the S1 state of

acetylene. The transitions observed in each of these spectra terminate on the same

set of S0 state vibrational levels, leading to a high level of redundancy in the data

set. This redundancy is exploited by a numerical pattern recognition approach to

the analysis of the spectra, which utilizes the Extended Cross Correlation algorithm

(Chapter 2) to associate groups of observed vibrational levels with sets of polyad

quantum numbers, even when the spectra are congested and individual transitions

overlap with each other.

This pattern recognition approach requires no a priori knowledge of the structure

of the molecular Hamiltonian. In fact, the technique unexpectedly identified a set of

observed transitions as belonging to patterns that are not associated with any set of

polyad quantum numbers accessible via the propensity rules for S1 → S0 transitions.

The identity of these unexpected transitions is revealed in Chapter 10. The states

upon which the remaining observed transitions terminate have been assigned polyad

quantum numbers. The success of the numerical pattern recognition approach in

making these assignments is strong evidence that no catastrophic breakdown of the

polyad quantum numbers occurs by 15,000 cm−1, at least on a time scale faster than

∼1 ps (corresponding to the ∼7 cm−1 resolution of the DF spectra). Preliminary

studies of the polyad structure above 15,000 cm−1 are discussed in Chapter 10.
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The ability to assign polyad quantum numbers to observed transitions using pat-

tern recognition is not simply an academic exercise. Rather, it is an essential first

step toward a comprehensive understanding of the dynamics of acetylene in its ground

electronic state. Having utilized pattern recognition to apportion the observed transi-

tions among 38 different polyads, the dynamics within each polyad can be studied in

detail, as is done in Chapters 9 and 6. Taken together, the dynamics that is encoded

in each of these polyad patterns provides a panoramic perspective on the trends in

the short-time (∼1 ps) dynamics of the molecule, over a range of internal energy

extending to 15,000 cm−1 above the zero-point energy.
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Chapter 6

Pure Bending Dynamics

143



    

This Chapter, other than the Appendix, has been published in the Journal of Chem-

ical Physics (Ref. [84]).

6.1 Introduction

This chapter is intended as a contribution to the understanding of intramolecular

vibrational energy exchange, when it is poorly described by either purely statistical

models (i.e., RRKM) or purely separable models (i.e., harmonic oscillator/normal

mode descriptions). The system described here is the bending dynamics of acetylene

in its electronic ground state. Specifically, I present and analyze a model for the

pure bending dynamics of acetylene that reproduces (with 1.4 cm−1 RMS error) all

available and relevant experimental eigenenergies up to 15,000 cm−1 in internal energy

(22 quanta of bending excitation). I hope that this system will be of general interest to

experimentalists and theoreticians interested in unimolecular dynamics because very

large amplitude motions of the molecule, at chemically significant internal energy, are

accurately represented by the model presented.

The experimental data on which this model of acetylene bending dynamics is

based consist primarily of the dispersed fluorescence (DF) spectra that are described

in Chapter 5 (see also Refs. [69] and [68]). The approach to extracting the bend-

ing dynamics of acetylene from these spectra consists of two steps: assignment of the

spectra, followed by a fit of the assigned transitions to an effective Hamiltonian model.

As explained in Chapter 5, the assignments made in the first step of this process are

not normal mode quantum numbers, which extensive IVR renders meaningless for

most vibrational energy levels at high internal energy, but rather polyad quantum

numbers [15, 16, 17, 14], which represent approximately conserved vibrational quan-

tities. Polyad numbers have been assigned to hundreds of observed spectral features

up to 15,000 cm−1. One subset of these spectral features are those that involve no

excitation in the stretch degrees of freedom of the molecule; these states encode the

short-time (∼1 ps) pure bending dynamics of acetylene (with up to 22 quanta of

bending excitation).
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In this chapter an effective Hamiltonian is reported that reproduces all of the

observed pure bending levels, including those observed at lower internal energy by

absorption spectroscopy. This Heff is similar in structure to previously reported

effective Hamiltonians [70, 87], but matches the available data to substantially higher

internal energy (≤ 15,000 cm−1). Challenges that are inherent to fitting experimental

data at such high internal energy necessitated new methodologies for performing the

fit, which are described in Section 6.2. The remainder of the chapter is devoted to

analyzing the pure bending dynamics of acetylene, as represented by the Heff , from

multiple perspectives. Time-dependent viewpoints on the dynamics are examined

first, in Section 6.3, followed in Section 6.4 by a discussion of dilution factors, which

are frequently used to quantify the extent of IVR. A framework for understanding

the unexpectedly complicated and counterintuitive trends that are outlined in these

two sections is presented in Section 6.5, which analyzes the structures of the pure

bending polyads.

6.2 Refinement of the Pure Bending Heff

The pure bending dynamics of acetylene are encoded by those fractionated bright

states in the bottom row of Fig. 5-13, the “IVR map” that summarizes the results of

the pattern recognition analysis of the DF data set. The fractionated bright states

in this bottom row are progressions in the trans bend mode, (0, 0, 0, v4, 0), with zero

quanta of excitation in all other modes. These bright states are not eigenstates of

the molecular Hamiltonian (although at very low internal energy they approximate

eigenstates), and the fractionation patterns represent the distribution of bright state

character among the eigenstates.

Since the (0, 0, 0, v4, 0) bright states have zero quanta of excitation in all of the

stretching modes, they all belong to polyads with Ns = 0 (see Section 5.1), which

are referred to as pure bending polyads. For this set of polyads, the Nres quantum

number simplifies to

Nres = v4 + v5 = Nb,
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in which Nb, the number of quanta of bending excitation, is introduced as a shorthand

notation for the Nres and Ns polyad numbers for the pure bending polyads. It should

also be noted that g/u symmetry with respect to the center of inversion is conserved

by all resonances in a D∞h molecule, and thus can also be used to label eigenstates,

as well as the rigorously conserved total angular momentum quantum number, J ,

and parity, which can be labeled using either the +/− or e/f conventions. Thus, to

identify a pure bending polyad uniquely, a total of 5 labels need to be specified: Nb,

�, J , g/u, and parity. The discussion below will consider only J = 0 states, and pure

bending polyads will be labeled using the shorthand notation [Nb, �]
g+.

One of the earliest effective Hamiltonians for the pure bending levels of acetylene

was defined by Josef Pĺıva [87]. This Heff included 40 molecular constants that

were fit to ∼1200 rovibrational levels of the S0 state that had been observed by

infrared absorption spectroscopy, with a standard deviation of 0.006 cm−1. All of the

rovibrational levels included in Pĺıva’s fit lay below 3000 cm−1 of internal energy, and

thus the parameters from that work cannot be expected to represent accurately the

highly excited bending levels that are the subject of the present study.

More recently, an effective Hamiltonian has been reported by Abbouti Temsamani,

Herman, Solina, O’Brien and Field [70] (hereafter referred to as THSOF) that repro-

duces the energies of 41 bending vibrational levels of acetylene (up to 8000 cm−1) to

±0.35 cm−1 (1σ) accuracy. The THSOF Heff resulted from minor modifications of

an Heff previously described by Abbouti Temsamani and Herman [5], which was fit

to 122 vibrational levels with Evib < 12,000 cm−1, primarily with Ns 	= 0. It is worth

noting that the terms included in the THSOF bending Heff are nearly identical to

those included by Pĺıva.

The THSOF Heff has been demonstrated to have substantial predictive power at

energies higher than the levels included in the fit. Specifically, as can be seen in Fig. 6-

1(a), the THSOF Heff reproduces the key qualitative features of the (0, 0, 0, 140/2, 00)

fractionated bright state. There is a one-to-one correspondence between the intense

transitions predicted by the Heff (sticks) and the observed transitions (solid line).

The predicted and observed eigenenergies differ by up to 15 cm−1, but the pattern
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Figure 6-1: Comparison of predictions of the Heff (vertical lines) with the experimen-
tally observed bright state fractionation patterns (solid line). The thick vertical lines
correspond to (J = 1, � = 0, e parity); the thin vertical lines represent (J = 2, � = 2,
f parity). The left column depicts the predictions of the THSOF Heff model, while
the right column depicts the predictions of the refined Heff reported here.

of relative intensities predicted by the Heff bears a strong qualitative resemblance to

the DF data.

It should be noted that a discrepancy between the THSOF Heff model and the

experimental data for this polyad, which was discussed in Ref. [70], has now been

resolved. The peak at 8945 cm−1 in Fig. 2 of Ref. [70], which deviated substantially

from the predictions of the Heff was, in fact, misassigned previously. The pattern

recognition analysis in Chapter 5, which is the basis for the results presented in this

chapter, proved that this peak is not assignable to any of the expected polyads at

this internal energy, and thus this peak has been classified as an “extra pattern”.
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Note that this peak therefore does not belong to the (Ns = 4, Nres = 14) polyad, as

speculated previously [70].

Above 10,000 cm−1, the agreement between the THSOF Heff and the experimental

data degrades substantially. Fig. 6-1 depicts the agreement for the (0, 0, 0, 220/2, 00)

fractionated bright state. The THSOF Heff predicts a pattern of eight intense peaks,

whereas only five intense peaks are observed experimentally. Of course, it is not

reasonable to expect an Heff that has been fit to data only up to 8,000 cm−1 to have

substantial predictive power at 15,000 cm−1. For this reason, I have performed a

refinement of the THSOF Heff , which utilizes all of the experimental data that were

previously included in the THSOF fit, plus 42 new pure bending vibrational levels,

with up to 15,000 cm−1 of internal energy, which were identified in the DF data set

as described in Chapter 5. Thus, the fit reported here utilizes double the number of

vibrational levels as the THSOF fit, and extends to nearly twice as high of an internal

energy.

The data included in the fit are listed in Tables 6.1 and 6.2. The column marked

� in this table requires explanation. All data that were included in the THSOF fit

were J = 0 internal energies. For the DF data, which do not access J = 0 rotational

levels, these rotationless vibrational energies were inferred from the experimental

data, by subtracting out the “2B rotational contribution . . . prior to the fit” [70].

This approach implicitly assumes that the fractionation pattern for a (J = 0, � = 0)

polyad, which is not observed experimentally in the DF spectra, will be identical to

that of the corresponding (J = 1, � = 0) polyad that is observed experimentally,

other than a constant shift of 2B. This assumption would be rigorously correct in the

absence of vibration-rotation coupling; in practice, deviations from this assumption

are negligible compared with the uncertainties in the observed transition frequencies,

even at 15,000 cm−1.

However, the (J = 1,� = 0) lines are only one of two sets of rotational lines that

are observed in the DF spectra, the other set being (J = 2,� = 2). Unfortunately,

it cannot be assumed that the fractionation patterns for the (J = 2,� = 2) polyads

are the same, except for a constant shift, as the unobserved (J = 0,� = 0) polyads,
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because the � = 2 polyads do not contain the same number of states as the corre-

sponding � = 0 polyads. In the THSOF fit, the (J = 2,� = 2) lines could be safely

ignored, because it can be demonstrated that, at low internal energy, these lines tend

to be nearly perfectly blended with corresponding (J = 1,� = 0) lines due to a co-

incidence arising from the signs and magnitudes of the g44 and B parameters [69].

At higher internal energy, the situation is rather different. Although some pairs of

(J = 1,� = 0) and (J = 2,� = 2) levels can be observed, see Fig. 6-1, they tend to be

resolvable at the experimental resolution. Throwing out the observed (J = 2,� = 2)

lines at high internal energy would result in a loss of information that is valuable from

the standpoint of fitting the desired parameters.

Rather than attempt to infer the energies of the rotationless vibrational levels

from the data, the fit reported here utilizes the rovibrational energies that can be

determined directly from the data. In a technical sense, this implies that for each

pure bending polyad observed experimentally, two matrices were diagonalized in the

fit, one for (J = 2, � = 2) and one for (J = 1, � = 0). The rotational energies of the

zero-order states were calculated using

Erot = BvJ(J + 1) (6.1)

Bv = B0 −
5∑

k=1

αkvk , (6.2)

and the values of the rotational parameters were constrained to those listed in Table

V of Ref. [70]. For those observed transitions that did correspond to an unresolvable

pair of (J = 2, � = 2) and (J = 1, � = 0) levels, marked “0+/2” in Table 6.1, the two

corresponding calculated eigenenergies were averaged to estimate the approximate

location of the maximum of the peak that would be observed experimentally.

The new fit also differs from the previous fit in several other technical details.

First, two new parameters were included: y445 and y555 (the previous fit had included

only y444 and y455). The effective Hamiltonian used here therefore includes the diag-
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Table 6.1: The 51 pure bending vibrational levels, observed by DF spectroscopy
(Chapter 5), that are included in the effective Hamiltonian fit. The columns Nb,
�, and g/u specify the polyad assignments of the vibrational levels included in the
fit. For the � = 0 polyads, the parity of the vibrational wavefunctions is specified
as a superscript; that is, “+” specifies a vibrational wavefunction of Σ+

g/u symmetry

species, and “−” specifies Σ−
g/u. All energies are in units of cm−1.

Nb � g/u Eobs Ecalc Nb � g/u Eobs Ecalc

6 0+/2 g 3770.3 3770.1 16 0+ g 10374.0 10376.4
6 0+ g 3942.5 3942.6 16 0+/2 g 10474.8 10471.9
6 2 g 3949.5 3949.5 16 0+/2 g 10492.7 10489.5
8 0+/2 g 5068.8 5070.5 16 2 g 10549.1 10548.5
8 0+ g 5216.0 5217.6 16 0+/2 g 10565.0 10564.1
8 2 g 5221.0 5223.9 16 0+/2 g 10577.9 10575.6
10 0+/2 g 6386.1 6386.4 18 0+/2 g 11812.0 11812.8
10 0+/2 g 6423.0 6424.3 18 0+/2 g 11904.0 11900.8
10 2 g 6462.1 6462.4 20 0+ g 13238.9 13238.5
10 2 g 6511.0 6513.7 20 0+/2 g 13327.3 13326.7
10 0+ g 6658.5 6660.2 20 2 g 13341.4 13340.9
10 2 g 6664.5 6667.6 20 2 g 13356.5 13359.4
12 0+/2 g 7733.6 7731.6 20 0+/2 g 13552.9 13551.1
12 2 g 7753.9 7753.8 20 0+/2 g 13428.7 13426.4
12 0+/2 g 7773.3 7772.9 20 2 g 13224.7 13228.1
12 0+ g 7808.5 7806.4 20 2 g 13443.4 13441.8
12 2 g 7814.0 7813.0 22 0+ g 14663.4 14665.0
12 0+ g 7836.0 7834.4 22 2 g 14677.5 14680.2
12 2 g 7843.0 7841.0 22 0+/2 g 14736.0 14736.5
12 0+/2 g 7951.5 7949.0 22 0+ g 14755.8 14757.4
14 0+ g 9041.0 9040.6 22 2 g 14767.5 14768.8
14 2 g 9046.0 9046.8 22 0+/2 g 14856.2 14854.2
14 0+/2 g 9073.4 9071.1
14 0+/2 g 9090.3 9091.4
14 2 g 9102.6 9102.8
14 0+ g 9136.2 9135.6
14 2 g 9143.5 9144.5
14 0+/2 g 9162.5 9162.6
14 2 g 9238.0 9236.2
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Table 6.2: Continuation of Table 6.1. The 32 pure bending vibrational levels, observed
through absorption spectroscopy, that were previously included in the THSOF fit and
are also included in the fit reported here.

Nb � g/u Eobs Ecalc

1 1 g 612.9 612.8
1 1 u 730.3 730.3
2 0+ g 1230.4 1230.7
2 0+ g 1449.1 1449.1
2 2 g 1233.5 1233.7
2 2 g 1463.0 1463.0
2 0+ u 1328.1 1328.0
2 0− u 1340.5 1340.4
2 2 u 1347.5 1347.5
3 1 g 1855.7 1856.4
3 1 g 2049.1 2049.0
3 1 g 2067.0 2066.9
3 3 g 1861.9 1862.4
3 3 g 2084.8 2084.8
3 1 u 1941.2 1941.3
3 1 u 1960.9 1961.1
3 1 u 2170.3 2170.5
3 3 u 1972.6 1972.8
3 3 u 2198.1 2198.2
4 0+ g 2648.0 2648.1
4 0+ g 2880.2 2880.5
4 0− g 2661.2 2661.2
4 2 g 2666.1 2666.3
4 2 g 2894.1 2894.4
4 0+ u 2560.6 2561.1
4 0+ u 2757.8 2757.8
4 0− u 2583.8 2584.3
4 0− u 2783.6 2783.7
4 2 u 2561.5 2561.9
4 2 u 2589.7 2590.2
4 2 u 2773.2 2773.1
4 2 u 2795.5 2795.5
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onal elements

〈v�44 , v�55 |Heff |v�44 , v�55 〉 = ω4v4 + ω5v5 +

x44v
2
4 + x45v4v5 + x55v

2
5 +

y444v
3
4 + y445v

2
4v5 + y455v4v

2
5 + y555v

3
5 +

g44�
2
4 + g45�4�5 + g55�

2
5 (6.3)

and the following off-diagonal elements (and their Hermitian conjugates):

(a) Darling-Dennison Bend I

〈v�44 , v�55 |Heff |(v4 − 2)�4 , (v5 + 2)�5〉 =

s45

4
[(v2

4 − �24)(v5 + �5 + 2)(v5 − �5 + 2)]1/2 , (6.4)

(b) Darling-Dennison Bend II

〈v�44 , v�55 |Heff |(v4 − 2)�4∓2, (v5 + 2)�5±2〉 =

r45 + 2g45

16
[(v4 ± �4)(v4 ± �4 − 2)(v5 ± �5 + 2)(v5 ± �5 + 4)]1/2 , (6.5)

(c) vibrational �-doubling

〈v�44 , v�55 |Heff |v�4±2
4 , v�5∓2

5 〉 =

r45
4

[(v4 ∓ �4)(v4 ± �4 + 2)(v5 ± �5)(v5 ∓ �5 + 2)]1/2 , (6.6)

in which

r45 = r◦45 + r445(v4 − 1) + r455(v5 − 1) . (6.7)

A second technical detail concerning the fit is that the infrared absorption data

were weighted more strongly than the DF data (25:1 ratio), because the absorption

data are calibrated to higher accuracy than the DF data (<0.01 cm−1 vs. ∼2 cm−1).

Note that the weighting ratio differs considerably from the ratio of the reciprocal

squared uncertainties associated with the data. The use of the reciprocal squared
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uncertainties as weights would be most appropriate if random measurement error

were the only source of discrepancies between the fitted model and the experimental

observations. However, there is no reason to believe that the Heff model would per-

fectly fit the data in the absence of measurement error; the truncation of the Dunham

expansion for the diagonal elements and the possible omission of weak or localized

perturbations from the model can both introduce small, seemingly random deviations

from the experimental data. Other ratios of weights were tested but resulted in little

change in the fitted parameters.

The methodology of the fit also had to be modified in order to meet certain

challenges that are inherent in fitting data at internal energy as high as 15,000 cm−1.

First, at the outset of the fit, at high internal energy (e.g. Nb = 22) it was not obvious

which calculated eigenstates corresponded to which observed transitions (see Fig. 6-

1(b)). For this reason, the fit had to be performed in a bootstrapping fashion, by

first refining the quality of the fit below 10,000 cm−1, and then gradually adding in

eigenenergies above 10,000 cm−1, until the correspondence between the observed and

calculated eigenenergies became obvious up to 15,000 cm−1. At this point, all intense,

sharp peaks in the DF spectra were included in the fit.

Even when the correspondence between observed transitions and calculated eigen-

states is obvious by eye, it is not always trivial to establish this correspondence nu-

merically. Generally, only a small fraction of the eigenstates within a given polyad

are observable within the signal-to-noise of the experiment, and the fitting routine

must decide in an automated fashion which calculated eigenstate corresponds to which

observed transition in order to calculate the (χ2) merit function. When the correspon-

dence is obvious visually, it is usually because both the frequency and the intensity of

the calculated transition match well with those of the observed line, and this criterion

can be encoded numerically by defining a metric, Mc,o, which quantifies how well a

calculated eigenstate c and an observed transition o match each other:

Mc,o = ME
c,oM

I
c,o (6.8)

ME
c,o = exp

{
−(Ec − Eo)

2

2(∆E)2

}
(6.9)
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M I
c,o = exp

{
− [(Ic − Io)/(Ic + Io)]

2

2(∆I)2

}
. (6.10)

This metric is defined to be the product of two factors, ME
c,o and M I

c,o, which quantify

the frequency and intensity match, respectively. Each of these factors is defined as a

Gaussian function of the discrepancy between the observed and calculated quantities,

such that the metric Mc,o can attain a value near 1.0 only if both the frequencies and

intensities match well. The quantities ∆E and ∆I define what is meant by “a good

match” for the frequencies and intensities, respectively. For the fits reported here,

∆E = 5 cm−1 and ∆I = 0.2. Each time that the merit function was calculated during

the fit (which utilized a modified version of the Numerical Recipes [44] Levenberg-

Marquardt algorithm), the value of the metric Mc,o was calculated for each observed

transition that was included in the fit, o, with every calculated eigenstate, c. The

calculated eigenstate with the largest value of the metric Mc,o with a given observed

transition was assumed to be the correct match, and was used to calculate the merit

function.

The final parameters that were obtained from this fit are listed in Table 6.3,

along with estimated uncertainties in the parameters that were determined from the

covariance matrix. This set of parameters reproduces the 83 eigenenergies included

in the fit to ±1.4 cm−1 (1σ). All of the parameters have been determined to greater

precision than in the THSOF fit, but most of the parameters have not changed by

much more than the 2σ error that was reported in the THSOF fit. The exceptions

are x44, y455, r
◦
45, and r545, which were previously reported as 3.600, 0.093, -5.942, and

-0.167 cm−1 respectively (the new values are 3.483, 0.0242, -6.193, and 0.0110). The

likely reason that the first two of these parameters changed by substantial amounts

is that the THSOF fit imposed the constraint that y445 = y555 = 0.0. The r◦45 and

r545 parameters are much better determined in the current fit due to the inclusion of

states at high internal energy (∼15,000 cm−1) which are coupled very strongly by the

Darling-Dennison resonances that are parameterized by the r◦45 and r545 constants.

However, despite the fact that most of the parameters have not changed by large

amounts relative to the THSOF fit, the improvement in the qualitative agreement
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Table 6.3: Parameters determined from least-squares fit of the pure bending effective
Hamiltonian to the data set described in the text. Numbers in parentheses are 2σ
uncertainties in the last digit. All parameters are in units of cm−1.

ω4 608.657 (34) y444 -0.03060 (72)
ω5 729.137 (38) y445 0.0242 (48)
x44 3.483 (13) y455 0.0072 (52)
x45 -2.256 (28) y555 0.00955 (84)
x55 -2.389 (14) r◦45 -6.193 (32)
g44 0.677 (22) r445 0.0304 (48)
g45 6.670 (30) r545 0.0110 (64)
g55 3.535 (20) s45 -8.574 (52)

between the calculated and observed spectrum in Fig. 6-1 is quite dramatic at 15,000

cm−1, and even at 9,000 cm−1.

It is worth reiterating that the development of an Heff with predictive power

up to 15,000 cm−1 is only possible because single fractionated bright states can be

extracted from the DF data set using numerical pattern recognition, despite severe,

systematic overlap between many fractionated bright state patterns. This numerical

procedure would have been infeasible if the polyad quantum numbers were not at least

approximately conserved. In addition, the polyad numbers are rigorously conserved

by the Heff model, and the ability of this model to predict quantitatively the bright

state fractionation patterns provides additional evidence for the conservation of the

polyad numbers on a time scale of ∼1 ps. Further, for the pure bending polyads, only

a small number of resonances (Darling-Dennison and vibrational �-resonance) are

necessary in order to accurately describe the short-time dynamics. The remainder of

this chapter is devoted to exploring the insights into the short-time bending dynamics

of acetylene that this Heff permits.

6.3 Time Domain Dynamics

The bright states that are accessed experimentally are not eigenstates of the Heff . In

the frequency domain, this fact is manifested by a fractionation of the bright state. In
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the time domain, the bright state is not stationary, and its time-evolution is governed

by

Ψ(t) =
N∑
j=1

cjψje
−iωjt , (6.11)

in which ψj are the eigenstates, ωj are the corresponding frequencies (Ej/h̄), Ψ(0) is

the bright state, cj = 〈Ψ(0)|ψj〉, and N is the number of states within the relevant

polyad. The coefficients cj are known from the unitary transformation that diago-

nalizes the Heff , and thus the time-evolution of the initially prepared bright state

is completely determined from information obtainable from the frequency domain

spectrum.

The survival probability of the initially prepared state, |〈Ψ(0)|Ψ(t)〉|2, is frequently

used to represent this dynamics, and in the second column (dotted lines) of Fig. 6-2

are presented the survival probabilities for the (0, 0, 0, 100, 00), (0, 0, 0, 160, 00), and

(0, 0, 0, 220, 00) bright states. For comparison, the fractionation patterns of the bright

states (as predicted by the Heff) are also depicted in the first column of Fig. 6-2 (note

that the linewidth has been added only for ease of viewing). These two representations

of the dynamics, of course, have the same information content; however, they can be

considered to be complementary in terms of conceptualization of the dynamics.

The survival probability does not, however, provide a complete picture of the dy-

namics, in the sense that when the survival probability is low, the overlap of the

wavepacket with other zero-order states must be relatively large . . . but which

zero-order states? One could, of course, calculate the overlap of the time-evolving

wavepacket with any of the zero-order states in the relevant polyad, but for the

[22, 0]g+ polyad, for example, the total number of zero-order states is 42, and it is not

practical to plot the overlap of the wavepacket with each of these states. For this rea-

son, only one such trace is plotted in the second column, which is the overlap squared

of the time-evolving wavepacket with the zero-order state (0, 0, 0, (Nb − 2)0, 20) (solid

line). This zero-order state is chosen because it is one of only two states within any

pure bending polyad that is coupled directly with the bright state (0, 0, 0, N0
b , 0

0) by

the known anharmonic resonances. In particular, this state couples to the bright
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states via the Darling-Dennison I resonance; the other state that couples directly

to the bright state is (0, 0, 0, (Nb − 2)+2, 2−2), via the Darling-Dennison II resonance.

These two states are referred to as gateway states because, in order for the vibrational

excitation to flow from the bright state into the remainder of the polyad, it must first

flow through the (0, 0, 0, (Nb − 2)0, 20) and (0, 0, 0, (Nb − 2)+2, 2−2) states.

To complement the time-dependent overlap of the wavepacket with the bright

state and one of the two gateway states, two other time-domain representations of

the dynamics are also presented in Fig. 6-3: the time evolutions of the expectation

values of the number operators, v̂4, v̂5, �̂4, and �̂5:

〈vb(t)〉 = 〈Ψ(t)|v̂b|Ψ(t)〉 , (6.12)

〈�b(t)〉 = 〈Ψ(t)|�̂b|Ψ(t)〉, b = 4, 5. (6.13)

In colloquial terms, 〈v4(t)〉 and 〈v5(t)〉 represent the time-dependent average number

of quanta in the trans and cis bending modes, respectively, and 〈�4(t)〉 and 〈�5(t)〉
are the time-dependent average number of quanta of vibrational angular momentum.

Thus, in the absence of plots of the overlap of the wavepacket with every one of

the relevant zero-order states, these time-dependent expectation values provide some

insight into the dynamics of the wavepacket within the interior of the polyad, which is

comprised of zero-order states that are not directly coupled to the bright state. Note

that 〈v4(0)〉 = Nb, 〈v5(0)〉 = 〈�4(0)〉 = 〈�5(0)〉 = 0, and that 〈v4(t)〉 + 〈v5(t)〉 = Nb

and 〈�4(t)〉 + 〈�5(t)〉 = � at all times. The signs of 〈�4(t)〉 and 〈�5(t)〉 are arbitrary.

Consider first the insights that Figs. 6-2 and 6-3 provide into the dynamics as-

sociated with the (0, 0, 0, 100, 00) bright state. Both the frequency and time domain

representations of the IVR associated with this bright state emphasize the relative

simplicity of the dynamics at low internal energy (∼6,000 cm−1). The fractionation

pattern contains predominantly one main peak and two smaller peaks at higher in-

ternal energy which might be described as perturbers of the bright state (note that

one of these two smaller peaks is blended and represents two eigenstate transitions).

Together, these four eigenstates account for nearly 99% of the bright state charac-
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Figure 6-2: Predictions of the Heff for three pure bending polyads, [10, 0]g+, [16, 0]g+,
and [22, 0]g+. Left column: fractionation patterns of the bright state, (0, 0, 0, v4

0, 00)
in each polyad. Right column: survival probability for the bright state, over the first
2.0 ps (dotted line) and time-dependent projection squared of the wavepacket onto
one of the two gateway states, (0, 0, 0, (v4 − 2)0, 20) (solid line).
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Figure 6-3: Continuation of Fig. 6-2. Left column: average number of quanta (v4, v5)
in the trans (solid line) and cis bend (dotted line) modes as a function of time. Right
column: average number of quanta of vibrational angular momentum (�4, �5) in the
two bending modes as a function of time.
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ter (the most intense peak accounts for 72.7%). In the time domain, the survival

probability of the bright state displays a multiple quantum beating pattern, which

also underscores the small number of levels involved in the dynamics. The survival

probability never falls below 20%, at least not during the first 2.0 ps. The overlap

of the wavepacket with the gateway state (0, 0, 0, 80, 20) nearly mirrors the survival

probability, indicating that much of the dynamics of the wavepacket is accounted for

by transfer of the vibrational excitation between the bright state and the gateway

states. The wavepacket never substantially populates the interior of the polyad, as

seen in the plots of 〈vb(t)〉 and 〈�b(t)〉; during the first 2.0 ps of the dynamics, only

about two quanta of the trans bend excitation are exchanged for cis bending excita-

tion, which also indicates that the wavepacket evolution tends not to proceed beyond

the gateway states.

In [16, 0]g+, the dynamics is strikingly different. The fractionation pattern for

the (0, 0, 0, 160, 00) bright state is very complicated; the eigenstate with maximal

intensity accounts for only 24.6% of the bright state character. In the time domain,

the survival probability of the bright state displays a fast early-time decay followed

by a series of irregular partial recurrences. The 1/e time (τ) for the initial decay is

∼80 fs, and by 220 fs, the survival probability reaches a minimum value of less than

0.02. The overlap of the wavepacket with the gateway state in this case does not even

approximately mirror the survival probability, which indicates that the wavepacket

passes through the gateway state and into the interior of the polyad. As a result, the

trans and cis bend degrees of freedom exchange substantial vibrational excitation as

well as angular momentum, as seen in the plots of 〈vb(t)〉 and 〈�b(t)〉. Thus, both the

time and frequency domain indicate a drastic change in the nature and extent of the

IVR from 6,000 cm−1 to 10,000 cm−1. Of course, the two intervening pure bending

polyads ([12, 0]g+, [14, 0]g+) have been omitted from Figs. 6-2 and 6-3, and the change

in the qualitative behavior is gradual from [10, 0]g+ to [16, 0]g+.

This qualitative change in behavior would seem to be accounted for trivially in

terms of the increase in the number of states in each polyad and the strength of

the matrix elements that couple them. However, the dynamics associated with the
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(0, 0, 0, 220, 00) bright state indicate that such an argument is overly simplistic. From

[16, 0]g+ to [22, 0]g+, the size of the polyads continues to grow as well as the magni-

tudes of the off-diagonal matrix elements, but the fractionation pattern and survival

probability for the (0, 0, 0, 220, 00) bright state actually appear to be less complicated

than those for the (0, 0, 0, 160, 00) bright state. A total of only three eigenstates ac-

count for 72.0% of the bright state character; the most intense peak accounts for

43.3%. Although the early-time decay in the survival probability for (0, 0, 0, 220, 00)

is somewhat faster (τ ≈ 60 ps) than that for the (0, 0, 0, 160, 00) (τ ≈ 80 ps), the

(0, 0, 0, 220, 00) survival probability displays a series of strikingly regular, and strong

(>50%), partial recurrences. On the other hand, the overlap of the wavepacket with

the gateway state, (0, 0, 0, 200, 20), appears to be at least as complicated as the cor-

responding trace for Nb = 16. The regular series of recurrences in the survival prob-

ability is not, therefore, due to simple quantum beating between the bright state and

the gateway states. Rather, the recurrences are mirrored in the strong oscillations of

〈vb(t)〉, and to a lesser extent, 〈�b(t)〉, indicating that some regularity is preserved in

the dynamics despite the fact that the wavepacket penetrates deeply into the interior

of the polyad.

Taken together, the plots in Figs. 6-2 and 6-3 indicate that the extent and com-

plexity of IVR for the trans bending bright states in the pure bending polyads is not a

simple function of internal energy. Without a conceptual framework for understand-

ing the unexpectedly complicated trends in the IVR, the dynamics in the [22, 0]g+

polyad seems mysterious, being both extensive (deep penetration into the interior of

the polyad) and simple (strong, regular recurrences; simple fractionation pattern).

In Section 6.5, a conceptual framework will be presented which explains most of the

qualitative trends observed here. First, however, a quantitative measure of the extent

of IVR, the dilution factor, is used to provide further insights into the trends in IVR

as a function of internal energy.

161



   

6.4 Dilution Factors

The dilution factor, or inverse participation ratio [88], is frequently employed as a

numerical measure of the fractionation of a zero-order state [89, 90]. Dilution factors

are usually reported for the experimentally accessible bright states, but if an adequate

model is available to predict the fractionation patterns of zero-order states that have

not been observed experimentally, then dilution factors can be calculated for these

“hypothetical bright states” as well [91, 92, 93]. In the context of the acetylene pure

bending Heff , the dilution factor y is defined as

yk =
N∑
j=1

|cjk|4 , (6.14)

in which k represents a particular zero-order state, j is an index over eigenstates,

N is the number of eigenstates within the polyad that contains the zero-order state,

and cjk is the projection of the eigenstate onto the zero-order state (one element

of the eigenvector matrix). Note that 1 ≥ y ≥ 1/N ; bright states that display

little fractionation have dilution factors near unity, whereas bright states that display

extensive fractionation may have dilution factors that approach 1/N .

It should be noted that generalizations of the dilution factor have been introduced

in the literature, the most prominent of which is the P (a|b) statistic, which was intro-

duced by Nordholm and Rice [94] and has been used in many theoretical treatments

by Heller [95, 96, 97]. This statistic is defined as

P (a|b) =
N∑
j=1

|cja|2|cjb|2 . (6.15)

Note that for a = b, the definition reduces to that for the dilution factor; thus, the

dilution factor can be considered a special case of the P (a|b) statistic. For a 
= b, the

statistic describes energy flow between pairs of zero-order states. An analog of the

dilution factor that is eigenstate specific, as opposed to zero order state specific, has

also been reported [97]; this statistic provides a measure of the inverse of the number

of zero-order states with which a particular eigenstate has substantial overlap. These
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Table 6.4: Dilution factors (y) calculated for several classes of bright states. Note
that � = 0 refers to the (J = 1, � = 0, e parity) lines observed experimentally, and
� = 2 refers to (J = 2, � = 2, f parity). The columns labeled N list the total number
of states within the relevant polyads, for reference.

Nb y (� = 0) N (� = 0) y (� = 2) N (� = 2)
4 0.98 4 0.99 4
6 0.95 6 0.95 8
8 0.85 9 0.86 12
10 0.56 12 0.58 18
12 0.36 16 0.31 24
14 0.22 20 0.13 32
16 0.16 25 0.10 40
18 0.22 30 0.17 50
20 0.30 36 0.11 60
22 0.24 42 0.11 72

generalizations of the dilution factor, although extremely useful in general, will not

be considered further in this work because they are not as directly relevant to an

explanation of the unusual dynamics described in Section 6.3.

Table 6.4 lists the dilution factors for the pure bending bright states that are

observed experimentally. Note that the dilution factors for � = 0 and � = 2 are nearly

identical up to Nb = 10, but that at higher internal energy the dilution factors for the

� = 2 bright states are substantially smaller (indicating greater fractionation) than

those for the corresponding � = 0 bright states. This is another manifestation of the

observation made in Section 6.2 that, above ∼8000 cm−1, (J = 1, � = 0) and (J = 2,

� = 2) rotational lines show a diminished tendency to occur in nearly degenerate

pairs. The fundamental reason for the dissimilarity of the � = 0 and � = 2 dilution

factors is that the � = 2 polyads contain more states than the corresponding � = 0

polyads. At low internal energy, where the dynamics is restricted and tends not to

sample the interior of the polyad, the total number of states in the polyad is largely

irrelevant. However, at higher internal energy, where the dynamics samples many of

the states in the polyad, the larger � = 2 polyads display more complicated dynamics

than those with � = 0.
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The other striking aspect of this table is that the dilution factors for both the � = 0

and � = 2 bright states do not decrease monotonically with increasing internal energy.

Rather, in both cases, the absolute minimum in the dilution factors occurs atNb = 16,

which lies at only ∼10,500 cm−1. Note that this counterintuitive trend, in which

the dilution factors decrease monotonically up to Nb = 16, then increase somewhat

before decreasing again, is not obvious simply by inspecting the fractionated bright

state patterns in Fig. 5-13. Direct interpretation of the fractionation patterns is

complicated by the presence of two rotational lines, (J = 1, � = 0) and (J = 2,

� = 2), in the spectra, which do not appear in nearly degenerate pairs at higher

internal energy. The splitting of these pairs of rotational states gives the appearance

of more substantial fractionation at higher internal energy, and in the absence of an

accurate Heff , one might conclude, incorrectly, that fractionation increases more or

less monotonically with internal energy.

These trends in the dilution factors, of course, confirm the qualitative observations

that were made on the time-domain dynamics in Section 6.3, namely, that the dy-

namics of the (0, 0, 0, 220, 00) bright state seemed simpler in certain senses than that

of (0, 0, 0, 160, 00), which lies >4000 cm−1 lower in internal energy. One might wonder

whether this unusual trend in the dynamics is unique to the set of bright states that

are accessible experimentally from the S1 state of acetylene, or whether the overall

structure of the polyads changes in an unusual fashion, which might imply that the

dynamics for other classes of bright states would change in an unusual manner as

well. In other words, how typical are the dynamics of the pure trans bending bright

states relative to other bright states that one can imagine accessing (even if such

access might be difficult experimentally)?

Figure 6-4 addresses this question by plotting the distribution of dilution factors

for all of the zero-order states in the [10, 0]g+, [16, 0]g+, and [22, 0]g+ polyads. The

[10, 0]g+ polyad, for example, encompasses a total of 12 zero-order states. The experi-

mentally accessible bright state in this polyad, (0, 0, 0, 100, 00), has the second highest

dilution factor among all of the zero-order states. The only zero-order state with a

larger dilution factor is (0, 0, 0, 00, 100). In other words, if it were possible to excite
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pure cis bending, as opposed to pure trans bending, bright states experimentally,

then the fractionation pattern that would be observed for the [10, 0]g+ polyad would

be slightly simpler. Excitation of any other class of zero-order states, which would

necessarily involve both trans and cis bending, would result in a more complicated

fractionation pattern. In this sense, then, the dynamics of the bright state that is ac-

cessed experimentally cannot be considered to be typical of the dynamics that would

be observed for most other conceivable classes of bright states.

The observation that (0, 0, 0, 00, 100) and (0, 0, 0, 100, 00) possess the largest dilu-

tion factors in the [10, 0]g+ polyad is consistent with studies of many molecular systems

which have found that zero-order states with all of the vibrational excitation residing

in just one of the modes tend to have atypically simple fractionation patterns [98, 99].

These experimental observations have been explained using the theoretical constructs

of “exterior” and “interior” states, and the rather similar concept of “extreme motion

states” [100, 101]. The concept of exterior states is associated with a phenomenolog-

ical argument that states with excitation localized primarily in one mode (or, in the

case of larger molecules, in a small number of modes) of the molecule tend be cou-

pled to fewer other zero-order states via the important anharmonic resonances than

do states with vibrational excitation which is spread more evenly among the modes.

It was noted in Section 6.3, for instance, that the bright states (0, 0, 0, v4
0, 00) are

coupled to only two gateway states, (0, 0, 0, (v4 − 2)+2, 2−2) and (0, 0, 0, (v4 − 2)0, 20).

The concept of extreme motion states provides a theoretical foundation for these ar-

guments, the central tenet of which is an adiabatic decoupling of the extreme motion

(exterior) states from other states. It should be noted that certain limitations of the

concept of extreme motion states have been pointed out by Lehmann, Scoles and

coworkers, on the basis of their work on propyne [102]. Namely, they note that if the

vibrational energy of a molecule is delocalized over modes that interact only weakly

with each other, then the excitation in each mode can be expected to relax indepen-

dently; in other words, an increase in the delocalization of vibrational excitation can,

in certain cases, result in a decrease in the rate of IVR. However, these criticisms of

the concept of extreme motion states are relevant primarily to molecules much larger
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Figure 6-4: Histograms representing the distribution of dilution factors for all zero-
order states that compose a polyad. The bright states accessed experimentally gen-
erally have dilution factors that are among the highest (least fractionated) within the
polyad.
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than acetylene.

On the whole, the concept of extreme motion (exterior) states appears to be prof-

itable for the pure bending polyads of acetylene. The states with all of the vibrational

excitation localized in the cis bending mode always have the largest dilution factor

in a given pure bending polyad (at least up to Nb = 22). In the [10, 0]g+ and [22, 0]g+

polyads, which are illustrated in Fig. 6-4, the experimentally observed bright state,

which has all of the vibrational excitation in trans bend, has the second highest di-

lution factor. In [16, 0]g+, however, the trans bend bright state has only the fourth

highest dilution factor, and nine other zero-order states have dilution factors that

also range between 0.1 and 0.2. In other words, in [16, 0]g+, the bright state does

not behave like an exterior state, in the sense that its IVR seems to be somewhat

more typical of the totality of zero-order states within the polyad. From this per-

spective, then, the unusual trends in IVR that were examined in Section 6.3 reflect

the way in which the bright state behaves like an exterior (extreme motion) state at

low (Nb = 10) and high (Nb = 22) internal energy, but not at intermediate (Nb = 16)

energy. A framework for understanding this behavior of the bright state is presented

in Section 6.5.

6.5 Zero-Order Energies as a Framework for Un-

derstanding Trends in Dynamics

The unexpectedly complicated trends in IVR above 10,000 cm−1 that were noted in

Sections 6.3 and 6.4 can be understood by investigation of the structure of the blocks

of the Heff matrix that correspond to each of the relevant polyads. It should be noted

at the outset that the structure of the polyad blocks of the Heff at high internal energy

is rather complicated, in the sense that any given zero-order state typically interacts

with several other states via the known anharmonic resonances. In addition, many

off-diagonal matrix elements have magnitudes that are substantially larger than the

energy differences between the zero-order states that they couple.

However, an investigation of the zero-order energies of the states within a polyad
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provides a compact framework for understanding certain key elements of the dy-

namics. The zero-order energies are the diagonal elements of the Heff ; they can be

considered to represent the energies of the states within a polyad if one could turn off

the resonances. Thus, without considering the details of the resonances that couple

the zero-order states, the zero-order energies allow one to identify pairs or groups of

zero-order states that have small energy differences, and thus might be expected to

interact strongly due to small energy denominators.

Rather than simply list the zero-order energies for states within a polyad, however,

one can gain greater insight into the structure of the Heff by plotting the zero-order

energies in a manner related to the resonance structure that couples the zero-order

states. Figure 6-5 illustrates one such way of organizing the zero-order energies, ac-

cording to the quantum numbers of the corresponding zero-order states, (v4, �4, v5, �5).

For each polyad, Nb = v4 + v5, so either v4 or v5 needs to be specified, but not both.

In addition, only � = 0 polyads will be considered, such that �4 = −�5. Therefore,

a pair of quantum numbers, such as (v4, |�4|), is sufficient to label each zero-order

state. In Figs. 6-5 and 6-6, the v4 quantum number is labeled along the x-axis of the

zero-order energy plots, and in each stack of zero-order states at the same value of

v4, the highest energy state corresponds to |�4| = 0, and each successively lower state

has a value of |�4| that is two greater than that of the preceding state. The stacks

contain the largest number of states at intermediate values of v4 due to the constraint

that |�4| ≤ min(v4, v5).

This organization of the zero-order energies is convenient, because the anharmonic

resonances in the Heff can be illustrated graphically in a simple fashion. For example,

the �-doubling resonance, which exchanges two quanta of �4 for two quanta of �5

without changing v4 or v5, couples only zero-order states that are in the same v4 stack

on the diagram. More specifically, a chain of these resonances couples each zero-order

state within a stack to the state directly above it and the state directly below it.

The two Darling-Dennison resonances, which interchange two quanta between v4 and

v5, couple states in adjacent v4 stacks. The Darling-Dennison I resonance, which

preserves the values of �4 and �5, couples pairs of states in adjacent stacks with the
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same rank; i.e., the top states in adjacent stacks, or a pair of states which are each

third from the top in adjacent stacks. The Darling-Dennison II resonance, which

interchanges two quanta between �4 and �5, couples states in adjacent stacks with

rank differing by one.

In Fig. 6-6, it can be seen that for [10, 0]g+ (and all lower pure bending polyads)

the pure trans bending zero-order state (the bright state) has the lowest zero-order

energy of all of the states within the polyad. The pure cis bending state has the

highest zero-order energy, and the states with intermediate values of v4 and v5 vary

monotonically between these two extremes. This simple structure of the zero-order

energies in the low-lying pure bending polyads arises simply from the fact that ω4 <

ω5. The resonances that couple the zero-order states at ∼6500 cm−1 are relatively

weak, and the fractionation pattern observed in the eigenstate spectrum (top right

panel) is correspondingly simple. The intense peak below 6400 cm−1 can be labeled

as the perturbed bright state (its overlap squared with the zero-order bright state is

0.728), and the two moderately intense peaks at slightly higher internal energy can

be identified as the (Darling-Dennison) perturbers.

The zero-order energy diagram for [16, 0]g+ differs from that of [10, 0]g+ in subtle

but important ways. First, the bright state is now nearly , but not quite, the lowest

energy zero-order state within the polyad (the pure cis bending state remains at the

top). The lowest energy zero-order state is, in fact, (0, 0, 0, 88, 8−8), and a total of

12 zero-order states lie within ±100 cm−1 of the bright state. This proliferation of

near-degeneracies among the zero-order states near the bottom of the polyad, coupled

with the increase in the magnitude of the matrix elements from Nb = 10 to Nb = 16,

can be considered to be responsible for the complicated IVR associated with this

polyad that is described in Sections 6.3 and 6.4. The bright state lies right in the

middle of a conglomeration of nearly degenerate, strongly coupled states, leading to

a complicated fractionation pattern and time-domain dynamics that are atypical for

an exterior state.

The underlying reason for the change in structure in the zero-order energy di-

agram from [10, 0]g+ to [16, 0]g+ can be better understood by examination of the
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zero-order energy diagram for [22, 0]g+. The bright state in this case is no longer at

the bottom of the polyad; in fact, it has the fourth highest zero-order energy, and lies

less than 250 cm−1 lower in energy than the pure cis bending zero-order state. This

fundamental change in the structure of the polyad is due to the fact that the x44 and

x55 anharmonicity constants have opposite signs. In colloquial terms, the opposing

anharmonicities give the trans bend end of the polyad a chance to catch up to the

cis bend end at high internal energy. The states in the interior of the polyad, which

have v4 ≈ v5, sag down because the cross-anharmonicity between the two modes, x45,

is negative.

The zero-order energy diagram for [22, 0]g+ helps to explain why the fractionation

pattern of (0, 0, 0, 220, 00) appeared to be somewhat less complicated than that of

(0, 0, 0, 160, 00). Although the off-diagonal matrix elements, of course, increase sub-

stantially from Nb = 16 to Nb = 22, the bright state is no longer nearly degenerate

with as many states. The states in the interior of the [22, 0]g+ polyad, with v4 ≈ v5,

are coupled very strongly with each other, both due to large matrix elements and

small zero-order energy differences, but the bright state is coupled less strongly into

this bath of states by virtue of its zero-order energy.

This diagram also provides insight into the strong, quasiperiodic exchange of en-

ergy between the cis and trans bending modes that was observed in the plot of 〈vb(t)〉
for this polyad (Fig. 6-3). The bright state, (0, 0, 0, 220, 00), can be observed to be

nearly degenerate with (0, 0, 0, 40, 180), (0, 0, 0, 4+2, 18−2), and (0, 0, 0, 4+4, 18−4). Al-

though the bright state is not coupled directly to these states via the known an-

harmonic resonances, vibrational excitation can be expected to flow indirectly but

strongly from the trans bend end of the polyad to the cis bend end via a chain

of Darling-Dennison resonances through the states with v4 ≈ v5. Figure 6-7 un-

derscores this point by plotting the survival probability of the bright state (dotted

line) along with the time-dependent squared projection of the wavepacket onto the

(0, 0, 0, 00, 220) zero-order state (solid line). During the first 1 ps of the dynamics,

nearly 20% of the vibrational excitation is transferred to the pure cis bending zero-

order state, at the troughs of the survival probability of the pure trans bending bright
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state.

This strong transfer of vibrational excitation from one end of the polyad to the

other is remarkable because the (0, 0, 0, 220, 00) and (0, 0, 0, 00, 220) zero-order states

are coupled only very indirectly to each other, by a minimum of 11 quartic anhar-

monic resonances (∆v = 44!) through other zero-order states. At a qualitative level,

the magnitude of the anharmonic resonances at ∼15,000 cm−1 is responsible for the

strength of the transfer of energy, and the approximate symmetry of the zero-order

states, such that

E(0,0,0,v4
�4 ,v5

−�4 ) ≈ E(0,0,0,v5
�4 ,v4

−�4 ) , (6.16)

is largely responsible for the regular, quasiperiodic nature of this exchange during the

first 1–2 ps. This strong exchange of energy between the trans and cis normal modes

will be explored at a deeper level in Chapters 7 and 8, in which it is demonstrated

that a local mode model of the pure bending dynamics of acetylene is appropriate

at high internal energy. The [22, 0]g+ polyad is particularly well-described by a local

mode model, and it can be demonstrated that exchange of energy between trans and

cis can approach 100% as the molecule approaches the pure local bending limit.
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6.6 Conclusion

The existence of the Ns = v1 + v2 + v3 polyad quantum number in the acetylene S0

state implies the existence of a class of eigenstates (those with Ns = 0) that to a

good approximation involve no excitation in the stretching modes of the molecule. A

great deal of information about the pure bending dynamics of acetylene is encoded

in the pattern of frequencies and intensities of the transitions to the pure bending

eigenstates that are observed experimentally. The observed pure bending transitions

have been modelled using an effective Hamiltonian, described in Section 6.2, which

incorporates all of the anharmonic resonances that are known to couple the bending

states of acetylene. This effective Hamiltonian is based closely on previously reported

work [70], but the agreement between model and experiment has been extended to

much higher internal energy, such that all known pure bending levels of acetylene up

to 15,000 cm−1are fit to ±1.4 cm−1 (1σ), including states with up to 22 quanta of

bending excitation.

The ability to model the pure bending vibrational levels to such high internal

energy affords an opportunity to gain detailed insight into the short-time dynamics

of a tetra-atomic molecule with extreme levels of bending excitation. The effective

Hamiltonian was investigated using both time-domain (Figs. 6-2, 6-3, and 6-7) and

frequency domain (Table 6.4 and Fig. 6-4) formalisms, which together provided a

rich, and somewhat surprising, composite picture of the large-amplitude bending

dynamics. One major surprise was that the IVR of the bright state with 22 quanta of

trans bend excitation, at 15,000 cm−1 of internal energy, demonstrated a regularity

that was absent for the bright state with 16 quanta of trans bend excitation, at 10,000

cm−1 of internal energy; in other words, from 10,000 cm−1 to 15,000 cm−1 the IVR

seemed in some sense to become simpler . This observation was explained in terms of

the structures of the polyads (Fig. 6-6).

The eigenfunctions of the Heff developed here are examined in Chapters 7 and

8, where it is demonstrated that many of the eigenfunctions at high internal energy

(>10,000 cm−1) are quite regular, in the sense that they have clearly identifiable
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nodal coordinates. However, these nodal coordinates do not correspond to the normal

mode coordinates, as they do at lower internal energy. Rather, the eigenfunctions at

high internal energy are classifiable as “local bending” or “counter-rotating” states.

These qualitative observations imply that a different basis set may provide a more

compact representation of the pure bending dynamics at high internal energy, and the

Heff reported here can be transformed to local mode (as opposed to normal mode)

coordinates.

The development of an analytical potential surface for the bending dynamics of

acetylene that can also reproduce the available data up to 15,000 cm−1 would be

highly desirable. Normally, the refinement of a potential surface for a polyatomic

molecule against experimental data to such high internal energy would be a very

difficult task, but the relatively low dimensionality of the acetylene bending system,

combined with the existence of an extensive, rigorously calibrated data set, may make

such a task feasible. Recently, McCoy and Sibert have reported the development of a

new adiabatic bending potential surface for acetylene, which has shown promise for

matching experimental results below ∼10,000 cm−1 [24, 27], and I hope that the work

in this thesis will spur further efforts to develop potential surfaces for acetylene with

spectroscopic accuracy at high internal energy.
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6.7 Appendix: Expectation Values of Resonance

Operators

In Section 6.3, the pure bending dynamics of acetylene were investigated using time-

dependent quantities such as the survival probability, |〈Ψ(0)|Ψ(t)〉|2, and expecta-
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tion values of number operators, 〈vb(t)〉 = 〈Ψ(t)|v̂b|Ψ(t)〉. In this short Appendix, I

propose another class of time-dependent quantities—expectation values of resonance

operators.

Let Ô be a Hermitian operator that represents a particular resonance that couples

the zero-order states in some basis. For example, Ô defined as

â†
4dâ

†
4gâ5dâ5g + â4dâ4gâ

†
5dâ

†
5g (6.17)

would represent the Darling-Dennison I resonance; see Section 7.2 for notation. One

can then define the expectation value of the resonance operator for a time-evolving

wavepacket |Ψ(t)〉 as

〈Ô〉(t) = 〈Ψ(t)|Ô|Ψ(t)〉 (6.18)

=
∑
i

∑
j

c∗i (t)cj(t)〈φi|Ô|φj〉 (6.19)

in which

c(t) = 〈φ|Ψ(t)〉 , (6.20)

and {|φ〉} is the zero-order basis set in which the resonance is defined. [In a density

matrix formalism, the expectation value of the resonance operator can be computed

as

〈Ô〉(t) = Tr[ρ(t)O] , (6.21)

where ρ(t) is the time-evolving density matrix, and O is the matrix representation of

the resonance operator; see Ref. [103], p. 298.]

I have found the expectation values of resonance operators to be particularly use-

ful for elucidating dynamics in polyads that involve stretch excitation. In the pure

bending polyads, only three resonances exist, and the survival probabilities and ex-

pectation values of number operators provided quite a bit of insight into the dynam-

ics associated with the (0, 0, 0, v0
4, 0

0) bright states. However, in non-pure bending

polyads, the dynamics can be quite a bit more complicated because 7 vibrational

degrees of freedom are involved, and there are a total of 9 known anharmonic reso-
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nances (see Ref. [5], for example) that couple the normal mode zero-order states. The

expectation values of resonance operators can help to identify those resonances that

are the most important in directing the dynamics.

As an example, Fig. 6-8 depicts the expectation values of two resonance opera-

tors, which represent the Darling-Dennison I and (3,245) resonances, and the survival

probability for the time-evolving wavepacket that would be associated with preparing

the (0, 1, 0, 100, 00) bright state at t = 0. The model used is the effective Hamiltonian

that is defined in Section 6.2 and Chapter 9. The survival probability is intriguing

because it displays oscillations with two distinct periods. That is, there are a series

of nearly complete recurrences of the wavepacket at time intervals of ∼1.35 ps, but

these broad oscillations are modulated by oscillations with a period of ∼0.25 ps. The

expectation values of the resonance operators provide an immediate interpretation

for these two timescales in the wavepacket dynamics. The expectation value of the

Darling-Dennison I operator displays oscillations that match the faster period oscil-

lations in the survival probability, while that for the (3,245) resonance matches the

slower oscillations. Thus, redistribution of the energy between the trans and cis bend

modes occurs on a faster timescale than redistribution of the energy between the bend

and stretch modes, but both processes are reversible in the sense that nearly 100%

recurrences are observed within a few picoseconds.

It should be noted that the expectation values of resonance operators can also be

used in a time-independent sense, if the wavepacket |Ψ(t)〉 is replaced by eigenstates

|ψ〉.
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Figure 6-8: Top: Survival probability associated with the (0, 1, 0, 100, 00) bright state.
Middle and Bottom: Time-dependent expectation values of resonance operators that
represent the Darling-Dennison I and (3,245) resonances, respectively, for the same
wavepacket as in the top panel.
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Chapter 7

Local Mode Bending Behavior

179



   

The majority of this chapter, other than the two Appendices, has been published in

the Journal of Chemical Physics as Ref. [104].

7.1 Introduction

The quantum vibrational eigenfunctions of polyatomic molecules at chemically signif-

icant energies are a subject of substantial recent interest, particularly insofar as they

may provide mechanistic insights into unimolecular dissociation and isomerization.

It is well established, at this point, that traditional spectroscopic analyses, which

emphasize assignments based on normal modes, are rarely useful for describing large

amplitude vibrational motions of polyatomic molecules. The nonlinearity and non-

integrability that are inherent to these large amplitude vibrations often lead to the

observation of stable motions qualitatively distinct from the normal modes, as well

as to classical chaos (and, possibly, observable quantum manifestations of the chaos).

Some recent contributions to the understanding of the vibrational eigenfunctions of

highly excited polyatomics have included

• the fitting and analysis of effective Hamiltonian models that represent large

amplitude motions [84, 105, 106, 107, 108];

• classical and semiclassical analysis of molecular quantum Hamiltonians [109,

110, 111, 112, 14, 113, 114];

• theoretical studies of vibrational eigenfunctions at high energy using potential

surfaces generated by ab initio methods [115, 116];

• algebraic approaches to molecular vibrations [117, 118, 119, 120];

• the polyad formalism for identifying approximately conserved vibrational quan-

tum numbers [15, 16, 17, 14];

• quantum, semiclassical, and classical studies of model systems that mimic im-

portant properties of polyatomic systems [121, 122, 123];
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• detailed analysis of the equivalence [105, 32, 124, 33, 125, 126, 127, 128] between

the traditional normal mode models of vibrational motion and the local mode

models pioneered by Mecke, Siebrand, Williams, Henry, Lawton, Child, and

others [29, 30, 129, 31, 130, 131];

as well as a wide variety of experimental studies, which are far too numerous to be

referenced here.

I present here, as a contribution to this body of literature, a thorough analysis of

the bending eigenfunctions of the acetylene S0 state, as represented by the bending

effective Hamiltonian model, introduced in Chapter 6, that reproduces the energies of

all pure bending eigenstates up to 15,000 cm−1 with 1.4 cm−1 RMS error. The eigen-

functions at such high internal energy necessarily represent rather large amplitude

bending motions; 15,000 cm−1 corresponds to approximately 22 quanta of bending

excitation, and is also believed to be within ∼500 cm−1 of the energy at which acety-

lene is energetically capable of isomerizing to vinylidene (zero-point dressed barrier

height) [72, 37, 34, 132, 36, 4]. Although these high energy eigenfunctions may provide

insights into quantum manifestations of classical chaos, this direction is not pursued

here. Instead, this chapter focuses on the appearance of qualitatively new, stable

bending motions at high internal energy. [Chapter 8 presents a classical and semi-

classical study of the acetylene bending system that addresses the correspondence

between the quantum wavefunctions and classical periodic orbits and chaos.]

The new bending motions that are observed in highly vibrationally excited acety-

lene can be referred to as “local bend” and “counter-rotation” motions. Local bend

motions have been reported previously in classical, semiclassical, and quantum stud-

ies of acetylene [109, 133, 27, 134]. I am unaware of any previous characterization of

the counter-rotating motion. The primary goal of this chapter, however, is to demon-

strate that the appearance of both the local bend and the counter-rotating motions

can be considered a manifestation of a transition from normal to local mode behavior

in the bending dynamics. That is, while a normal mode basis set is appropriate at

low energies (below ∼8,000 cm−1), a local mode basis becomes a superior zero-order

representation at higher energies (above ∼10,000 cm−1). The local mode behavior
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that is reported here for the bending degrees of freedom of acetylene has obvious

parallels with the local mode behavior that has been extremely well-characterized

for the stretching dynamics of a wide variety of ABA molecules (as well as some

larger systems) [105, 32, 33, 30, 135, 136, 137]. However, the local mode behavior

in the acetylene bend degrees of freedom, because it involves two two-dimensional

rather than two one-dimensional vibrational modes, encompasses a richer range of

motions for which the conventional language of local stretching systems is not entirely

appropriate.

7.2 Determining Eigenfunctions From Spectra

The approach utilized in this chapter to determine the eigenfunctions of acetylene

from experimental spectra consists of several steps:

1. Dispersed fluorescence (DF) spectra are recorded from several vibrational levels

of the S1 state of acetylene and subjected to frequency and intensity calibration

[Chapter 5].

2. Numerical pattern recognition algorithms are used to extract from the DF data

set the fractionation patterns for single bright states [Chapter 5].

3. An effective Hamiltonian (Heff) model is fit to the set of extracted fractionated

bright states [Chapter 6].

4. The eigenfunctions of the Heff model are examined graphically in an appropriate

coordinate system [this chapter].

It should be noted that this approach is similar in spirit to that of a few other studies,

including the Sako and Yamanouchi study of SO2 [117] and the Ishikawa et al. study of

HCP [106], but the tetratomic system under study here has required a more elaborate

analysis. Steps 1, 2, and 3 of this procedure are documented in preceding chapters;

the remainder of this section is devoted to explaining step 4.

The acetylene pure bending effective Hamiltonian will be designated as Heff
N , in

which the N subscript indicates that the effective Hamiltonian is represented in a
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normal mode basis, to distinguish it from an equivalent local mode version of the

Hamiltonian (Heff
L ) to be defined in Section 7.6 below. The matrix elements of Heff

N are

listed in Chapter 6. Here, to anticipate algebraic manipulation of Heff
N in later sections,

the Hamiltonian is expressed in terms of raising and lowering operators for the two

dimensional, isotropic harmonic oscillator. These operators are labeled d (right) and

g (left), using the notation of Cohen-Tannoudji et al. [103], and are defined as

âd =
1√
2
(âx − iây) (7.1)

âg =
1√
2
(âx + iây), (7.2)

where x/y represent the two equivalent rectilinear coordinates for the 2D oscillator.

The d/g operators have the convenient property that the number operators corre-

sponding to the conventional quantum number labels for the 2D oscillator can be

expressed as

v̂ = v̂d + v̂g = â†
dâd + â†

gâg (7.3)

�̂ = v̂d − v̂g = â†
dâd − â†

gâg. (7.4)

Note that, based upon these definitions, both âd and âg destroy one quantum of

vibration (v), but âd decreases the angular momentum (�) by one, while âg increases

it by one.

Using the conventional “4” and “5” labels for trans and cis respectively,

Ĥeff
N = ω4v̂4 + ω5v̂5

+ x44v̂4v̂4 + x45v̂4v̂5 + x55v̂5v̂5

+ y444v̂4v̂4v̂4 + y445v̂4v̂4v̂5 + y455v̂4v̂5v̂5 + y555v̂5v̂5v̂5

+ g44�̂4�̂4 + g45�̂4�̂5 + g55�̂5�̂5

+ s45(â
†
4dâ

†
4gâ5dâ5g + â4dâ4gâ

†
5dâ

†
5g)

+ [r◦45 + r445(v̂4 − 1) + r545(v̂5 − 1)](â4dâ
†
4gâ

†
5dâ5g + â†

4dâ4gâ5dâ
†
5g)

+
1

4
[r◦45 + r445(v̂4 − 1) + r545(v̂5 − 1) + 2g45] ∗
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(â†
4dâ

†
4dâ5dâ5d + â†

4gâ
†
4gâ5gâ5g + â4dâ4dâ

†
5dâ

†
5d + â4gâ4gâ

†
5gâ

†
5g). (7.5)

The values of the various parameters in this model1 are listed in Table 6.3.

The Heff
N is evaluated, of course, in a product basis set of two 2D harmonic oscilla-

tors, which represent the trans and cis bend degrees of freedom. The existence of the

polyad quantum numbers (Section 5.1) implies that the matrix representation of Heff
N

is block diagonal. Upon diagonalization of any polyad block, the eigenvector matrix

permits any eigenfunction in the polyad to be expressed as a linear superposition of

the zero-order basis states, and the probability density for any given eigenfunction

can be calculated in an appropriate set of coordinates. The most natural coordinates

for the 2D isotropic harmonic oscillator are the radial and angular coordinates (ρ, φ),

in which the wavefunctions for the oscillator take the form

Ψv,
(ρ, φ) = χ|
|
v (ρ)ei
φ (7.6)

χ|
|
v (ρ) = Nv,|
|e

−ρ2/2ρ|
|L
|
|
(v+
)/2(ρ

2); (7.7)

L represents the associated Laguerre polynomials, and N is a normalization constant.

Note that the volume of integration in these coordinates is ρ dρ dφ.

A natural set of coordinates for the eigenstates of Heff
N is therefore (ρ4, φ4, ρ5, φ5).

Only eigenstates with � = 0 will be considered, in which case �4 = −�5, and the basis

set consists of

Ψ0
v4,v5

(ρ4, ρ5) = χ0
v4

(ρ4)χ
0
v5

(ρ5) [�4 = �5 = 0] (7.8)

Ψ
4
v4,v5

(ρ4, ρ5, Φ45) = χ|
4|
v4

(ρ4)χ
|
4|
v5

(ρ5)e
i
4Φ45 [�4 �= 0], (7.9)

1Note that the diagonal elements of Heff
N differ from a standard Dunham expansion in the treat-

ment of zero-point energy. That is, the zero of energy of Heff
N is defined to be the zero-point level

of the molecule, and the ω, x, y, etc. parameters are not the standard Dunham parameters. This
nonstandard notation has been adopted for consistency with previous work (Ref. [70]).
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in which Φ45 = φ4 − φ5. Note, however, that the latter set of basis functions do not

possess well-defined parity; symmetrized basis functions can be defined as

Ψ|
4|+
v4,v5

(ρ4, ρ5, Φ45) =
√

2χ|
4|
v4

(ρ4)χ
|
4|
v5

(ρ5) cos(�4Φ45) (7.10)

Ψ|
4|−
v4,v5

(ρ4, ρ5, Φ45) =
√

2χ|
4|
v4

(ρ4)χ
|
4|
v5

(ρ5) sin(�4Φ45). (7.11)

Note that the conservation of vibrational angular momentum permits a reduction

in the number of coordinates needed to plot the eigenstates from 4 to 3. Also note

that the g/u symmetry of the basis functions is determined by v5 (v5=odd implies u

symmetry; v5=even implies g symmetry). The shorthand notation |v
4
4 , v
5

5 〉g+N will be

used to indicate the symmetrized basis functions; the superscript, of course, indicates

the symmetry, while the subscript N again indicates the normal mode basis set, to

distinguish it from the local mode basis set to be defined in Section 7.4.

7.3 Eigenfunctions in Normal Mode Coordinates

Figures 7-1 and 7-2 depict several eigenfunctions in the [4, 0]g+ and [22, 0]g+ polyads,

respectively. The [4, 0]g+ polyad is representative of the low energy polyads (Nb ≤
8), in which the eigenfunctions can be rationalized simply in terms of perturba-

tions/mixings among a small number of normal mode zero-order states. The [22, 0]g+

polyad is the highest energy pure bending polyad that had been characterized experi-

mentally when this work was completed. The eigenstates of this polyad have energies

near 15,000 cm−1 and are representative of the high energy polyads (18 ≤ Nb ≤ 22), in

which few, if any, states are describable in terms of the normal mode basis, but many

are describable instead in terms of qualitatively new types of motions, called local

bend and counter-rotation. Discussion of the eigenfunctions at intermediate energy

(10 ≤ Nb ≤ 16), which are transitional between the low and high energy extremes,

will be deferred to Section 7.5.

The [4, 0]g+ polyad encompasses a total of four eigenstates, which are represented

in Fig. 7-1 in the coordinates defined in the preceding section. The four zero-order
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Figure 7-1: Probability densities of the four eigenstates of the [4, 0]g+ polyad plotted
as projections onto the normal mode radial (ρ4, ρ5) and torsional (Φ45) coordinates.
The lowest energy eigenstate is a minimally perturbed trans bend state (|40, 00〉g+N ),
and the highest a minimally perturbed cis bend state (|00, 40〉g+N ). The two eigenstates
which are intermediate in energy are mixed, due to vibrational �-resonance between
|2+2, 2−2〉g+N and |20, 20〉g+N .

states that comprise the polyad are |40, 00〉g+N , |20, 20〉g+N , |2+2, 2−2〉g+N , and |00, 40〉g+N ,

and the projections of the eigenstates onto the basis set can be obtained from the

eigenvector matrix that results from the diagonalization of Heff
N . Eigenfunction (a)

is the minimally perturbed pure trans bend zero-order state, |40, 00〉g+N . That is, this

lowest energy eigenstate within the polyad has 99.1% character of |40, 00〉g+N (the term

“character” is used to mean overlap squared between an eigenstate and a given zero-

order function). The purity of this state is reflected in the eigenfunction plot; there

is a clear nodal coordinate2 running nearly parallel to the ρ4 axis, and a nearly flat

Φ45 probability distribution, which is indicative of �4 = �5 = 0. The assignment for

eigenstate (d), the highest energy state within the polyad, is equally clear [99.2%

|00, 40〉g+N character].

The two eigenstates in the “middle” of the polyad, by process of elimination,

must correspond in some way to the |20, 20〉g+N and |2+2, 2−2〉g+N zero-order states.

Note that the |20, 20〉g+N zero-order state should have a flat Φ45 probability distribu-

2In terms of counting nodes in the (ρ4, ρ5) plane, it is important to keep in mind that the radial
coordinates are defined only for ρ ≥ 0.
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tion, while |2+2, 2−2〉g+N should have a cos2(2Φ45) distribution. Since neither of the

eigenstates displays either of these behaviors, they must represent some mixture of

the two zero-order states (i.e., the zero-order states perturb each other significantly).

The eigenvector matrix confirms this conclusion. Eigenstate (b) can be approximated

as

|b〉 ≈ 0.80|2+2, 2−2〉g+N + 0.60|20, 20〉g+N , (7.12)

while for eigenstate (c),

|c〉 ≈ 0.60|2+2, 2−2〉g+N − 0.79|20, 20〉g+N . (7.13)

The mechanism for the mixing between the two zero-order states is vibrational �-

resonance, which couples states with the same v4 and v5, but with ∆�4 = −∆�5 = 2.

Thus, the overall structure of the pure bending polyads at low internal energy is

fairly simple. The trans bend mode has a smaller harmonic frequency than the cis

bend mode (ω4 < ω5), and as a result, the states within the polyad are ordered with

the pure trans bend state at the bottom, the pure cis bend state at the top, and

states with a mixture of trans and cis in the middle. Groups of zero-order states with

the same v4 and v5 tend to cluster closely in energy, due to the rather weak depen-

dence of the zero-order energies on �4 and �5, and perturb each other strongly through

vibrational �-resonance. By contrast, the other important anharmonic bending reso-

nances, Darling-Dennison I and II, which couple states with ∆v4 = −∆v5 = 2, result

in relatively minor perturbations, due to the fairly large difference in the frequencies

of the two bending modes.

The situation in the [22, 0]g+ polyad is drastically different. At ∼15,000 cm−1

of internal energy, this polyad not only encompasses many more zero-order states

(42) than the low energy polyads, but these zero-order states are also coupled by

off-diagonal matrix elements which are much larger due to their (harmonic oscillator)

scaling properties. In addition, as demonstrated in Chapter 6, the energies of the zero-

order states do not cluster in a simple fashion, as they do at low energy. Although the

pure cis bend state, |00, 220〉g+N , remains the highest energy zero-order state within
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the polyad, the pure trans bend state, |220, 00〉g+N , no longer has the lowest energy in

the polyad, as it does for the low energy polyads. In fact, the |220, 00〉g+N state has

the fourth highest zero-order energy within the polyad, and the pure trans and cis

bend states are thus nearly isoenergetic at high Nb. The underlying reason for this

behavior is that the trans and cis bend modes have anharmonicities with opposite

signs. The trans bend mode, which has a lower harmonic frequency, has a positive

anharmonicity, which causes the effective frequency for this mode at high energy to

approach that of the cis bend mode, which has a higher harmonic frequency but a

negative anharmonicity.

Based on the preceding observations, it is not surprising that the eigenvector ma-

trix for this polyad reveals that the vast majority of eigenstates can be described only

in terms of a complicated superposition of many normal mode states (see for example

the histogram plot of dilution factors for this polyad in Fig. 6-4). On this basis,

one might reasonably expect that the majority of the eigenfunctions of the [22, 0]g+

polyad would look very complicated in a graphical representation, with poorly de-

fined nodal patterns. However, as Fig. 7-2 makes clear, many of the eigenfunctions

of the [22, 0]g+ polyad demonstrate simple, well-defined nodal coordinates. Plots (a),

(b), (e), and (f) are representative of the eigenstates at the low and high energy ex-

tremes of the polyad, the majority of which have clearly defined nodal coordinates.3

Although many of the eigenstates in the middle of the polyad, like eigenstate (c),

do have complicated structures, others like eigenstate (d) have well-defined nodal

coordinates (although somewhat more complicated than at the energy extremes).

It should be emphasized that the eigenfunctions that have a simple appearance are

also highly mixed, in the sense that their projection onto the normal mode basis set

involves a complicated superposition of all of the zero-order states within the polyad.

That is, their simple nodal coordinates are very different than those observed at low

internal energy, where the eigenstates can be identified as perturbed/mixed normal

mode zero-order states, with the nodal coordinates aligned approximately parallel to

3In many local stretching systems, the bottom of a polyad is dominated by local stretch character,
whereas the top may remain describable in terms of the normal mode motions. Here, normal mode
motions are not in evidence either at the top or the bottom of the polyad.
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Figure 7-2: Probability densities of six eigenstates in the [22, 0]g+ polyad plotted
as projections onto the normal mode radial (ρ4, ρ5) and torsional (Φ45) coordinates.
The eigenstate in (a) has the lowest eigenenergy within the polyad (13925.4 cm−1)
and eigenstate (b) has the third lowest (14064.32 cm−1). Together, (a) and (b) are
representative of the eigenfunctions at the bottom of the polyad, which tend to have
probability localized near ρ4 = ρ5. The eigenfunction in (c) has an energy of 14641.4
cm−1 and is representative of a number of eigenstates within the middle of the polyad
that appear to have no well-defined nodal coordinates. Eigenstate (d) is depicted
because it has the greatest overlap with the bright state (i.e., the greatest intensity
in the experimental spectrum); its energy is 14755.0 cm−1. Eigenstates (e) and (f)
are representative of many states at the top of the polyad, which tend to have nodal
coordinates along lines of constant (ρ2

4 + ρ2
5). Eigenstate (e) has an energy of 15067.6

cm−1 and (f) has an energy of 15,671.4 cm−1, the highest eigenenergy within the
polyad.
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the ρ4 and ρ5 axes. Put differently, the simple eigenfunctions that predominate at

the extremes of the [22, 0]g+ polyad represent qualitatively new motions which are

not present at low internal energy.

It is clear that the eigenfunctions at the high and low energy extremes of the polyad

represent two different types of motion. The motion associated with eigenstate (a),

the lowest energy eigenstate within the polyad, is somewhat easier to interpret. This

eigenfunction has its probability density localized around Φ45 = 0, which corresponds

to in-plane motion. The nodal coordinate in the (ρ4, ρ5) plane is aligned along ρ4 = ρ5.

Classically, the simultaneous excitation of the cis and trans bending motions with

the same amplitude, in-phase and in-plane, corresponds to a “local bending” motion,

in which only one hydrogen executes a bending motion. From a quantum mechanical

perspective, the bending motions of the two equivalent hydrogens are indistinguish-

able, and one would expect to observe a nearly degenerate pair of local bend states

which correspond to positive and negative superpositions of the two equivalent local

bend motions. In fact, eigenstate (a), which has a computed energy of 13925.94176036

cm−1 and g+ symmetry, is very nearly degenerate with an eigenstate of the [22, 0]u+

block of Heff
N , with a computed energy of 13925.94176029 cm−1 (splitting of 7 · 10−7

cm−1). The probability density plots of these two eigenfunctions are also nearly iden-

tical. Thus, in close analogy to local stretch states, the local bend states appear in

nearly degenerate g/u pairs.

Many of the eigenstates at the low energy end of the polyad can be classified as

local benders, such as eigenstate (b), which differs from (a) in that it also involves

excitation along a coordinate orthogonal to the local bending coordinate. As ex-

pected, this g+ symmetry eigenstate, which has an energy of 14064.3221615 cm−1,

has a nearly degenerate u+ symmetry partner, only 3 · 10−6 cm−1 higher in energy.

Several other g/u local bend pairs can be identified at the low energy end of the

polyad, including pairs with − parity. All of these states share a nodal coordinate

aligned approximately along ρ4 = ρ5, but many of these, such as (b), also have exci-

tation along an orthogonal coordinate or have probability distributions that are not

localized around Φ45 = 0. Further discussion of these other local bend states will
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be deferred to the next section, in which a different coordinate representation of the

eigenfunctions is introduced which makes their assignments more readily apparent.

The motion associated with eigenstate (f), the highest energy eigenstate within

the polyad, is somewhat more difficult to interpret. The nodes of this eigenfunction

align along a coordinate defined by
√

ρ2
4 + ρ2

5 ≈ C, where C is a constant, and the

probability density peaks at Φ45 = π/2. The absence of substantial probability near

(ρ4 = 0, ρ5 = 0) implies that the vibrational motion never passes through the linear

configuration. On the other hand, the motion must pass through the trans and

cis planar configurations, due to the lobes of probability located near ρ4 = 0 (with

nonzero displacement in ρ5) and ρ5 = 0 (with nonzero displacement in ρ4). The

point ρ4 = ρ5, with Φ45 = π/2, corresponds to a configuration of the molecule in

which the two hydrogens are located at the same angle with respect to the CC axis,

and have a torsional angle between them of 90◦ [note that Φ45 is not , however, the

torsional angle between the hydrogens, but the torsional angle between the cis and

trans oscillators, as discussed in the next section]. In this way, it becomes clear that

a trajectory along the coordinate
√

ρ2
4 + ρ2

5 = C, with Φ45 = π/2, corresponds to a

molecular motion in which the two hydrogens maintain a given angle with respect

to the CC axis, but execute an internal rotation which changes the torsional angle

between them. Since total vibrational angular momentum must be conserved, the two

hydrogens execute rotations in the opposite sense, and thus eigenstate (f) is identified

with a “counter-rotating” motion.

In contrast to the local bend states, counter-rotating states do not appear in g/u

pairs with the same parity. However, eigenstate (f), which has g+ parity and an

energy of 15671.432833 cm−1, is very nearly degenerate with an eigenstate of the

u− symmetry block of Heff
N , which has an energy of 15671.432824 cm−1 (splitting of

1.2 · 10−5 cm−1). A number of the other states at the high energy end of the polyad

which have nodal coordinates along
√

ρ2
4 + ρ2

5 = C, such as eigenstate (e), also appear

in pairs of either g+ with u−, or g− with u+. That is, the counter-rotation states

occur in pairs with opposite g/u symmetry and opposite parity. This behavior can

be rationalized as follows. Classically, there are two equivalent counter-rotations,
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which differ in the direction of rotations of the hydrogens (i.e., clockwise or counter-

clockwise). Quantum mechanically, these classical counter-rotations, like the classical

local bends, are indistinguishable, and the nearly perfect quantum counter-rotation

states such as eigenstate (f) must represent some superposition of the two equivalent

motions.

The two equivalent classical counter-rotations can be designated as (R,L) and

(L,R), where R and L represent clockwise and counter-clockwise rotation of one

hydrogen. The application of the molecular inversion operator (̂ı) to either classical

counter-rotation state generates the other, i.e.,

ı̂(R,L) → (L,R).

The application of the parity operator, which for a symmetric top is equivalent to σ̂v

(see, for example, Refs. [138] and [10]), has an identical effect:

σ̂v(R,L) → (L,R).

Thus, upon symmetrizing the equivalent counter-rotation states,

1√
2

[(R,L) ± (L,R)] ,

it becomes clear that the positive superposition corresponds to g+ symmetry, while

the negative superposition corresponds to u− symmetry. Thus, while local bend

states appear in pairs with opposite g/u symmetry, because ı̂ interchanges the two

equivalent local bends (σ̂v is inoperative), counter-rotation states appear in pairs with

opposite g/u symmetry and opposite parity, because both ı̂ and σ̂v interchange the

two equivalent counter-rotations.

At this point, eigenfunctions (c) and (d) have not been discussed in detail. There

is little to say about eigenstate (c), except that no simple nodal coordinates can be

identified, despite a significant degree of localization of probability density around

Φ45 = 0. The existence of an eigenfunction with such a complicated appearance

192



    

raises suspicions that chaos exists in the underlying classical dynamics, at least in

the middle of the polyad. This is, in fact, the case, and the intricate coexistence

of regular and chaotic regions of phase space for the acetylene bending system at

high internal energy is examined in Chapter 8. Eigenstate (d), on the other hand,

is representative of a number of eigenstates in the middle of the polyad that have a

fairly regular structure (some degree of counter-rotating character is evident). It also

has the special significance of being the eigenstate on which the strongest transition

to the [22, 0]g+ polyad terminates in the DF spectra. The substantial overlap of this

eigenstate with the pure trans bend bright state is evident in the accumulation of

probability density near ρ5 = 0.

7.4 Eigenfunctions in Local Mode Coordinates

On the basis of the preceding arguments, it is clear that many of the eigenfunc-

tions at the low and high energy ends of the [22, 0]g+ polyad should be assignable

in terms of quantum numbers representing excitation along local bend and counter-

rotation coordinates. In this section, a coordinate transformation is defined from

the (ρ4, ρ5, Φ45) normal mode coordinates, which were utilized to represent the eigen-

functions in the preceding section, to a new set of coordinates, (ρA, ρB, ΦAB), which

facilitate the assignment of many of the high energy eigenstates in terms of “local

mode” quantum numbers. This coordinate transformation, and the assignments that

it permits, also provide insight into the relationship that exists between the local bend

and counter-rotating motions, as well as the significance of the “imperfect” local bend

and counter-rotation states, such as eigenstates (b) and (e).

Although the wavefunctions are plotted in radial coordinates, the coordinate trans-

formation is defined in terms of dimensionless rectilinear coordinates:

qAx =
1√
2
(q4x + q5x) (7.14)

qAy =
1√
2
(q4y + q5y) (7.15)
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qBx =
1√
2
(−q4x + q5x) (7.16)

qBy =
1√
2
(−q4y + q5y). (7.17)

The coordinates A and B are thus defined to be symmetric and anti-symmetric com-

binations of the trans and cis bend coordinates, and these new coordinates will be

referred to as “local mode” bending coordinates, in the expectation that they repre-

sent, to a good approximation, bending coordinates for the two individual hydrogens

(the correspondence between the normal and local mode representations of the bend

eigenfunctions is established more rigorously in Section 7.6). Upon transforming to

radial coordinates, the local and normal mode coordinates are related according to

ρ2
A =

1

2

[
ρ2

4 + ρ2
5 + 2ρ4ρ5 cos(Φ45)

]
(7.18)

ρ2
B =

1

2

[
ρ2

4 + ρ2
5 − 2ρ4ρ5 cos(Φ45)

]
(7.19)

ΦAB = arctan

[
2ρ4ρ5 sin(Φ45)

ρ2
5 − ρ2

4

]
. (7.20)

These expressions are invertible. Note that ΦAB is easier to interpret than Φ45; ΦAB

is simply the torsional angle between the two hydrogens.

The application of this coordinate transformation to the eigenfunctions of Fig. 7-2

is depicted in Fig. 7-3. In order to provide assignments for the eigenfunctions in the

local mode coordinate system, a local mode zero-order basis set can be defined in

terms of two 2D harmonic oscillators, in a manner analogous to the normal mode

basis set defined in Eqs. 7.8–7.11 above:

Ψ0
vA,vB

(ρA, ρB) = χ0
vA

(ρA)χ0
vB

(ρB) (7.21)

for �A = �B = 0, and

Ψ|
A|+
vA,vB

(ρA, ρB, ΦAB) =
√

2χ|
A|
vA

(ρA)χ|
A|
vB

(ρB) cos(�AΦAB) (7.22)
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Ψ|
A|−
vA,vB

(ρA, ρB, ΦAB) =
√

2χ|
A|
vA

(ρA)χ|
A|
vB

(ρB) sin(�AΦAB) (7.23)

as the positive and negative parity pairs for �A �= 0. One important distinction from

the normal mode basis set is that the local mode basis, as defined above, does not have

well-defined g/u symmetry. This can be remedied by taking positive and negative

superpositions of Ψ|
A|
vA,vB

and Ψ|
A|
vB ,vA

(vA �= vB). The set of local mode basis functions

with g+ symmetry, for example, is then defined as

Ψ|
A|g+
vA,vB

(ρA, ρB, ΦAB) =
[
χ|
A|
vA

(ρA)χ|
A|
vB

(ρB) + χ|
A|
vB

(ρA)χ|
A|
vA

(ρB)
]
cos(�AΦAB). (7.24)

The shorthand notation |v
A
A , v
B

B 〉g+L will be used for the fully symmetrized local mode

basis functions.

Plotted in Fig. 7-4 are four of these basis functions; their correspondence with the

eigenstates (a), (b), (e), and (f) in Fig. 7-3 is clear. Eigenstate (a) can be identified

as |220, 00〉g+L ; it has probability localized along both ρA = 0 and ρB = 0, the two

equivalent local bending coordinates, because of the indistinguishability of the two

hydrogens in quantum mechanics. Eigenstate (b) can be identified as |21+1, 1−1〉g+L .

Note that the single, nearly sinusoidal oscillation of the probability density from 0

to π along ΦAB is indicative of a single quantum of angular momentum in the local

bending modes (i.e., �A = −�B = 1). The assignment of eigenstate (e) as |14+8, 8−8〉g+L
is somewhat more approximate, but the number of oscillations in the ΦAB coordinate

matches exactly (�A = −�B = 8), and the number and location of the nodes in the

radial coordinates are quite similar.

Finally, the highest energy eigenstate within the polyad, eigenstate (f), can be

assigned as |11+11, 11−11〉g+L . That is, the counter-rotating states correspond to local

mode basis functions with maximal or nearly maximal angular momentum associated

with each of the individual bond oscillators. The counter-rotational character of this

eigenstate is much clearer in the local mode than in the normal mode coordinates.

The projection of the probability density in the (ρA, ρB) plane has no nodes and

localizes about a single point (ρA ≈ ρB), which indicates that both hydrogens remain

at the same (nonzero) angle with respect to the CC axis. All of the nodes of the
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φΑΒ0 π
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ρ B

ρA

(d)

φΑΒ0 π
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(e)

φΑΒ0 π

ρ B

ρA

(f)

φΑΒ0 π

Figure 7-3: The same eigenfunctions as in Fig. 7-2, but plotted using local mode
coordinates. ρA and ρB are the two equivalent single hydrogen bending coordinates,
and ΦAB is the torsional angle between the hydrogens.
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ρ B

ρA

|220,00〉L 

φΑΒ0 π

ρ B

ρA

|11+11,11-11〉L 

φΑΒ0 π

ρ B

ρA

|21+1,1-1〉L 

φΑΒ0 π φΑΒ0 π

ρ B

ρA

|14+8,8-8〉L 

Figure 7-4: Probability densities of 4 symmetrized local mode basis functions,
|v
A

A , v
B
B 〉g+L . Note the similarity between these zero-order states and eigenfunctions

(a), (b), (e), and (f) in Fig. 7-3.

wavefunction occur along the ΦAB coordinate, indicating that the motion associated

with this eigenstate involves changing the torsional angle between the two hydrogens.

The counter-rotational character of the eigenstate is even clearer in Fig. 7-5, which

is a projection of the eigenstate onto coordinates (qAx, qAy), which are defined by

qAx = ρA cos(ΦAB) (7.25)

qAy = ρA sin(ΦAB) , (7.26)

and which represent the motion of a single hydrogen. Twenty-two nodes can be

counted in a nearly perfect circle.

Thus, the local mode basis set defined in this section appears to be extremely useful

for assigning acetylene bending vibrational levels at high internal energy, because

both local bend and counter-rotation states can be labeled with the same set of

quantum numbers. More precisely, the local mode basis set represents a continuum

of vibrational character, ranging from pure local bend, |N0
b , 00〉L, to pure counter-

rotation, |Nb/2(Nb/2), Nb/2(−Nb/2)〉L. Most of the states near the bottom of the polyad,

with vA � vB, lie close to the local bend limit, whereas the assignable states near
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Figure 7-5: Projection of the probability density of eigenfunction (f) (in Fig. 7-3)
onto (qAx, qAy) coordinates.

the top of the polyad, with vA ≈ vB ≈ |�A|, lie close to the counter-rotation limit. As

will be seen in Section 7.6, nearly half of the eigenstates of the [22, 0] polyad (of all

symmetries) can be assigned using the local mode basis set (using the Hose-Taylor

criterion [139]), especially those states at the high and low energy ends of the polyad,

but a few in the middle as well. Many other eigenstates can be rationalized in terms

of mixings among a few zero-order local mode states.

7.5 Transition from Normal to Local Mode Be-

havior

It should be clear at this point that the bending eigenfunctions of acetylene in the

limits of low (Nb = 4) and high (Nb = 22) excitation are strikingly different. At

low energy, the eigenfunctions can be assigned in terms of perturbed or mixed nor-

mal mode states. At high energy, a few eigenfunctions have very complicated nodal

patterns (in any coordinates) and do not yield to assignment, but many others have

well-defined, simple nodal coordinates corresponding to a continuum of new types of
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vibrational motions, ranging from local bend to counter-rotation. In this section, the

transition between the low energy, normal mode regime, and the high energy, local

mode regime is examined.

To focus this discussion, only the lowest and highest energy eigenstates in each

pure bending polyad will be considered. As discussed in Section 7.3, at low Nb, the

lowest energy eigenstates in the pure bending polyads can be labeled as minimally

perturbed trans bend states, while the highest eigenstates are nearly pure cis bend

states. At high Nb, the lowest energy eigenstate is a local bender, while the highest is a

counter-rotator. Thus, one can expect the change from normal to local mode behavior

to be manifested in a dual transition, from trans bend to local bend behavior at the

bottom of the pure bending polyads, and from cis bend to counter-rotation at the

top (although it is unclear at this point whether these two transitions will necessarily

occur at the same energy).

The symmetry properties of the local bend and counter-rotation states provide one

method of identifying the energies at which these two transitions occur. That is, as

detailed in Section 7.3, pure local bend states are expected to appear in nearly degen-

erate (g/+,u/+) pairs, while pure counter-rotation states should occur in (g/+,u/−)

pairs; no such symmetry arguments can be made for purely normal mode states. The

second column in Table 7.1 is the difference in energy between the lowest energy eigen-

states in corresponding g/+ and u/+ polyads. For [6, 0]g+, [8, 0]g+, and [10, 0]g+, in

which the lowest energy eigenstate can be described as a perturbed trans bend state,

the g/u energy splitting is >10 cm−1. For Nb > 12, however, the energy splitting is

less than 1 cm−1, and by Nb = 22, the energy splittings become exceedingly small,

indicating nearly perfect local bend character.4 The third column of Table 7.1 is the

energy difference between the highest energy eigenstates in corresponding g/+ and

u/− polyads. The transition from cis bend to counter-rotating behavior appears to

occur somewhere around Nb = 16.

Thus, the bottom of the pure bending polyads seems to demonstrate local mode

4Note that these near degeneracies of the local bend eigenstates are predicted by Heff
N despite

the fact that the corresponding g and u symmetry polyads do not even contain the same number of
states. For example, the [22, 0]g+ polyad contains 42 states, while [22, 0]u+ contains only 36.
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Table 7.1: Energy splittings between symmetry pairs reveal the transition from nor-
mal to local mode behavior. First column: the polyad quantum number, Nb. In all
cases, � = 0. Second column: energy difference, in cm−1, between the lowest energy
eigenstates in pairs of corresponding g/+ and u/+ symmetry polyads. Small split-
tings indicate that the states are assignable as local bends. Third column: energy
difference between the highest energy eigenstates in pairs of corresponding g/+ and
u/− symmetry polyads. Small splittings indicate that the states are assignable as
counter-rotators.

Nb Eg+ − Eu+ Eg+ − Eu−
6 -52.2 83.2
8 -30.8 67.3
10 -10.3 48.1
12 -0.22 25.1
14 -1.7 x 10−4 5.5
16 4.4 x 10−6 0.39
18 6.5 x 10−7 1.5 x 10−2

20 1.2 x 10−7 4.1 x 10−4

22 6.4 x 10−8 9.3 x 10−6

behavior at slightly lower energy than the top. Despite this fairly minor difference, it

seems reasonable to conclude that the transition from normal to local mode behavior

occurs within the range Nb = 12–16 (8,000–10,000 cm−1). This transition is examined

in greater detail in Figs. 7-6 and 7-7, which depict the lowest and highest energy

eigenstates of the pure bending polyads in the critical energy range. Specifically,

Fig. 7-6 depicts the lowest energy eigenstates in the [10, 0]g+, [12, 0]g+, and [14, 0]g+

polyads in both the normal and local mode coordinates that were defined previously.

The lowest energy eigenstate in the [10, 0]g+ polyad can be identified as a somewhat

perturbed trans bend state in either of the coordinate sets. In the normal mode

coordinates, the assignment of the eigenstate as |100, 00〉g+N is indicated by the nodal

coordinate in the (ρ4, ρ5) plane being nearly parallel to the ρ4 axis, and by the nearly

isotropic distribution of probability density along the Φ45 coordinate. In the local

mode coordinates, the accumulation of probability along ρA = ρB indicates that

both hydrogens execute equal amplitude motions, and the probability maximum at

ΦAB = π indicates that the two hydrogens bend in opposite directions (i.e., trans as

opposed to cis).
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Figure 7-6: The lowest energy eigenstates in the [10, 0]g+, [12, 0]g+, and [14, 0]g+

polyads, in normal and local mode bending coordinates. The qualitative change in
eigenstate character from trans bend to local bend is clear at Nb = 12. In the normal
mode coordinates, the nodal coordinate in the (ρ4, ρ5) plane pulls away from the ρ4

axis, and the torsional probability distribution begins to show pronounced peaks at
Φ45 = 0, π, · · ·. In the local mode coordinates, the transition to local bend behavior
is marked by the splitting of the probability in the (ρA, ρB) plane into two lobes.
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The lowest energy eigenstate in the [12, 0]g+ polyad, on the other hand, displays

several features which indicate a qualitatively new type of motion, and it cannot be

considered to represent merely a perturbed trans bend state. First, in the normal

mode coordinates, the nodal coordinate in the (ρ4, ρ5) plane is no longer even ap-

proximately parallel to the ρ4 axis. The probability density along the Φ45 coordinate

for the [12, 0]g+ eigenfunction also displays pronounced maxima at 0 and π which are

nearly absent in the [10, 0]g+ eigenfunction. The transition to a qualitatively new type

of motion (which will eventually come to represent the local bend motion) is perhaps

the clearest in the local bend coordinates. Specifically, the single nodal coordinate in

the [10, 0]g+ eigenstate appears to have bifurcated in the [12, 0]g+ eigenstate to form

a pair of nodal coordinates located symmetrically about ρA = ρB.

The lowest energy eigenstate in the [14, 0]g+ polyad displays no qualitative fea-

tures that are not already present in the [12, 0]g+ lowest energy eigenstate. In fact,

from Nb = 12 to Nb = 22, the change in the nature of the lowest energy eigenfunc-

tions represents a gradual evolution toward the nearly perfect local bending motion

associated with the lowest energy eigenstate in the [22, 0]g+ polyad. In the (ρ4, ρ5)

plane, the nodal coordinate gradually increases its slope until it reaches nearly unity,

and the probability maxima at Φ45 = 0, π, ... become more pronounced. In the local

mode coordinates, the two symmetrically related lobes of probability gradually move

“outward” until they are approximately orthogonal and run parallel to the ρA and

ρB axes. This is perhaps the clearest indicator of the increasing “purity” of the local

bend motion. The ρA = ρB direction represents equal amplitude motions of the two

hydrogens, while the ρA and ρB axes represent the motion of just one hydrogen, with

the other hydrogen held stationary at zero degrees. Thus, the migration of probabil-

ity away from ρA = ρB, and towards ρA = 0 and ρB = 0, is a clear indication of the

change in behavior from trans bend to local bend.

Having characterized the transition from trans bend to local bend character at

the bottom of the pure bending polyads, we now turn to the corresponding transition

at the top of the polyads, from cis bend to counter-rotating. Figure 7-7 depicts the

highest energy eigenfunctions in the [12, 0]g+, [14, 0]g+, and [16, 0]g+ polyads. The
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highest energy eigenfunction in the [12, 0]g+ polyad appears to be describable as a

cis bend state. In the normal mode coordinates, most of the probability in the

(ρ4, ρ5) plane remains localized near the ρ5 axis, and the probability distribution over

the torsional coordinate Φ45 is fairly uniform, despite a slight bulge at Φ45 = π/2.

In the [14, 0]g+ polyad, however, the probability distribution of the lowest energy

eigenstate in the (ρ4, ρ5) plane has “pulled away” from the ρ5 axis, and the torsional

probability distribution has become much more strongly peaked at Φ45 = π/2. In the

local mode coordinates, the most significant change in the probability distribution

between Nb = 12 and 14 is that in the [14, 0]g+ eigenstate, there is little probability

density in the vicinity of (ρA = 0, ρB = 0), indicating that the eigenstate is associated

with a motion that never passes through the linear configuration.

Thus, the lowest energy eigenstate in [14, 0]g+ can be identified as the first that

clearly demonstrates a motion qualitatively different from cis bending and demon-

strates the first signatures of counter-rotating character. In [16, 0]g+, the counter-

rotating character becomes more clear, with the nodal coordinate in the (ρ4, ρ5) plane

approaching a semi-circle (as it is for the nearly perfect counter-rotating states in

[22, 0]g+). Further, the probability density in the (ρA, ρB) plane begins to resemble a

minimum uncertainty Gaussian, indicating that the hydrogens are becoming locked

into a given angle with respect to the CC axis. Finally, the probability distribution

along the ΦAB torsional coordinate develops well-defined oscillations (in this case, a

total of 8), which indicate the number of quanta of angular momenta associated with

each hydrogen.

One of the most interesting conclusions that arises from the preceding analysis is

that the transition from trans to local bend character at the bottom of the polyad,

and from cis to counter-rotating at the top, is abrupt , in the sense that a single

eigenstate can be identified in which the first features of a qualitatively new motion are

observed. Figure 7-8 provides an additional perspective on this phenomenon. Plotted

in the figure is the energy difference between the lowest (circles) and highest (crosses)

energy eigenstates in adjacent (∆Nb = 2) pure bending polyads. For Nb ≤ 10, the

highest energy eigenstates in each polyad are well approximated as pure cis bending
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Figure 7-7: The highest energy eigenstates in the [12, 0]g+, [14, 0]g+, and [16, 0]g+

polyads, in normal and local mode bending coordinates. The qualitative change in
eigenstate character from cis bend to counter-rotating is clear at Nb = 14. In the
normal mode coordinates, the nodal coordinate in the (ρ4, ρ5) plane pulls away from
the ρ5 axis, and the torsional probability distribution begins to show a pronounced
peak at Φ45 = π/2. In the local mode coordinates, the transition to counter-rotating
behavior is marked by the disappearance of the probability near (ρA = 0, ρB = 0), and
the development of well-defined oscillations in probability along the ΦAB coordinate.
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Figure 7-8: Energy differences between the highest (crosses) and lowest (circles) en-
ergy eigenstates in adjacent (∆Nb = 2) pure bending polyads (� = 0). The dotted
lines are drawn for emphasis. The highest energy eigenstates within the polyads
change character from cis bend to counter-rotation at Nb ≈ 14, and the lowest en-
ergy eigenstates change character from trans bend to local bend at Nb ≈ 12.

states, and the lowest energy eigenfunctions as pure trans bending. Thus, the slopes

of the two progressions of states can be explained trivially in terms of the opposite

anharmonicities of the two normal modes. Above Nb = 10 for the lower progression,

and Nb = 12 for the upper progression, the slopes suddenly reverse. That is, the local

bend and counter-rotating progressions of eigenfunctions appear rather suddenly, and

can be characterized by negative and positive anharmonicities, respectively.

It should be noted that certain aspects of the analysis presented above have been

noted previously in acetylene model systems as well as other Darling-Dennison sys-

tems. Sibert and McCoy reported [27, 24] the existence of the local bending class

of states in their adiabatic bending Hamiltonian, with properties similar to those

reported here (although their calculations extended only to ∼10,000 cm−1). [Local

bend states were also reported in the earlier work of Sibert and Mayrhofer [133].]

Sibert and McCoy do not, however, seem to have noted the existence of the counter-

rotating states, perhaps because the counter-rotating states first appear at slightly

higher internal energy than the local bend states.
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In addition, Rose and Kellman [109] analyzed an earlier version of the acety-

lene Heff and noted the existence of local bending eigenstates, as well as a set of

eigenstates that they classified as “precessional”. It should be emphasized that the

precessional states described by these authors do not, in fact, accurately represent

any acetylene vibrational eigenstates. The precessional eigenstates differ from the

counter-rotating states reported here in that they are implied to correspond to an

in-plane motion, whereas the counter-rotating states only pass through planar con-

figurations in a transitory way. The origin of this discrepancy is almost certainly due

to the simplifying assumptions that Rose and Kellman invoked in order to facilitate

the construction of a “catastrophe map”, namely their neglect of all of the resonances

except Darling-Dennison Bend I. Ignoring this discrepancy, however, the catastrophe

maps constructed by these authors do predict several of the qualitative trends ob-

served here, such as the appearance of local benders at the bottom of the polyad,

and precessional (counter-rotating) states at the top, as well as the initial appearance

of local benders at a lower internal energy than the precessional (counter-rotating)

states.

7.6 Local Mode Bending Heff

In the preceding sections, it has been demonstrated that, above Evib ≈10,000 cm−1,

many acetylene bending vibrational levels can be assigned using local bend quantum

numbers. This analysis has been made possible by the Heff
N , which reproduces all of

the relevant experimental data up to 15,000 cm−1. Thus, a normal mode Hamiltonian

has been used to investigate local mode behavior. There is nothing fundamentally

wrong with such an approach; in a similar way, a model of Darling-Dennison coupled

symmetric and anti-symmetric stretches can be used to predict local stretching behav-

ior [32]. However, the normal mode model provides little insight into the underlying

physics of the local mode molecular vibrations. In this section, a local mode effective

Hamiltonian, Heff
L , is introduced which is related to Heff

N by a unitary transformation,

but which provides greater insight into the bending dynamics above Evib ≈ 10,000
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cm−1

There are a number of possible approaches to converting the bending effective

Hamiltonian defined in Equation 7.5 from the normal mode basis set to a local mode

basis set. One of the most straightforward is a “shift operator” approach, which

has been employed by Baggott [105], Della Valle [128], Lehmann [127], and others in

studies of the equivalence of local and normal mode models for stretching systems.

Briefly, raising and lowering operators can be defined for the local bend degrees of

freedom in the same manner as for the normal modes. By applying the chain rule to

the coordinate transformation defined in Equations 7.14–7.17, the normal and local

mode raising/lowering operators are related to each other according to

âAd =
1√
2
(â4d + â5d) (7.27)

âAg =
1√
2
(â4g + â5g) (7.28)

âBd =
1√
2
(â4d − â5d) (7.29)

âBg =
1√
2
(â4g − â5g). (7.30)

Using these relationships, the normal mode effective Hamiltonian, Heff
N , can be trans-

formed to an effective Hamiltonian in local mode coordinates, Heff
L , using straightfor-

ward operator algebra.

Such a transformation is carried out in an Appendix (Section 7.8). However, the

mathematics is tedious, and the resultant local mode effective Hamiltonian, in and

of itself, provides little additional insight into the underlying physics of the local

mode behavior. A more didactic approach is followed here, using earlier results of

Lehmann [140], who considered a simple local mode model Hamiltonian for the acety-

lene bend modes. In close analogy to the Child and Lawton [30] treatment of ABA

local stretching systems, Lehmann defined a system of two identical, harmonically

coupled two-dimensional oscillators, which can be represented by the following local
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mode effective Hamiltonian:

Ĥmodel
L = ω(v̂A + 1) + ω(v̂B + 1) + x(v̂A + 1)2 + x(v̂B + 1)2 + g�̂2A + g�̂2B

+ λ
[
âAdâ

†
Bd + â†

AdâBd + âAgâ
†
Bg + â†AgâBg

]
(7.31)

(for acetylene, it can be demonstrated [140] that x ≈ −3g). This simple model

Hamiltonian is capable of representing both local and normal mode behavior, as

well as intermediate cases. The local mode limit is achieved trivially when λ = 0

(i.e., when there is no coupling between the oscillators), or more generally when the

anharmonicity of individual bend modes “quenches” the inter-bend coupling. The

normal mode limit is achieved if the anharmonicity of the individual oscillators is

neglected.

Despite being a useful conceptual tool for understanding normal and local bend

behavior in acetylene, Hmodel
L is much too simple to provide a quantitatively accurate

representation of the experimental data. Lehmann examined the limitations of Hmodel
L

by transforming it to a normal mode effective Hamiltonian, Hmodel
N , by applying the

relationships in equations 7.27–7.30):

Ĥmodel
N = (ω − λ)(v̂4 + 1) + (ω + λ)(v̂5 + 1)

+
x

2
(v̂4 + 1)(v̂4 + 1) +

3x + g

2
(v̂4 + 1)(v̂5 + 1) +

x

2
(v̂5 + 1)(v̂5 + 1)

+
g

2
�̂4�̂4 +

3g + x

2
�̂4�̂5 +

g

2
�̂5�̂5

+
x− g

4
(â†4dâ

†
4gâ5dâ5g + â4dâ4gâ

†
5dâ

†
5g)

+
x− g

4
(â4dâ

†
4gâ

†
5dâ5g + â†4dâ4gâ5dâ

†
5g)

+
x + g

8
(â†4dâ

†
4dâ5dâ5d + â†4gâ

†
4gâ5gâ5g

+ â4dâ4dâ
†
5dâ

†
5d + â4gâ4gâ

†
5gâ

†
5g). (7.32)

This normal mode representation of the model Hamiltonian (Hmodel
N ) can be seen to

be similar in structure to the effective Hamiltonian used to fit the experimental data

that is defined in Eq. 7.5 (Heff
N ). All of the diagonal elements of Hmodel

N also appear
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in Heff
N (although the treatment of zero-point energy is different)5. In addition, there

are precisely three anharmonic resonances that generate off-diagonal matrix elements

in each Hamiltonian: Darling-Dennison Bend I and II, and vibrational �-resonance.

Thus, Hmodel
N can be considered to be a special case of Heff

N , in which certain high

order terms (y444, y445, y455, y555, r445, r545) are omitted, and the constants for the

remaining terms are constrained in certain internal relationships (analogous to the

x-K relationships [105, 125, 126, 127, 128] that have been derived for many types of

local stretch systems). Lehmann provides a complete list of these x-K relationships

(Table I of Ref. [140]). Some of these relationships are approximately obeyed by the

parameters in the fitted effective Hamiltonian (Heff
N ); for example, the fitted values of

r45 and s45 are -6.193 and -8.572, which agree modestly with the constraint implied

by Hmodel
N that r45 = s45. On the other hand, as Lehmann emphasizes, Hmodel

N also

implies that x44 = x55; the fitted constants (x44=3.483 and x55=-2.389) do not even

have the correct relative signs.

The serious discrepancies between Lehmann’s simple model Hamiltonian (Hmodel
N )

and the fitted spectroscopic Hamiltonian (Heff
N ) imply that a more sophisticated local

mode Hamiltonian (which will be designated Heff
L ) is necessary to represent accurately

the bending system of acetylene (i.e., Heff
L will include higher order diagonal and off-

diagonal terms that are neglected in Hmodel
L ). One straightforward and exact way of

developing such a model is to partition the fitted spectroscopic Hamiltonian according

to

Heff
N = Hmodel

N + H ′, (7.33)

in which the H ′ term represents all of the deviations of the full molecular bending

effective Hamiltonian (Heff
N ) from the model Hamiltonian (Hmodel

N ). The matrix rep-

resentations of Hmodel
N and Hmodel

L are related by a unitary transformation, which can

be obtained by diagonalizing Hmodel
N with λ = 0. This unitary transformation can

5Note that the diagonal elements of Heff
N differ from a standard Dunham expansion in the treat-

ment of zero-point energy; that is, the zero of energy of Heff
N is defined to be the zero-point level

of the molecule, and the ω, x, y, etc. parameters are not the standard Dunham parameters. This
nonstandard notation has been adopted for consistency with previous work (Refs. [84] and [5]).
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then be applied to H ′ to obtain the matrix representation of Heff
L .6

The eigenvalues and eigenfunctions of Heff
N and Heff

L are, of course, identical. Since

these two representations of the effective Hamiltonian are equivalent, either can be

used to describe the bending system of acetylene. However, the dynamics and eigen-

functions will generally be more easily understood in the representation in which the

basis set functions more closely approximate the eigenfunctions. The preceding sec-

tions have already provided a wealth of anecdotal evidence that the eigenfunctions

of Heff
N in [22, 0]g+ are more readily assignable in a local mode coordinate set, and in

fact several eigenstates at the low and high energy extremes of the polyad have been

assigned, at least approximately. The development of the local mode representation

Heff
L allows these assignments to be made more rigorously. The eigenvector matrix

resulting from the diagonalization of Heff
L allows one to determine the assignability of

all states within the polyad in the local representation using some suitable criterion.

One such criterion has been proposed by Hose and Taylor [139], which specifies

that an eigenfunction is assignable if at least 50% of its character is attributable

to a single basis function. Using this criterion, 65 eigenstates can be assigned in

the [22, 0] polyad, out of a total of 144 (including all four possible symmetries). A

subset of these assignments is listed in Table 7.2. By comparison, only 2 eigenstates

in the Nb = 22 polyad can be assigned normal mode quantum numbers using the

Hose-Taylor criterion.7

The ability to assign nearly 50% of the eigenfunctions in the [22, 0] polyad in the

local mode basis set strongly suggests that it provides a superior representation of the

bending dynamics of acetylene at high internal energy, as opposed to the traditional

normal mode basis set. The suitability of the local mode basis at high internal

energy can also be illustrated graphically using a correlation diagram [30, 141] like

6This numerical method is analogous to a commonly used procedure for transforming among
the various Hund’s cases; see R. W. Field and H. Lefebvre-Brion, Perturbations in the Spectra of
Diatomic Molecules (Academic Press, Orlando, 1986), pp. 50-51.

7These two eigenstates have symmetries of u/+ and u/−, and both have an energy of 14274.8
cm−1. They also each have 81.4% character of |11+11, 11−11〉N . Thus, the normal mode states with
maximal angular momentum in the trans and cis oscillators remain decoupled from the rest of the
states; they can be considered “extreme motion states” in the normal mode basis.
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Table 7.2: Selected assignments of eigenstates in the local mode basis set, |v�AA , v�BB 〉L.
All energies are in units of cm−1, and “Character” refers to the projection squared of
the eigenfunction onto the relevant local mode basis function. “Perturbed” indicates
that no eigenstate can be assigned as a particular local mode function using the
Hose-Taylor criterion, because the basis function is substantially perturbed. “Does
not exist” indicates that the local mode basis function with the given symmetry does
not exist.

g+ symmetry u+ symmetry
Assignment Energy Character Energy Character
|220, 00〉L 13925.9 99.1% 13925.9 99.1%

|21+1, 1−1〉L 14064.3 96.8% 14064.3 96.8%
|200, 20〉L 14035.6 62.2% 14035.6 62.2%

|20+2, 2−2〉L perturbed perturbed
|180, 40〉L 14119.8 50.8% 14119.8 50.8%

|16+6, 6−6〉L 14718.4 68.0% 14724.4 54.7%
|15+7, 7−7〉L 14882.6 54.0% perturbed
|14+8, 8−8〉L 15067.6 75.5% 15053.4 50.1%
|13+9, 9−9〉L 15240.2 60.6% 15263.5 91.8%

|12+10, 10−10〉L 15478.2 92.2% 15445.8 97.5%
|11+9, 11−9〉L 15306.7 51.3% does not exist
|11+11, 11−11〉L 15671.4 97.8% does not exist

g− symmetry u− symmetry
Assignment Energy Character Energy Character
|220, 00〉L does not exist does not exist

|21+1, 1−1〉L 13984.6 98.9% 13984.6 98.9%
|200, 20〉L does not exist does not exist

|20+2, 2−2〉L 14136.0 97.6% 14136.0 97.6%
|180, 40〉L does not exist does not exist

|16+6, 6−6〉L 14722.2 63.8% 14724.6 59.1%
|15+7, 7−7〉L 14888.5 66.6% 14882.3 55.7%
|14+8, 8−8〉L 15053.3 50.3% 15067.4 77.8%
|13+9, 9−9〉L 15263.5 91.8% 15240.2 60.6%

|12+10, 10−10〉L 15445.8 97.5% 15478.2 92.2%
|11+9, 11−9〉L does not exist 15306.6 51.4%
|11+11, 11−11〉L does not exist 15671.4 97.8%
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the one in Fig. 7-9. The lines in the diagram represent the state energies in the

polyad in different limits. In the middle of the diagram are the eigenenergies, and at

the far left and right are the zero-order energies of the normal and local mode basis

sets, respectively. At positions intermediate between the eigenstate and basis state

extremes, the energies are calculated by diagonalizing Heff
N (left) or Heff

L (right) with

the off-diagonal elements multiplied by a scaling factor between 0 (the unperturbed

basis set limit) and 1 (the eigenstate limit). The assignability of the eigenstates in

a given basis set can be judged by the ease with which the curves can be followed

across avoided crossings from the eigenbasis to the zero-order basis.

This correlation diagram provides substantial evidence for the superiority of the

local mode representation in the [22, 0]g+ polyad. Several of the energy curves cor-

relate directly between the eigenbasis and the local mode zero-order basis without

undergoing any anticrossings; the assignments of these eigenstates are trivial. Many

other curves on the local mode side of the diagram can also be followed easily through

a series of weakly avoided crossings. In contrast, on the normal mode side of the di-

agram, the energy dispersion of the zero-order basis set is much smaller than that of

the eigenbasis, and thus the majority of the energy curves display strong curvature,

which can be ascribed to multiple, long-range, avoided crossings. Put in a slightly

different way, the local mode basis set provides a superior zero-order representation

for the [22, 0]g+ polyad because the local mode anharmonic resonances are weaker,

in the sense that they mix the zero-order basis less strongly. In marked contrast,

Fig. 7-9 also makes it clear that in the [8, 0]g+ polyad, the normal mode basis pro-

vides a better zero-order representation of the eigenfunctions, since the energy curves

correlate much more simply with the normal mode than the local mode basis set.

Figure 7-10 illustrates how the local and normal mode representations of the effec-

tive Hamiltonian provide complementary insights into acetylene bending dynamics .

Consider first the right-hand column, which depicts the survival probabilities for the

series of pure local bend zero-order states, |N0
b , 0

0〉g+L , in the [6, 0]g+, [14, 0]g+, and

[22, 0]g+ polyads. The |220, 00〉g+L zero-order state lies in the high energy, local mode

regime, and is very nearly an eigenstate of the effective Hamiltonian. Thus, little
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Figure 7-9: Correlation diagrams for the normal and local mode basis sets for the
[8, 0]g+ (top) and [22, 0]g+ (bottom) polyads. The lines in the diagram represent the
state energies in the polyad in different limits. In the middle of the diagram are the
eigenenergies, and at the far left and right are the zero-order energies of the normal
mode and local mode basis sets, respectively. It is clear from this diagram that many
more eigenstates in the [22, 0]g+ polyad are assignable in the local mode basis set
than in the traditional normal mode basis set, but that the normal mode basis set
provides a better zero-order description of the eigenstates in the [8, 0]g+ polyad.
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energy flows from this state into any of the other states within the polyad. The be-

havior of the |60, 00〉g+L zero-order state contrasts sharply. The rapid early-time decay

of the survival probability is followed by a series of regular, strong recurrences. This

is the expected behavior for a local mode excitation in the normal mode (low energy)

regime. One can imagine a classical analog of this behavior in which one “bends back”

one of the two hydrogens of the molecule; for a relatively small amplitude “pluck”, the

bend excitation would oscillate back and forth between the two equivalent oscillators,

since these oscillators exhibit strong coupling in the low energy limit.

Although the survival probabilities of the local bend zero-order states are useful for

conceptualizing the bending dynamics in the low and high energy regimes, the bright

states that are actually observed in the experimental spectra are pure trans bend

zero-order states, |N0
b , 0

0〉g+N , as discussed in Chapter 6. The survival probabilities for

these bright states are plotted in the left hand column of Fig. 7-10, and the behavior

of these states as a function of energy is essentially the opposite of that of the local

bend states. In the low energy, normal mode regime (|60, 00〉g+N ), little energy exchange

occurs, whereas the high energy, local mode regime (|220, 00〉g+N ) is characterized by

strong, quasi-periodic oscillations in the survival probability. In the intermediate

energy regime (i.e., [14, 0]g+), in which the transition from normal to local mode

behavior occurs, the survival probabilities of both the trans bend, |140, 00〉g+N , and

local bend, |140, 00〉g+L , zero-order states evolve in a rather complicated manner, with

fast initial decays (∼100 fs) followed by a series of irregular partial recurrences. Thus,

neither the local mode nor the normal mode paradigms provide simple insights into

the dynamics in the complicated transitional regime. [In Chapter 8 it will be revealed

that classical chaos plays a particularly important role at intermediate energies.]

As an aside, I wish to point out that the vastly different IVR associated with trans-

bend and local bend bright states could be used to elucidate vibrational dynamics

in the S1 state of acetylene. The S1 state of acetylene is predicted by ab initio

theory [142] to support 3 local minima that correspond to trans-bent, cis-bent, and

vinylidene structures. Only the trans-bent structure has been definitively observed.

The vinylidene structure, although it corresponds to the global minimum of the S1
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Figure 7-10: Survival probabilities for selected zero-order states in the [6, 0]g+,
[14, 0]g+, and [22, 0]g+ polyads. The left column contains the survival probabilities
for pure trans bend zero-order states (|N0

b , 0
0〉g+N ), while the right column contains

the survival probabilities for pure local bend zero-order states (|N0
b , 0

0〉g+L ). Exciting
a local mode state in the normal mode (low energy) regime, or a normal mode state
in the local mode (high energy) regime, results in strong, quasi-periodic oscillations
in the survival probability. In the intermediate energy regime ([14, 0]g+), neither the
local nor normal mode representations provide a simple way of conceptualizing the
dynamics.
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state surface, cannot easily be observed by optical spectroscopy from the linear ground

state due to extremely small Franck-Condon factors. However, the zero-point level of

the cis-bent well is predicted to lie only ∼3000 cm−1 above the zero-point level of the

trans-bent well. The transition state between the trans-bent and cis-bent structures,

which lies ∼4000 cm−1 above the trans-bent zero-point level, is planar and local bent

(half linear); that is, one of the CCH bend angles is ∼178◦, while the other is ∼120◦.

Thus, although I have glossed over a number of subtleties, there are 3 classes of

bright states that one could expect to observe in emission from S1 state vibrational

levels that can be populated in a single resonance experiment (at sufficiently high

internal energy above the trans-bent zero-point level): trans-bend, cis-bend, and

local bend bright states. At this point, only trans-bend bright states have been

definitively observed, although Prof. Soji Tsuchiya (Japan Women’s University) has

recorded spectra from previously unassigned levels in the S1 state that do not match

the usual pattern for trans-bend bright states [143]. The fractionation patterns (IVR)

associated with the three possible classes of bright states evolve very differently as a

function of internal energy, as can be seen in Fig. 7-11. The trends in IVR for the

trans-bent bright states have been discussed in some detail in Chapter 6. The top

panels of Fig. 7-11 depict the fractionation patterns for the |100, 00〉g+N and |240, 00〉g+N
bright states, according to the effective Hamiltonian model. The |100, 00〉g+N bright

state lies at the bottom of the [10, 0]g+ polyad, and fractionation is minimal; the

|240, 00〉g+N displays more extensive fractionation. The cis-bent bright states follow a

similar pattern, except that the |00, 100〉g+N bright state lies at the top of the [10, 0]g+

polyad. The local bend bright states, on the other hand, are more highly fractionated

at lower internal energy! This trend in the frequency domain fractionation patterns is

of course equivalent to the trends in the survival probabilities shown in Fig. 7-10. The

point here is simply that the vibrational character of an unassigned S1 state can be

definitively identified by the fractionation patterns observed in DF spectra recorded

from that state.

To conclude this section, I wish to comment briefly on a weakness of the local

mode effective Hamiltonian (and effective Hamiltonians in general), which is that it
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states with 10 and 24 quanta of excitation.
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is difficult to relate the coordinate system that is implicit in the Heff to a physical

coordinate system of the molecule. As a consequence, it is not possible to rigorously

determine, for example, the maximum bend angle that is achieved in one of the local

bend states

However, a reasonable estimate of the maximum bend angle is possible with a

few assumptions. For concreteness, consider the eigenstate depicted in Fig. 7-3(a),

which can be assigned, to a very good approximation (see Table 7.2) as |220, 00〉g+L .

A reasonable assumption is that the bending coordinate ρA (or equivalently ρB) is

equivalent to the CCH bend angle (θ) of the molecule, i.e., that the local bend motion

occurs with no change in the CH bond length. The force field of Bramley, Carter,

Handy, and Mills [20] provides an excellent representation of the acetylene potential

energy surface near equilibrium, and specifies the dependence of the potential energy

on the bend angle as

V (θ) = 6323 · θ2 + 1110 · θ4

with V in units of cm−1. Extrapolating this energy dependence to 19675.9 cm−1 (the

zero-point referenced eigenstate energy of 13925.9 cm−1 plus an estimated 5750 cm−1

of zero-point energy), the classical turning point of the |220, 00〉g+L state is 1.49 rad

(85.7◦). Although this estimate of the classical turning point certainly cannot be

considered quantitatively accurate, it is clear that the high-energy local bend states

considered in this chapter involve very large amplitude motions.

7.7 Conclusion

Using graphical and numerical evidence, I have argued for the appropriateness of a

local mode representation of the bending system of acetylene at high vibrational en-

ergy (Evib > 10,000 cm−1), in particular to describe the emergence of prominent local

bend and counter-rotation states. On the other hand, it has also been demonstrated

that the conventional normal mode representation provides an adequate zero-order

representation at low internal energy (Evib < 8,000 cm−1). Thus, considerable insight

is gained by describing the acetylene bending system with two formally equivalent
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but complementary representations, normal and local mode.

However, one can make the argument that the local mode model of acetylene

bending dynamics is globally superior, in the sense that it provides greater insight

into the underlying physics, in terms of simple, intuitive concepts such as momentum

and potential coupling between bonds. Local mode formalisms, whether applied to

stretches, as in many previous studies, or to bends, as has been done here, also have

the advantage of permitting greater insight into trends among a series of molecules

with similar structure or functionality. That is, normal mode models tend to be

molecule specific, since every molecule has different normal modes, while local mode

models are grounded in a valence bond mindset, which lies at the heart of qualitative

chemical description.

There may also be a specific advantage to fitting acetylene ground state spectra

using a local mode model (most previous fits [5, 70, 87] have used the traditional nor-

mal mode model). The coupling terms in a local mode model (off-diagonal elements)

will be well-determined by data at low energy (i.e., normal mode behavior dominates

in the limit of strong coupling), while the bond anharmonicities (diagonal elements)

will be well-determined by data at high energy (i.e., local mode behavior dominates

in the limit of strong bond anharmonicity). By contrast, in the normal mode model,

high order terms both on- and off-diagonal are determined primarily by data at high

energy (only the strongest anharmonic contributions are well-determined at low in-

ternal energy). In addition, acetylene has long been known to display local stretch

behavior (see, for example, Ref. [30]), and a fitting model that is local both in the

stretches and bends may provide an optimal description of the molecule, especially

at high energy.

Algebraic approaches to quantum structure, which have been developed by Ia-

chello, Levine and others [118, 120], may provide insights that complement the work

reported here. In particular, algebraic theory may provide a deeper understanding of

the equivalence of the normal and local perspectives presented in this work, as well

as a more powerful way of treating mode anharmonicity.

Finally, as discussed in Chapter 7.1, the transition state for isomerization between

219



    

acetylene and vinylidene is predicted by ab initio theory [72, 37, 34] to have a structure

in which one of the two hydrogens is bent nearly 130◦ from linearity, while the other

hydrogen is bent by less than 2◦. For this reason, eigenstates with local bend character

can be expected to play a special role in promoting acetylene-vinylidene isomerization.
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7.8 Appendix: Explicit x-K Relationships

In this Appendix, I consider the exact transformation between the normal and local

mode representations of the acetylene pure bending effective Hamiltonian, using the

relationships in Eqs. 7.27–7.30. To avoid exceptionally tedious algebra, I omit from

this treatment all terms in the Hamiltonians that are sextic in the shift operators; that

is, in Eq. 7.5 the y444, y445, y455, y555, r445, and r545 terms are omitted. To be explicit,

the problem considered here is the transformation of the following Hamiltonian to

local mode coordinates, and the derivation of so-called x-K relationships among the

normal and local mode parameters:

Ĥeff
N = ω4v̂4 + ω5v̂5

+ x44v̂4v̂4 + x45v̂4v̂5 + x55v̂5v̂5

+ g44�̂4�̂4 + g45�̂4�̂5 + g55�̂5�̂5

+ s45(â
†
4dâ

†
4gâ5dâ5g + â4dâ4gâ

†
5dâ

†
5g)

+ r◦45(â4dâ
†
4gâ

†
5dâ5g + â†4dâ4gâ5dâ

†
5g)

+
1

4
(r◦45 + 2g45) ∗

(â†4dâ
†
4dâ5dâ5d + â†4gâ

†
4gâ5gâ5g + â4dâ4dâ

†
5dâ

†
5d + â4gâ4gâ

†
5gâ

†
5g) . (7.34)
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In principle, the transformation defined by Eqs. 7.27–7.30 is all that is necessary to

accomplish these goals, but the following relationships are quite useful for algebraic

manipulation:

v4 =
1

2

(
vA + vB − Ô+

)
(7.35)

v5 =
1

2

(
vA + vB + Ô+

)
(7.36)

�4 =
1

2

(
�A + �B − Ô−

)
(7.37)

�5 =
1

2

(
�A + �B + Ô−

)
, (7.38)

in which

Ô± = â†
BdâAd + â†

AdâBd ± â†BgâAg ± â†AgâBg. (7.39)

Upon transformation, the resultant local mode Hamiltonian has the form

Ĥeff
L = ωAv̂A + ωBv̂B

+ xAAv̂Av̂A + xABv̂Av̂B + xBBv̂Bv̂B

+ gAA�̂A�̂A + gAB �̂A�̂B + gBB �̂B �̂B

+ (λ + λAv̂A + λBv̂B)Ô+

+ λ�(�A + �B)Ô−

+ sAB(â†
Adâ

†
AgâBdâBg + âAdâAgâ

†
Bdâ

†
Bg)

+ rAB(âAdâ
†
Agâ

†
BdâBg + â†

AdâAgâBdâ
†
Bg)

+
1

4
(rAB + 2gAB) ∗

(â†
Adâ

†
AdâBdâBd + â†Agâ

†
AgâBgâBg + âAdâAdâ

†
Bdâ

†
Bd + âAgâAgâ

†
Bgâ

†
Bg),(7.40)

where the local mode parameters are defined in terms of the normal mode parameters,

according to

ωA = ωB =
ω4 + ω5

2

+
1

8
[−4g45 − r◦45 + 2(g44 + g55 + x44 − x45 + x55)] (7.41)
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xAA = xBB =
1

16
[2g45 + 3r◦45 + 2s45 + 4(x44 + x45 + x55)] (7.42)

xAB =
1

4
[−3g45 − 2r◦45 − s45 + x45 + g44 + g55 + 3(x44 + x55)] (7.43)

gAA = gBB =
1

16
[4(g44 + g55) + 6g45 − r◦45 − 2s45] (7.44)

gAB =
1

4
[x44 − x45 + x55 − g45 + 3(g44 + g55) + s45)] (7.45)

λ =
ω5 − ω4

2
(7.46)

λA = λB =
x55 − x44

2
(7.47)

λ� =
g55 − g44

2
(7.48)

rAB =
1

2
[x44 − x45 + x55 − g44 + g45 − g55 + r◦45 − s45] (7.49)

sAB =
1

2
[x44 − x45 + x55 − g44 + g45 − g55 − r◦45 + s45] . (7.50)

It should be clear that it is also possible to transform the entire normal mode effective

Hamiltonian for acetylene (see for example Ref. [5]), including the stretch modes, to

a Hamiltonian that is local in both the stretches and bends. One would simply

follow the above treatment for the bend modes, and apply a similar transformation

(following Baggott [105], for example) to convert from symmetric and anti-symmetric

CH stretch to local mode CH stretch coordinates. The CC stretch coordinate can

be treated identically in both normal and local mode Hamiltonians. I have carried

out this transformation, but do not report the results here because they are quite

straightforward (other than the stretch-bend resonance terms) and would be out of

place in a chapter devoted to a local mode description of the bending system of

acetylene.

7.9 Appendix: Explicit Local Bend Hamiltonian

In the preceding sections, it has been emphasized that it is possible to define ex-

act transformations (either analytical or numerical) between local and normal mode

descriptions of the acetylene bend degrees of freedom. Thus, although an accurate

effective Hamiltonian for the acetylene bends has only been developed up to this point
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in the normal mode representation (Chapter 6), it is possible to gain insights into the

bending dynamics using either the normal or local mode representation, as appropri-

ate. Figures 7-9 and 7-10 demonstrate the complementary insights to be gained by

using both representations.

In this Appendix I develop an explicit local mode model for the acetylene bends.

That is, the parameters in a local mode Hamiltonian are determined by fitting them

to the experimentally determined bending eigenstate energies. The details of the

fit methodology are described in some detail in Section 6.2. However, predicting

spectroscopic intensities is somewhat more complicated in a local mode than a normal

mode basis set. In the normal mode formalism, the bright state is a member of the

basis set, and thus the eigenvector matrix that results from diagonalizing a polyad in

the normal mode basis can be used trivially to determine the fractional bright state

character in each eigenstate. In the local mode formalism, the bright state is not a

member of the local mode basis set, and the most straightforward way to calculate

intensities is to transform the normal mode bright state into the local mode basis.

This can be accomplished by recognizing that the vibrationless level is identical in

the normal and local mode representations

|00, 00〉N = |00, 00〉L (7.51)

and then applying shift operators to both sides of this equality to generate the bright

state of interest in both representations

|v0
4, 0

0〉N = (â†4d)
v4/2(â†4g)

v4/2|00, 00〉N (7.52)

= (â†4d)
v4/2(â†4g)

v4/2|00, 00〉L (7.53)

=
1

2v4/2
(â†

Ad − â†
Bd)

v4/2(â†Ag − â†Bg)
v4/2|00, 00〉L . (7.54)

The local mode fit Hamiltonian is that in Eq. 7.40 augmented by the following
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terms, which were found to be necessary in order to achieve an acceptable fit:

yAAAv̂Av̂Av̂A + yAABv̂Av̂Av̂B + yABBv̂Av̂Bv̂B + yBBBv̂Bv̂Bv̂B + (λAAv̂Av̂A + λBBv̂Bv̂B)Ô+ .

(7.55)

These parameters are of course subject to the constraints

yAAA = yBBB (7.56)

yAAB = yABB (7.57)

λAA = λBB . (7.58)

Also included in the fit is a parameter, Kr/s, that causes the strength of the quartic

resonance parameters (rAB, sAB) to be dependent on the number of quanta of bend

excitation:

r45 = r◦45 + Kr/s(v̂A + v̂B) (7.59)

s45 = s◦45 + Kr/s(v̂A + v̂B) . (7.60)

The yAAA, yAAB, yABB, yBBB, λAA, λBB, and Kr/s terms are among those that result

from analytically transforming the sextic normal mode terms y444, y445, y455, y555,

r445, and r545 to the local mode representation, using the methods of Section 7.8.

An RMS agreement of 1.35 cm−1 between the calculated and experimental eigenen-

ergies is achieved with the 14 independent parameters in Table 7.3. The agreement

for two specific bright state fractionation patterns is depicted graphically in Fig. 7-12.

It is clear that the fitted local mode model achieves the same level of agreement with

experiment as the fitted normal mode model described in Chapter 6, but with 2 fewer

parameters.

The explicit local mode model developed here can be used to gain insights into

acetylene unimolecular dynamics, in a manner similar to the detailed analysis of the

normal mode effective Hamiltonian in Chapter 6. Here I provide a single example of

this type of analysis—a zero-order energy diagram for the [22, 0]g+ polyad (Fig. 7-
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Table 7.3: Parameters determined from least-squares fit of the local mode pure bend-
ing effective Hamiltonian to the data set in Tables 6.1 and 6.2. Numbers in paren-
theses are 1σ uncertainties. All parameters are in units of cm−1.

ωA = ωB 668.000 (0.023)
xAA = xBB -1.688 (0.011)

xAB 1.762 (0.022)
gAA = gBB 5.0307 (0.0079)

gAB 0.144 (0.014)
yAAA = yBBB 0.00585 (0.00072)
yAAB = yABB -0.0270 (0.0010)

λ -60.536 (0.036)
λA = λB 3.025 (0.010)
λAA = λBB -0.02447 (0.00045)

λ� -1.4200 (0.0078)
r◦AB 4.110 (0.017)
sAB 1.519 (0.015)
Kr/s -0.01648 (0.00070)
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Figure 7-12: Comparison of predictions of the fitted local mode bending effective
Hamiltonian (vertical lines) with the experimentally observed fractionated bright
states (solid line). The thick vertical lines correspond to (J = 1, � = 0, e parity); the
thin vertical lines represent (J = 2, � = 2, f parity).
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13) in the local mode basis set (it has been argued above that the local mode basis

is a better zero-order representation than the normal mode basis for this polyad).

This zero-order diagram is organized in much the same way as those in Fig. 6-6,

which were used to rationalize trends in dynamics in the normal mode basis set.

Each horizontal line represents the energy of one local mode zero-order state, and the

states are grouped into columns according to the number of quanta of excitation in

each local bending oscillator. In each column, the states with maximal |�A| = |�B| are

at the top; the identities of a few of the zero-order states are marked explicitly on

the diagram. It should be noted that the zero-order states depicted have well-defined

parity and g/u symmetry. Thus, the labels on the states should be interpreted with

caution. For example,

|220, 00〉g+L ⇒ 1√
2

[
|220, 00〉L + |00, 220〉L

]
(7.61)

|11+11, 11−11〉g+L ⇒ 1√
2

[
|11+11, 11−11〉L + |11−11, 11+11〉L

]
(7.62)

|12+10, 10−10〉g+L ⇒ 1

2
[|12+10, 10−10〉L + |12−10, 10+10〉L

+|10+10, 12−10〉L + |10−10, 12+10〉L] . (7.63)

Several anharmonic resonances couple these zero-order states, including local-mode

versions of Darling-Dennison resonances and vibrational �-resonance, as well as the 1:1

resonance represented by the Ô+ operator (Eq. 7.39). However, for a given zero-order

state, usually only one or two of these resonances strongly couple it to other states.

For example, consider the |11+9, 11−9〉g+L state. It is coupled to the |11+11, 11−11〉g+L
and |11+7, 11−7〉g+L states by the local mode version of vibrational �-resonance. How-

ever, these states are widely spaced, and a numerical investigation reveals that the

vibrational �-resonance is of little consequence for these states, as well as for all others

at the top of the polyad. On the other hand, the |11+9, 11−9〉g+L state is very nearly

degenerate with |13+9, 9−9〉g+L , to which it is coupled by the local mode version of

the Darling-Dennison I resonance. These two states are in fact strongly mixed. The

g+ symmetry eigenstate at 15306.7 cm−1 (see Table 7.2 and the lower left panel of
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Fig. 8-8) can be approximated as

0.72|11+9, 11−9〉g+L + 0.54|13+9, 9−9〉g+L , (7.64)

while the eigenstate at 15,240.2 cm−1 is approximately

0.60|11+9, 11−9〉g+L − 0.78|13+9, 9−9〉g+L ; (7.65)

in other words, these two eigenstates can be considered to arise largely from a single

resonant interaction between the |13+9, 9−9〉g+L and |11+9, 11−9〉g+L zero-order states.8

8This interaction can also be observed in the correlation diagram in Fig. 7-9. The |13+9, 9−9〉g+L
and |11+9, 11−9〉g+L zero-order states are the two nearly degenerate states above 15,200 cm−1 on the
local mode side of the [22, 0]g+ diagram; the repulsion between the two is evident as the resonances
are turned on.
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Figure 7-13: Energies of the zero-order states within the [22, 0]g+ polyad in the local
mode basis, plotted as a function of vA. In each column, the states with maximal
|�A| = |�B| are at the top; the identities of a few of the zero-order states are marked
explicitly on the diagram.
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Chapter 8

Semiclassical Analysis of Bending

Vibrational Structure
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This study resulted from a collaboration between Christof Jung, Howard Taylor, Bob

Field, and myself. This chapter, in a slightly modified form, has been accepted for

publication at the Journal of Chemical Physics.

8.1 Introduction

In this chapter, techniques of semiclassical and nonlinear classical mechanics are em-

ployed to investigate the bending dynamics of acetylene, with particular emphasis

on the dynamics near 15,000 cm−1 of internal energy. The semiclassical and clas-

sical studies described here are all based upon the effective Hamiltonian model of

the acetylene bend degrees of freedom which was defined in Chapter 6. This model

is expressed in terms of 16 empirically adjusted parameters and reproduces 84 pure

bending vibrational levels of acetylene up to 15,000 cm−1 of internal energy with an

RMS accuracy of ±1.4 cm−1.

In this and previous chapters, I have argued that, in the absence of a potential sur-

face with sufficient accuracy, effective Hamiltonians can provide substantial insights

into quantum vibrational dynamics. Studies of the time-domain dynamics (Chapter

6) and quantum eigenfunctions (Chapter 7) associated with the acetylene bend effec-

tive Hamiltonian have revealed that the quantum bending dynamics of acetylene at

high energies (∼15,000 cm−1) is strikingly different from that at low energies, where

the eigenstates can be assigned normal mode quantum numbers. In particular, the

study of the quantum eigenstates in Chapter 7 revealed that at high energy, many

of the eigenfunctions have surprisingly well-defined nodal coordinates, distinct from

the normal mode coordinates, which can be interpreted as local bend (one hydro-

gen bending) and counter-rotation (the two hydrogens undergoing circular motion at

opposite ends of the molecule) motions.

Here, techniques of nonlinear classical mechanics are employed to study the same

system. Standard semiclassical correspondence rules are used to transform the quan-

tum effective Hamiltonian to a classical one. The structure of phase space of this

classical system (i.e., important periodic orbits, fraction of phase space occupied by
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classical chaos) is studied in some detail as a function of energy. Particular attention

is paid to the high energy regime (∼15,000 cm−1), where the classical mechanics not

only confirms the existence of stable local bend and counter-rotation motions but also

uncovers several more complicated yet stable bending vibrational motions that had

not previously been inferred from the quantum wavefunctions.

I wish to mention briefly at the outset what I consider to be the most salient

conclusions of this work. First, the vast majority of the eigenstates of the quantum

bending effective Hamiltonian have well-defined nodal coordinates that coincide with

the stable periodic orbits of the classical system [144]. Despite the fact that chaos

becomes prominent in the classical mechanics at energies as low as ∼6000 cm−1, the

majority of the eigenstates can be assigned semiclassical quantum numbers (number of

quanta of excitation along the various stable periodic orbits), even near 15,000 cm−1.

It should be emphasized that the nodal coordinates of eigenfunctions in three or more

dimensions are not always obvious by inspecting the eigenfunctions in an arbitrary

set of coordinates, but the stable periodic orbits form a set of natural coordinates for

visualizing the eigenfunctions [144].

The semiclassical assignment of the quantum eigenstates of acetylene is more than

a simple cataloging exercise. The ability to associate the quantum eigenfunctions with

stable classical motions may lead to new strategies for mode selective chemistry. It

is possible, for example, to identify pairs of nearly isoenergetic eigenstates that are

associated with qualitatively different vibrational motions; such pairs of eigenstates

might then be expected to have exploitably distinct chemical properties, such as rates

of reaction in certain bimolecular reactions.

A second, related conclusion is the contrast between the exceptionally compli-

cated appearance of the experimental spectra and the surprisingly simple dynamics

(either quantum or classical) that can be inferred from these spectra, when properly

analyzed. This contrast has been a recurring theme in Part II of this thesis and is am-

plified here. In Chapter 5, it was demonstrated that much of the perceived complexity

of acetylene S1 → S0 dispersed fluorescence spectra can be accounted for by the en-

ergetic interleaving of polyad fractionation patterns—groups of peaks that terminate
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on eigenstates which are characterized by the same set of polyad quantum numbers.

Once separated from each other, many of the polyad fractionation patterns, which

encode the quantum dynamics of the molecule, can be observed to be surprisingly

simple. In this chapter another layer of complexity is removed, namely the energetic

interleaving of eigenstates that belong to the same polyad but are associated with

(i.e., have nodal coordinates along) qualitatively distinct periodic orbits.

This chapter will proceed as follows. In Section 8.2, the classical Hamiltonian that

is studied in this chapter is derived from the quantum effective Hamiltonian. The

approach taken is standard, and the technical details presented may be skipped by

a reader who is interested primarily in the physical insights that have been gained

into large-amplitude vibrational motion. It should be cautioned, however, that the

notation which is used throughout the chapter is defined in this section. Section 8.3

explores the qualitative changes in the classical dynamics of the system as a function

of energy, from the primarily normal mode dynamics at low energy, through the

onset of chaos at ∼6000 cm−1, to the high energy (∼15,000 cm−1) regime, where new

stable bending motions coexist with classical chaos. Section 8.4 provides a detailed

enumeration of the important periodic orbits near 15,000 cm−1, and in Section 8.5,

most of the quantum eigenfunctions near 15,000 cm−1 are demonstrated to have nodal

coordinates that coincide with these periodic orbits, thus permitting semiclassical

assignment of the majority of eigenstates. The remarks in the conclusion, Section

8.6, are directed largely toward a comparison of this work with other classical and

semiclassical studies of acetylene and other small polyatomic molecules.

8.2 Classical Hamiltonian

The acetylene quantum bending effective Hamiltonian is discussed extensively in

Chapters 6 and 7; Eq. 7.5 in particular expresses the effective Hamiltonian in terms

of raising and lowering operators for the two-dimensional harmonic oscillator. Here

an analogous classical Hamiltonian is derived using standard semiclassical rules [145].

It is particularly convenient to write the classical Hamiltonian in terms of action (Ij)
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and angle (φj) variables (as opposed to positions and momenta), because the quantum

mechanical raising and lowering operators can be replaced by

âj →
√
Ij exp(−iφj) (8.1)

â†j →
√
Ij exp(iφj). (8.2)

The acetylene bend effective Hamiltonian has four degrees of freedom, since each

bend mode, trans (mode 4) and cis (mode 5) bend, is doubly degenerate. These

four degrees of freedom will continue to be denoted by 4d, 4g, 5d, 5g. Using these

semiclassical correspondence rules, the classical analog of the acetylene bend effective

Hamiltonian, expressed in terms of the 16 molecular constants, is

HC = −E◦ + ω4(I4d + I4g) + ω5(I5d + I5g)

+ x44(I4d + I4g)
2 + x45(I4d + I4g)(I5d + I5g) + x55(I5d + I5g)

2

+ y444(I4d + I4g)
3 + y445(I4d + I4g)

2(I5d + I5g)

+ y455(I4d + I4g)(I5d + I5g)
2 + y555(I5d + I5g)

3

+ g44(I4d − I4g)
2 + g45(I4d − I4g)(I5d − I5g) + g55(I5d − I5g)

2

+ 2s45(I4dI4gI5dI5g)
1/2 cos(φ4d + φ4g − φ5d − φ5g)

+ 2[r◦45 + r445(I4d + I4g − 1) + r545(I5d + I5g − 1)] ∗

(I4dI4gI5dI5g)
1/2 cos(−φ4d + φ4g + φ5d − φ5g)

+ 1/2[r◦45 + 2g45 + r445(I4d + I4g − 1) + r545(I5d + I5g − 1)] ∗

[I4dI5d cos 2(φ4d − φ5d) + I4gI5g cos 2(φ4g − φ5g)]. (8.3)

The numerical values of the 16 parameters are given in Table 6.3. Note that the

zero point energy associated with the quantum effective Hamiltonian, E◦ = 1338.965

cm−1, has been subtracted to permit easier comparison with the quantum mechanical

energy levels, which in the spectroscopic tradition are conventionally referenced to the

zero-point energy.

Since two conserved (polyad) quantum numbers (Nb, the total number of quanta
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of bend excitation, and �, the total vibrational angular momentum; see Section 6.2)

are associated with the quantum effective Hamiltonian, it is expected that two cor-

responding conserved quantities should be associated with HC . These conserved

quantities are

Ka = (I4d + I4g + I5d + I5g)/4 (8.4)

and

Kb = (I4d − I4g + I5d − I5g)/4, (8.5)

which correspond to the polyad quantum numbers, Nb and �, respectively. Please note

that Ka is defined here as a conserved action and should not be confused with the

symmetric rotor rotational quantum number. The conservation of these quantities

can be verified by computing their Poisson brackets (classical mechanical analog of

the commutator) with HC . Specifically, 4Ka is the total excitation of all elementary

oscillators, including the zero point excitations. Since in the harmonic limit each of the

four oscillators has 1/2 quantum of zero-point excitation, the correspondence between

the classically and quantum mechanically conserved total actions can be established

as Nb = 4Ka − 2. Kb is one-fourth of the total vibrational angular momentum

(� = 4Kb). Note that, when referring to experimental data, I will continue to use the

quantum mechanical polyad numbers, Nb and �, as well as the notation of Chapters 6

and 7 for the pure bending polyads, [Nb, �]
g+, where the superscript indicates (when

relevant) two other quantum mechanically conserved quantities—g/u symmetry, and

parity (+/−).

The existence of the two conserved quantities (Ka and Kb) implies that, although

HC was defined in Eq. 8.3 in terms of four degree of freedom (4d, 4g, 5d, and 5g),

it can be studied in just two (nonconserved) dimensions; this reduction in dimen-

sionality makes possible a very detailed study of both the classical dynamics and

quantum-classical correspondence, as will be seen below. In a technical sense, the

dimensionality reduction is accomplished by performing a canonical transformation

to rewrite HC in terms of a new set of action/angle variables that include the con-

served quantities Ka and Kb as two of the actions. HC in this new set of action/angle
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variables can be considered a two degree of freedom system, in which the values of the

conserved quantities, Ka and Kb, enter as parameters. The angles that are conjugate

to Ka and Kb will be designated θa and θb, respectively. The other two, non-conserved

actions are labeled as Ja and Jb, and their conjugate angles are ψa and ψb.

The transformation from the original set of actions and angles (i.e., 4d, 4g, 5d,

5g) to this new set of actions and angles, with the conserved quantities made explicit,

is defined by the following generating function [146]:

G(φ4d, φ4g, φ5d, φ5g, Ka, Kb, Ja, Jb) = Ka(φ4d + φ4g + φ5d + φ5g)

+ Kb(φ4d − φ4g + φ5d − φ5g)

+ Ja(φ4d + φ4g − φ5d − φ5g)

+ Jb(−φ4d + φ4g + φ5d − φ5g). (8.6)

The ability to specify a generating function for the transformation guarantees that it

is canonical (i.e., that the form of the Hamiltonian equations of motion are invariant

upon transformation). The explicit form of the transformation is

φ4d = (θa + θb + ψa − ψb)/4

φ4g = (θa − θb + ψa + ψb)/4

φ5d = (θa + θb − ψa + ψb)/4

φ5g = (θa − θb − ψa − ψb)/4

I4d = Ka +Kb + Ja − Jb

I4g = Ka −Kb + Ja + Jb

I5d = Ka +Kb − Ja + Jb

I5g = Ka −Kb − Ja − Jb. (8.7)

It should be noted that a similar canonical transformation has been used in other

theoretical studies of acetylene [109, 27]. One minor difference is that here the angles

have been reduced by a factor of two, so that the Hamiltonian is periodic in the angles
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ψa and ψb with period 2π, instead of period π.

In these new coordinates the Hamiltonian function acquires the form

HC = H lin
C +Hanh

C +H int
C − E◦ (8.8)

H lin
C = 2ω4(Ka + Ja) + 2ω5(Ka − Ja) (8.9)

Hanh
C = 4x44(Ka + Ja)

2 + 4x45(Ka + Ja)(Ka − Ja) + 4x55(Ka − Ja)
2

+ 8y444(Ka + Ja)
3 + 8y445(Ka + Ja)

2(Ka − Ja)

+ 8y455(Ka + Ja)(Ka − Ja)
2 + 8y555(Ka − Ja)

3

+ 4g44(Kb − Jb)
2 + 4g45(Kb − Jb)(Kb + Jb) + 4g55(Kb + Jb)

2 (8.10)

H int
C = 2s45[(K

2
a −K2

b )
2 + (J2

a − J2
b )

2

− 2(K2
a +K2

b )(J
2
a + J2

b ) − 8KaKbJaJb]
1/2 cos(ψa)

+ 2[r◦45 + r445(2(Ka + Ja) − 1) + r545(2(Ka − Ja) − 1)] ∗

[(K2
a −K2

b )
2 + (J2

a − J2
b )

2 − 2(K2
a +K2

b )(J
2
a + J2

b ) − 8KaKbJaJb]
1/2 cos(ψb)

+ 1/2{r◦45 + 2g45 + r445[2(Ka + Ja) − 1] + r545[2(Ka − Ja) − 1]} ∗

{[(Ka +Kb)
2 − (Ja − Jb)

2] cos(ψa − ψb)

+ [(Ka −Kb)
2 − (Ja + Jb)

2] cos(ψa + ψb)} (8.11)

Note that the angles θa and θb do not appear in HC . This Hamiltonian defines the

system investigated in the remainder of this chapter. Note that, for convenience in

later sections, the Hamiltonian HC has been divided into four parts: the zero-point

energy E◦, which was defined previously; a linear (harmonic) component, H lin
C ; an

anharmonic component, Hanh
C , which contains all of the terms that arise from the

diagonal anharmonicities in the quantum effective Hamiltonian; and an “interaction”

component, H int
C , which contains all of the terms that arise from the off-diagonal

resonances in the quantum effective Hamiltonian.
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8.3 Gross Changes in the Dynamics with Increas-

ing Energy

A discussion of the classical dynamics at very low energy is in some sense gratuitous,

since it can be expected (correctly) that the dynamics would be dominated by the

normal mode motions—trans and cis bend. However, in order to take advantage of

a dimensionality reduction made possible by the conserved quantities Ka and Kb,

the classical Hamiltonian HC in Eqs. 8.8–8.11 is defined in terms of abstract actions

and angles (Ja,Jb,ψa,ψb) that are not related in a simple way to physical motions

of the molecule (see Section 8.7). This section investigates how the simple normal

mode motions at low energy are represented in the abstract action/angle space in

which HC has been defined. The transition to more complex dynamics as energy

increases, including the appearance of large-scale classical chaos, is also discussed.

In this section and throughout this chapter, only bending dynamics with zero total

angular momentum (� = Kb = 0) will be considered.

At low energy, the values of all actions (conserved and non-conserved) remain

small, and thus the (linear) harmonic (Eq. 8.9) contribution to HC dominates over

the contributions of the (nonlinear) anharmonic (Eq. 8.10) and interaction (Eq. 8.11)

terms. Thus, as E → 0,

HC ≈ H lin
C − E◦ = 2ω4(Ka + Ja) + 2ω5(Ka − Ja) − E◦. (8.12)

Keeping in mind that the dynamics are parametrically dependent on the conserved

quantities Ka (and Kb), HC in the low energy limit is dependent upon only one

action, Ja, which makes the dynamics particularly simple. First, consider the range

of energy that is accessible for a given value of Ka in this limiting case of HC . [Note

that specifying Ka is the classical mechanical equivalent of specifying a particular

pure bending polyad; although the quantum mechanical conserved quantity, Nb, can

only take integer values, Ka can take any positive value.] Given that |Ja| ≤ Ka, which

is required by the positivity of the elementary actions in Eq. 8.7, H lin
C can vary only
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between 4ω4Ka and 4ω5Ka; thus

4ω4Ka − E◦ ≤ E ≤ 4ω5Ka − E◦. (8.13)

The lower end of the polyad corresponds to a maximal value of Ja (Ja ≈ Ka) and it

is clear from Eq. 8.7 that all trajectories at the bottom of the polyad must represent

trans bending motion. Similarly, at the upper end of the polyad the value of Ja is

minimal (Ja ≈ −Ka) and all trajectories represent cis bending motion. In between,

the dynamics changes gradually from trans to cis bending motion. These conclusions

are of course entirely consistent with the studies of the quantum mechanical effective

Hamiltonian in Chapters 6 and 7.

Now consider the dynamics associated with Eq. 8.12 in the abstract action/angle

space (Ja,Jb,ψa,ψb). According to Hamilton’s equations

ψ̇a =
∂H

∂Ja
= 2(ω4 − ω5) (8.14)

ψ̇b =
∂H

∂Jb
= 0. (8.15)

Keeping in mind that ω5 > ω4, every trajectory must rotate on the configuration

torus, at fixed ψb, in the negative ψa direction with speed 2(ω5 − ω4). Thereby the

entire phase space is filled by periodic orbits that rotate, and neighboring periodic

orbits are quite similar to each other.

Inclusion of interaction terms in the Hamiltonian destroys most of these periodic

orbits and generally distorts greatly those that remain. Even at low energy (Ka ≤
2), the anharmonic and interaction terms in HC do play some role in the classical

mechanics, and standard numerical methods [147, 148] can be used to investigate

the changes in the dynamics as the non-harmonic terms increase in importance with

increasing energy. One key element in this numerical investigation is the use of

surfaces of section to gain an overview of the dynamics. The points on a generic

surface of section represent the intersection of trajectories with a particular plane

that cuts through phase space. Note that the use of surfaces of section in this study
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is only possible due to the reduction of the dimensionality of HC to two dimensions

by making the conserved actions explicit. The patterns of points on the surfaces of

section provide an excellent overview of the dynamics associated with HC for each

polyad. Tori, or more specifically trajectories running along tori, appear as concentric

closed loops. Chaos tends to look like a randomly packed pattern of points. Periodic

orbits are fixed points on the surface of section.

Two such surfaces of section are shown in Fig. 8-1. The surface of section on

the left was calculated for the [4,0] polyad at 2461 cm−1, but is typical of all of the

surfaces of section at low energy. The intersection condition in this case is ψa = 0,

ψ̇a > 0. The surface of section indicates the presence of two periodic orbits, which

in fact are the only two stable periodic orbits (of period one) that survive when the

anharmonic and interaction terms in HC are included. These orbits rotate along ψa

with ψb = 0 and ψb = π respectively, both with constant value Jb = 0. Both orbits

are elliptic (stable) and organize torus bundles (collections of concentric tori) around

them in the 3D energy shell of the 4D abstract phase space. The two torus bundles

are separated by dividing surfaces called separatrices, which are located at ψb = π/2

and ψb = 3π/2.

Thus, even with the inclusion of the anharmonic and interaction terms, the dy-

namics at low energy (< 5000 cm−1) is quite simple. Regular (as opposed to chaotic)

dynamics dominates and is organized by two torus bundles. Although no explicit

calculations have been presented, it is clear that the dynamics corresponding to any

arbitrary trajectory is closely related to the trans and cis bend motions. As energy

increases, however, the anharmonic and interaction terms in HC become increasingly

important, leading to qualitatively new types of motion. Three “break points” in Ka

can be identified at which fundamental changes in the dynamics occur. These break

points are

1. The onset of trajectories that do not rotate in the ψa direction. This is actually

a dual break point, with nonrotational motion occurring first at the bottom of

the polyad, at Ka = 2.21, and then, at slightly higher Ka, at the top of the

polyad (Ka = 2.63).
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Figure 8-1: Surfaces of section representative of the regular, normal mode motions
that dominate at low energy (left panel), and the onset of chaos and qualitatively new
types of motion at higher energy (right panel). The intersection condition in both
cases is ψa = 0, ψ̇a > 0. Note in the left panel the presence of two periodic orbits that
cross the surface of section at (Jb = 0, ψb = 0) and (Jb = 0, ψb = ±π) and organize
torus bundles about them. The two tori are separated by separatrices at ψb = ±π/2.

2. The onset of “large-scale” classical chaos (Ka ≈ 2.5).

3. The crossing of the effective frequencies of the trans and cis bend motions

(Ka ≈ 3.86).

Each of these phenomena, which collectively give rise to the qualitatively new types

of motions that dominate the dynamics at high energy, will be discussed briefly.

As Ka increases, the first sign of nonrotating motion (along ψa) occurs at the

energetic bottom of the polyad at Ka = 2.21 (Nb ≈ 7), and at the energetic top of the

polyad at Ka = 2.63 (Nb ≈ 8). At these values of Ka, the interaction terms H int
C have

grown sufficiently large that for at least some set of (Ja, Jb, ψa, ψb), their contribution

to ψ̇a = ∂HC/∂Ja overcomes the tendency of H lin
C to make the trajectories rotate in

the negative ψa direction. The value of ∂H int
C /∂Ja is clearly largest when cos(ψa) and

cos(ψb) are largest in magnitude (see Eq. 8.11), independent of the values of Ja and

Jb. This occurs at the configuration space points (ψa, ψb) = (0, 0) and (π, π). [The

terms in H int
C with cos(ψa±ψb) are much less important given the values of the fitted

parameters.] These points are also extrema ofHC with respect to ψa and ψb; the point
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(π, π) maximizes the energy, and the point (0, 0) minimizes it, for arbitrary values of

Ja and Jb. Hence localization appears first at (0, 0) and (π, π) on the configuration

space torus and expands into finite areas about these points as Ka increases. As a

result, except for unphysically large values of Ka, the polyad energy range can be

found easily by scanning through the allowed range of values of Ja and Jb separately

for (ψa, ψb) = (0, 0) and (π, π) to find Emin and Emax respectively. For Ka > 2.21,

Emin occurs at a single point in phase space, which is clearly a fixed point of the

dynamics. Similarly, Emax occurs at a single point in phase space for Ka > 2.63.

At roughly the same values of Ka for which nonrotating trajectories can first be

identified, classical chaos can first be identified in the surfaces of section. Specifically,

as can be seen in Fig. 8-1, at an energy of 5261 cm−1, in the middle of the [8,0]

polyad (Ka = 2.5, Kb = 0), chaos has grown to a volume that is recognizable on the

scale of other features in the surface of section. In the language of dynamics, “large

scale chaos” has appeared. At higher energy, the fraction of phase space occupied by

chaos depends in complicated ways on both Ka and the energy within the polyad.

Chaos in the [22, 0] polyad will be considered in some detail in Section 8.4. Fig. 8-2

provides a few additional glimpses of the role of chaos at lower energy. The upper

left panel is a surface of section for the same polyad as in the right panel of Fig. 8-

1, but at slightly higher energy. Clearly, the fraction of phase space occupied by

chaos depends sensitively on the energy within the polyad. The remaining panels in

Fig. 8-2 depict similar surfaces of section, with the polyad number and the energy

constrained by Nb ≈ E/668 (with E in units of cm−1). This constraint ensures that

the energy for each surface of section remains very nearly in the middle of the polyad;

note that classically, the polyad number is not required to be an integer. Chaos can

be observed to develop rapidly at these energies and dominates the higher energy

surfaces of section. It should be kept in mind, however, that at other energies within

the same polyad, chaos may play a relatively minor role.

A third break point in Ka at which the classical and quantum dynamics change

greatly occurs when the effective frequencies of the trans and cis bend modes become
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Figure 8-2: Surfaces of section with the polyad number and the energy constrained by
Nb ≈ E/668, with E in units of cm−1, which ensures that the energy for each surface
of section remains very nearly in the middle of the polyad; note that classically, the
polyad number is not required to be an integer.
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equal. The effective frequencies can be defined as

ωeff
4 = ∂H0

C/∂I4g (8.16)

and

ωeff
5 = ∂H0

C/∂I5g, (8.17)

where H◦
C = H lin

C + Hanh
C . In general, degeneracies make any system more vulnera-

ble to perturbations. In this particular case, when the effective frequencies become

nearly equal, then the overall motion in the ψa direction becomes slower. When the

difference between the effective frequencies becomes zero, then the motion becomes

structurally unstable, meaning that even small interaction terms can change the dy-

namics qualitatively. The reason that the effective frequencies become equal at all is

that the anharmonicities of the two modes have opposite signs (i.e., x44 > 0, x55 < 0).

A straightforward but tedious analytical calculation reveals that the resonance con-

dition ωeff
4 = ωeff

5 can be achieved for some values of the actions in any polyad as long

as Ka > 3.86. Above the onset of this resonance, the regions of phase space that

contain motions other than the normal mode motions become dominant.

8.4 Classical Dynamics in the [22,0] Polyad

The major concern of this section is a description of each of the important classes

of periodic orbits that exist within [22,0] polyad (i.e., Ka = 6 and Kb = 0), which

lies at roughly 15,000 cm−1. Periodic motions of the system, as opposed to arbitrary

nonperiodic trajectories, are the focus of this discussion, because the periodic orbits

organize phase space; the more stable a periodic orbit, the more strongly (quasi-

periodic) trajectories in its vicinity (i.e., on the tori) mimic the periodic orbit motion.

In addition, it will be seen in the next section that many of the quantum eigenstates

have nodal coordinates which coincide with the stable periodic orbits, and thus can

be assigned semiclassical quantum numbers indicating the number of nodes along a

particular orbit.
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A critical first step in investigating the classical dynamics in the [22,0] polyad (or

any other) is the evaluation of accessibility: What regions of configuration space are

accessible to the dynamics as a function of energy? A straightforward calculation

that is outlined in Section 8.3 demonstrates that the lowest energy that is accessible

within the [22,0] polyad is Emin = 13,806 cm−1, and this energy corresponds to a

single point in the configuration space, (ψa, ψb) = (0, 0). Conversely, the high energy

end of the polyad converges to the point (ψa, ψb) = (π, π) at Emax = 15,870 cm−1.

The top rows of Figs. 8-3 and 8-4 consist of several “accessibility diagrams” that

illustrate the accessibility of configuration space at intermediate energies.

Based upon these diagrams, the energy range of polyad [22, 0] can be divided

into four qualitatively distinct regions. At energies sufficiently close to Emin or Emax,

the dynamics is confined to the neighborhood of the points (ψa, ψb) = (0, 0) and

(ψa, ψb) = (π, π) respectively. For the low energy end of the polyad, the motion in

configuration space is confined in this way for energies up to Ea = 14,086 cm−1, at

which energy rotation in the ψb direction first becomes possible. The energies between

Emin and Ea will be referred to as Region I. Region II begins at Ea when the point

(ψa, ψb) = (0, π) first becomes accessible. This point can be considered a saddle point

of the Hamiltonian; that is, it is an extremal point of the Hamiltonian, in the sense

that HC increases in one direction but decreases in the perpendicular direction, not

unlike the saddle point of a mountain. Region II ends at Eb = 14,211 cm−1, which

is the energy at which rotation in the ψa direction first becomes possible. In Region

III, which ends at Ec = 14,916 cm−1, rotation in both the ψa and ψb directions

is possible. Finally, Region IV refers to energies between Ec and Emax, where the

dynamics becomes restricted to the vicinity of (ψa, ψb) = (π, π) (that is, no rotation

in either the ψa or ψb direction is possible). Also shown on the accessibility diagrams

are projections of each important periodic orbit onto the (ψa, ψb) plane.

Accompanying each accessibility diagram is a representative surface of section

at the same energy. The intersection condition used for the surfaces of section in

Regions I, II, and III is ψa = 0, ψ̇a > 0, while for Region IV the intersection condition

is ψa = π, ψ̇a > 0. The periodic orbits at the center of the important torus bundles
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are also labeled on the surfaces of section. Together, the surfaces of section and the

accessibility diagrams provide an excellent overview of the structure of phase space

for this polyad. The dynamics in Regions I and IV, which lie at the energy extremes

of the polyad, are the simplest and will be discussed first, followed by the somewhat

more complicated intermediate regions, II and III.

The lowest energy region (I) is dominated by regular motion that is organized

by the periodic orbits labeled L1 and L2, both of which librate (oscillate) about the

minimum energy, stable elliptical fixed point (ψa, ψb) = (0, 0). This librational motion

of the periodic orbits in the abstract phase space provides no direct insight into the

physical motions of the molecule. However, by applying the procedure of “lifting”

that is discussed in Section 8.7, a reasonable representation of the physical molecular

motion associated with the periodic orbit is obtained. The two left panels of Fig. 8-

5 depicts the result of the lift procedure for periodic orbit L1 at an energy quite

close to Emin; each panel represents the motion of one of the hydrogens in a plane

perpendicular to the molecular axis. It is clear from this plot that one of the two

hydrogens bends strongly from linearity, while the other undergoes only very small

deviations (in the same plane as the other hydrogen).

It is interesting to note that the “lifted” motion of the periodic orbit L2 at the

same energy (not shown) is virtually indistinguishable from that of orbit L1. The

only significant difference is that the second hydrogen moves on a very small scale

perpendicular to the motion of the first hydrogen. In fact, every motion (periodic or

quasi-periodic) in the vicinity of (ψa, ψb) = (0, 0) as E → Emin looks basically like a

Local bend motion (thus the label “L” for the periodic orbits that originate in this

region), and lifting the point (ψa, ψb) = (0, 0) itself, at Emin, yields the most “perfect”

local bend (i.e., minimum motion of the second hydrogen). The periodic orbits L1

and L2 can be conceptualized as normal modes of the deviation from pure local mode

behavior. That is, the dynamics is formally equivalent to that of a 2 degree of freedom

nonlinear oscillator. As E → Emin the dynamics becomes increasingly harmonic, and

there must be 2 basic mode motions, which are L1 and L2. As energy increases from

Emin to Ea (the boundary between Regions I and II), the surfaces of section show
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Figure 8-3: Overview of the classical dynamics in the [22,0] polyad. Top row: ac-
cessibility diagrams, which represent those regions of the configuration space (ψa, ψb)
that are accessible to the classical dynamics, as well as projections of the important
periodic orbits onto the (ψa, ψb) plane. Bottom row: representative surfaces of section
at each energy that provide an overview of the regular and chaotic regions of phase
space. The intersection condition is ψa = 0, ψ̇a > 0.
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Figure 8-4: Continuation of Fig. 8-3. For the surface of section in Region III, the
intersection condition is ψa = 0, ψ̇a > 0; for the those in Region IV it is ψa = π,
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Figure 8-5: Physical motions of the hydrogen atoms that correspond to several of the
most important periodic orbits in Regions I and IV of the [22,0] polyad, as determined
by the “lifting” procedure described in Section 8.7. The left- and right-hand plots
each describe the motion of one hydrogen in a plane perpendicular to the CC axis.

that L2 bifurcates several times, and chaos becomes significant as E → Ea (the chaos

grows mainly out of the separatrix lines created by the bifurcations of L2, and in

saddle-node bifurcations that create orbits similar to L2). The fate of the L1 and L2

periodic orbits at energies greater than Ea will be discussed below, when Regions II

and III are examined.

Like Region I, Region IV is dominated by regular motion that is organized by

two periodic orbits, which are labeled C1 and C2 and which librate about the maxi-

mum energy, stable elliptic fixed point (ψa, ψb) = (π, π). The lifted C2 periodic orbit

motion, at an energy close to Emax, is shown in the two right panels of Fig. 8-5.

Both hydrogens undergo nearly circular motions on opposite ends of the molecule.

Although it is not obvious from this figure, the hydrogens rotate in opposite direc-

tions to satisfy the constraint of zero total vibrational angular momentum. Thus,

this motion is named “counter-rotation”. In close analogy to Region I, every motion

(periodic or quasi-periodic) in the vicinity of (ψa, ψb) = (π, π) as E → Emax looks

basically like a Counter-rotation motion (thus the label “C” for the periodic orbits

that originate in this region), and lifting the point (ψa, ψb) = (π, π) itself, at Emax,

yields the most perfect counter-rotation (most nearly circular motions of both hydro-

gens). The dynamics in Region IV, as in Region I, is formally equivalent to that of

a 2 degree of freedom nonlinear oscillator, and as E → Emax it becomes increasingly

harmonic, such that the C1 and C2 periodic orbits can be considered to be normal
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modes of the deviations from pure counter-rotation behavior. As energy decreases

from Emax to Ec, periodic orbit C1 undergoes several bifurcations, producing other

periodic orbits that mimic the libration of C1 but are slightly displaced in phase space

(see orbits C1a and C1b in Fig. 8-4). The average of all of these motions spawned from

C1 is quite close to the motion obtained by pretending that C1 continues unaffected

throughout the region. Note also that chaos arises near Ec.
1

Whereas Regions I and IV are dominated by regularity, and organized by a few

simple periodic motions, Regions II and III are dominated by chaos. As can be seen

from the surface of section in Fig. 8-3, Region II is almost entirely chaotic, whereas

in Region III (Fig. 8-3), two large-scale (i.e., large enough to quantize eigenfunctions)

regions of stability coexist with the chaos. As might be expected, the stable periodic

orbits in Region III can be considered descendants of the two stable orbits in Region

IV, C1 and C2. More surprising is that the two important Region III periodic orbits

can also be considered to be descendants of the periodic orbits in Region I (i.e., traced

back through the highly chaotic Region II). Thus, it is possible to create a “family

tree” of periodic orbits (Fig. 8-6) from Emin to Emax, which specifically links orbits

L1 with C1, and orbit L2 with C2.
2

Consider first the L1/C1 linkage. Orbit L1, which commences at Emin, is dy-

namically stable up to ∼14,060 cm−1 (within Region I), where it suffers a pitchfork

bifurcation in which it splits off two new orbits, L1a and L1b, that are mirror images of

each other. When these new orbits branch off, they first run in the ψa direction. With

increasing energy they begin to tilt towards the diagonal direction (i.e., ψa = ψb). Pe-

riodic orbit L1 itself can be followed through Region II and into Region III, where, at

14471 cm−1, it changes from libration to rotation in the ψa direction. Periodic orbits

with both orientations of rotation exist, which are labeled Lr+
1 and Lr−

1 , but these are

1This chaos grows mainly out of the separatrix double loop that is created in the pitchfork
bifurcation of C1. That is, in a pitchfork bifurcation, the fixed point changes from elliptic (stable) to
hyperbolic (unstable) and splits off two new elliptic fixed points, with the result that the invariant
manifolds form a “figure 8” structure. In the nonintegrable case, this figure 8 is actually a fine strip
of chaos.

2Note that amusingly (because we could not think of a deeper reason) the most stable orbit at
the top of the polyad, C2, shares one branch of the family tree with the less stable of the two at the
bottom, L2. Likewise, the less stable L1 connects to the more stable C1.
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Figure 8-6: Family tree of periodic orbits in the [22,0] polyad. The periodic orbits
are grouped into two branches, which specifically link L1 with C1 and L2 with C2.
The vertical positions of the lines on the diagram are arbitrary.
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always rather unstable and disappear at energies around 14,861 cm−1. The bifurcated

orbits L1a and L1b can also be followed into Region III, up to 14641 cm−1, where they

do not terminate but rather change their nature from librational to rotational; the

new rotating orbits are labeled M r
1a and M r

1b. [“M” stands simply for M iddle and

is used to denote those periodic orbits in Region III that link the C and L periodic

orbits. The superscript “r” denotes periodic orbits have rotational, as opposed to

librational, character.] Note that, in order not to overload the accessibility diagram

for Region III in Fig. 8-4, only the projection of orbit M r
1a is included (the M r

1b orbit is

related to M r
1a by reflection through the line ψb = 0 or ψb = π). Continuing to higher

energy, the orbits M r
1a and M r

1b can be linked to C1a and C1b, which arise from a

pitchfork bifurcation of C1 within Region IV, at 15,489 cm−1. In close analogy to the

L1a/b periodic orbits, when C1a and C1b are created, they run approximately in the

ψb direction, but with decreasing energy they tilt increasingly towards the diagonal

direction. These orbits transform into M r
1a/b as soon as they change from libration

about the point (π, π) into rotation through the configuration torus in the diagonal

direction.

The motion corresponding to periodic orbit M r
1 is a compromise between the

local bend and counter-rotation motions. As can be seen in the top two panels of

Fig. 8-7, orbit M r
1 involves one of the two hydrogens undergoing a primarily circular

motion, reminiscent of the counter-rotation motion, while the motion of the other

is reminiscent of a local bend, although the approximate plane of the bend switches

its orientation periodically by π/2. Due to the existence of the Kb constant of the

motion, however, both the “rectilinear” and “circular” motions of the hydrogens are

distorted in such a way as to conserve zero total internal angular momentum at all

times.

The L2/C2 linkage is somewhat easier to discuss by moving from high to low

energy. Periodic orbit C2 changes its behavior from libration to rotation in the ψa

direction at the boundary of Regions IV and III (Ec = 14,916 cm−1). The rotating

version of the periodic orbit, Cr
2 , remains stable or very slightly unstable down to

14,854 cm−1, where it changes from rotation to libration about the point (0, π). The
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Figure 8-7: Physical motions of the hydrogen atoms that correspond to several of
the most important periodic orbits in Regions II and III of the [22,0] polyad, as
determined by the “lifting” procedure described in Section 8.7. The left- and right-
hand plots each describe the motion of one hydrogen in a plane perpendicular to the
CC axis.
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new librating version of the orbit, M2, persists throughout Regions III and II. The

M2 orbit remains stable down to 14,431 cm−1 and organizes a sizeable regular region

that is embedded in chaos, as seen in the surface of section in Fig. 8-4. Below 14,161

cm−1 (i.e., in Region II) orbit M2 is unstable but remains constrained to the vicinity

of (0, π); at Ea (the boundary between Regions I and II), it merges in a bifurcation

process with periodic orbit L2, which rotates along ψa = 0, and which is unstable in

Region II.3

The L2/C2 link can also be seen in the “lifted” periodic orbits. As mentioned

previously, as E → Emin, orbit L2 corresponds to a large amplitude linear motion of

one hydrogen and a small amplitude motion of the other hydrogen in a perpendicular

direction. With increasing energy, the amplitude of the motion of the second hydrogen

increases, and as E → Ea, the amplitudes of motion of the two hydrogens become

equal. As energy increases above Ea, the motion associated with M2 increasingly

involves a counter-rotational component (see Fig. 8-7). The rotational motion of the

hydrogens associated with the orbit M2 becomes more pronounced as energy increases

within Region III (i.e., closer to the energy at which M2 becomes C2). Thus, in a

satisfying way, the motions corresponding to both orbits M r
1 and M2 provide bridges

between the local bend and counter-rotation motions at the bottom and top of the

polyad, respectively.

8.5 Semiclassical Assignments

This section addresses the question of quantum-classical correspondence: To what

extent can the quantum eigenfunctions of the acetylene bend system be assigned

quantum numbers (or at least be rationalized) in terms of the classical periodic orbits?

In Chapter 7, the quantum eigenfunctions of the acetylene pure bending effective

Hamiltonian were examined, and prominent local mode and counter-rotation states

were recognized in the [22, 0] polyad. One can, in principle, address the issue of

3At the boundary between Regions I and II, Ea = 14,086 cm−1, the orbit L2 becomes homoclinic
to the orbit M2. By homoclinic we mean a trajectory that is not itself periodic but that converges
forward as well as backward in time to the same periodic orbit.
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quantum-classical correspondence by comparing the “lifted” classical periodic orbits

with the quantum eigenfunctions. Two examples of this type of comparison are pro-

vided in Fig. 8-8. In each of these examples one of the quantum eigenfunctions, in

the (ρ4, ρ5, φ45) coordinates defined in Chapter 7, is compared with an isoenergetic

periodic orbit, which is represented in the same set of coordinates by using the lift

procedure (see Section 8.7). The upper panels depict quantum-classical correspon-

dence near the bottom of the [22,0] polyad, where the dynamics are dominated by

local bend motions, while the bottom panels depict the counter-rotation motions that

dominate the top of the polyad. In both cases, the similarity between the quantum

eigenfunctions and classical periodic orbits is striking. Notice especially how the prob-

ability in the E = 15,306.7 cm−1 quantum eigenfunction tends to accumulate near

regions in configuration space where the periodic orbit passes many times.

The examples of quantum-classical correspondence in Fig. 8-8 are particularly

simple ones, because each of the periodic orbits depicted evolves at a single value of

φ45. The corresponding eigenfunctions have their probability distributed along φ45 in

a near-Gaussian distribution, with the maximum of probability occurring at the clas-

sical value of φ45. However, many of the important periodic orbits do not evolve with

constant φ45, and thus it becomes more difficult to establish quantum-classical corre-

spondences by comparing projections of the periodic orbits and quantum eigenstates

onto the (ρ4, ρ5) plane and the φ45 coordinate. Specialized software can permit com-

parisons of orbits and eigenfunctions in three-dimensional space, but a more general

approach, which is adopted in the remainder of this section, is to generate semiclas-

sical eigenfunctions in the same abstract (ψa, ψb) coordinates that were so useful for

understanding the classical dynamics. The semiclassical eigenfunctions and classical

periodic orbits can then be compared in a straightforward manner in two dimensions,

making possible semiclassical assignments of the majority of the eigenstates within

the polyad.

Semiclassical eigenfunctions can be obtained by quantizing the Hamiltonian de-

fined in Eq. 8.8 (Schrödinger quantization can still be used after linear canonical
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Figure 8-8: Left column: Isoenergetic quantum eigenfunctions (left) and periodic
orbits (right) in the [22, 0]g+ polyad projected onto the (ρ4, ρ5) plane and the φ45

coordinate.
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transformations) with the substitution

J → h̄

i

∂

∂ψ
. (8.18)

The resultant semiclassical Hamiltonian can then be diagonalized in a plane wave

basis set (ΦSC) with the classical angles as coordinates,

ΦSC =
∏

k=a,b

exp(ijkψk) (8.19)

where k is an index over the classical degrees of freedom, and jk is a semiclassical

quantum number. Unfortunately there is no unique way to order the classical actions

and angles, and different choices of ordering lead to distinct quantum Hamiltonians.

That is, off-diagonal interaction terms such as Jk cos(ψk) and cos(ψk)Jk are equivalent

in classical mechanics but distinct in the semiclassical Hamiltonian that results from

applying the transformation in Eq. 8.18. This of course is an historic problem and it

is noted that all orderings of the actions and angles are equivalent in the limit h̄→ 0.

There are a number of possible strategies for addressing this difficulty in practice;

we adopted the same approach as McCoy and Sibert [27], and treat the actions as

constants, with values

Jk =
j′k + j′′k

2
, (8.20)

where j′k and j′′k refer to the quantum numbers of two semiclassical basis functions

that are coupled by a given interaction term. The semiclassical eigenenergies that are

obtained using this procedure are in excellent agreement with the “exact” quantum

eigenvalues; the RMS error in the semiclassical eigenenergies is 1.05 cm−1, and the

errors in all cases are less than 2.0 cm−1.

In this study, however, the “exact” quantum Hamiltonian is known, and was in fact

the starting point of the study. Thus, a “requantization” of the classical Hamiltonian

is in some sense gratuitous. The semiclassical wavefunctions can also be obtained

without the requantization step by simply postulating a one-to-one correspondence

between the semiclassical and quantum basis sets. That is, the quantum Hamiltonian
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is diagonalized in a basis set of two 2D harmonic oscillators (ΦQ), as in Chapter 7,

to obtain the eigenfunctions

Ψα =
∑

β

cαβΦ
Q
β . (8.21)

However, one can choose to represent the eigenfunctions in the semiclassical basis set

(ΦSC) defined above

Ψα =
∑

β

cαβΦ
SC
β (8.22)

with the quantum numbers related according to

ja =
v4 − v5

4
(8.23)

jb =
�4 − �5

4
, (8.24)

as implied by the canonical transformation in Eq. 8.7. It should be emphasized that

this approach is no less approximate than the semiclassical quantization approaches

discussed above. That is, whereas the usual semiclassical quantization is approximate

due to ambiguities in the ordering of the operators (leading to approximate eigenval-

ues, for example), the approach taken here uses the exact quantum Hamiltonian but

establishes an approximate correspondence between the quantum and semiclassical

basis sets, which is expected to be exact only in the classical limit. The eigenfunc-

tions that are obtained from the two approaches are quite similar; only in rare cases

can differences in the corresponding eigenfunctions be detected by eye. Moreover the

minor differences do not affect the analysis of quantum-classical correspondence. All

of the eigenfunctions depicted in this section were calculated using the exact quantum

Hamiltonian rather than the requantization approach. The eigenstates are labelled as

Eg/u,+/−
n , where the superscript indicates the symmetry and the subscript indicates

the rank of the eigenstate within the polyad, starting from the lowest energy state.

Figures 8-9, 8-10, 8-11, 8-12, 8-13, 8-14, and 8-16 depict a few of the semiclassical

wavefunctions of various symmetries in the (ψa, ψb) coordinates. Since the angles

ψ are cyclic in 2π, in principle a domain of [0, 2π] would be sufficient to represent

the wavefunctions. For the purposes of obtaining semiclassical assignments by node
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counting, however, it is helpful to plot the wavefunctions over a somewhat larger

range of angles. As was discussed in the previous section, most of the stable periodic

orbits are centered around (0, 0) (at the bottom of the polyad) and (π, π) (at the

top). The saddle point at (0, π) also plays an important role in the dynamics. To

understand the relationship between the eigenfunctions and the classical mechanics,

it is particularly useful to plot the eigenfunctions with none of these three important

fixed points at the domain boundaries, and thus a domain of [−π, 2π] is chosen for

each angle.

Figure 8-9 plots several eigenfunctions that lie within Region I, including the low-

est energy eigenfunctions in the [22, 0] polyad with all four possible symmetries. As

can be expected from the accessibility diagrams for Region I, these eigenstates are

centered about the point (0, 0). Notice also that these eigenstates appear in pairs

with opposite g/u symmetry but identical parity. In Chapter 7, the existence of

these doublets at bottom of the polyad (i.e., for well-defined local bend states) was

rationalized qualitatively using the principle of the indistinguishability of identical

nuclei in quantum mechanics. Section 8.8 provides a different explanation for this

phenomenon, which is based upon understanding the effects of the parity and inver-

sion (i.e., g/u symmetry) operators in the (ψa, ψb) configuration space, and which is

valid throughout the polyad.

The lowest energy eigenfunctions for [22, 0]g+ and [22, 0]u+ both look like Gaus-

sians centered about (0, 0), while those for [22, 0]g− and [22, 0]u− display one node in

the ψb direction. Remembering that L1 librates over (0, 0) in the ψa direction, while

L2 runs approximately in the ψb direction, the eigenfunctions can be assigned quan-

tum numbers, nL1 and nL2 , that correspond to the number of quanta of excitation

along each periodic orbit. Thus, the lowest energy eigenstates in both [22, 0]g+ and

[22, 0]u+ can be assigned as (nL1 , nL2) = (0, 0), and those for [22, 0]g− and [22, 0]u−

as (nL1 , nL2) = (0, 1). The rest of the eigenstates in Region I can be assigned in a

similar way, such as the pair of states at the bottom of Fig. 8-9, which are assigned as

(nL1 , nL2) = (1, 0). Table 8.1 lists the assignments for the remaining states in Region

I, all of which appear in g/u pairs.
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Figure 8-9: Selected semiclassical eigenfunctions (contour plots of probability density)
in Region I of polyad [22,0]. The wavefunctions are centered about (ψa, ψb) = (0, 0)
and appear in pairs of opposite g/u symmetry. These states can be assigned as
(nL1 , nL2) = (0,0) (top), (0,1) (middle), and (1,0) (bottom).
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Table 8.1: Semiclassical assignments for the eigenstates of [22, 0], of all symmetries,
in Regions I and II. All of the eigenstates in these regions can be assigned in terms of
local bend motions of the molecule. Specifically, two quantum numbers, (nL1 , nL2),
are assigned that correspond to the number of quanta of excitation along the two
periodic orbits, L1 and L2, which grow out the stable elliptical fixed point at the
bottom of the polyad, (ψa, ψb) = (0, 0). The eigenstates that organize about these
periodic orbits occur as symmetry pairs with opposite g/u symmetry. Region I ends
(and Region II begins) at 14086 cm−1. The states for which an assignment is not
provided mutually perturb each other and can each be assigned as a roughly 50/50
mixture of (2,0) and (1,2). All energies are in units of cm−1 and are referenced to the
zero-point energy.

Region g-symmetry eigenstate u-symmetry eigenstate Eg − Eu (nL1 , nL2)

I Eg+
1 = 13926.21 Eu+

1 = 13926.21 6.4 x 10−8 (0,0)
I Eg−

1 = 13984.89 Eu−
1 = 13984.89 2.4 x 10−8 (0,1)

I Eg+
2 = 14035.81 Eu+

2 = 14035.81 -2.8 x 10−7 (0,2)
I Eg+

3 = 14064.59 Eu+
3 = 14064.59 -3.1 x 10−6 (1,0)

I Eg−
2 = 14080.88 Eu−

2 = 14080.88 5.3 x 10−5 (0,3)

II Eg+
4 = 14119.99 Eu+

4 = 14119.99 -2.0 x 10−3 (0,4)
II Eg−

3 = 14136.28 Eu−
3 = 14136.28 1.6 x 10−5 (1,1)

II Eg−
4 = 14153.51 Eu−

4 = 14153.46 4.8 x 10−2 (0,5)
II Eg+

5 = 14180.63 Eu+
5 = 14181.30 -0.67 (0,6)

II Eg+
6 = 14187.85 Eu+

6 = 14187.85 -2.8 x 10−5 *
II Eg+

7 = 14196.81 Eu+
7 = 14196.83 -1.4 x 10−2 *

II Eg−
5 = 14204.70 Eu−

5 = 14200.12 4.58 (0,7)
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Table 8.2: Semiclassical assignments for the eigenstates of [22, 0], of all symmetries,
in Region IV. All of the eigenstates in this region can be assigned in terms of counter-
rotation motions of the molecule. Specifically, two quantum numbers, (nC1 , nC2), are
assigned that correspond to the number of quanta of excitation along the two periodic
orbits, C1 and C2, which grow out the stable elliptical fixed point at the top of the
polyad, (ψa, ψb) = (π, π). The eigenstates that organize about these periodic orbits
occur as symmetry pairs with opposite g/u symmetry and opposite parity (+/−).
All energies are in units of cm−1 and are referenced to the zero-point energy.

g-symmetry eigenstate u-symmetry eigenstate Eg − Eu (nC1 , nC2)

Eg+
42 = 15671.61 Eu−

36 = 15671.61 9.3 x 10−6 (0,0)
Eg+

41 = 15478.39 Eu−
35 = 15478.39 1.1 x 10−3 (0,1)

Eg−
30 = 15446.01 Eu+

36 = 15446.01 -4.3 x 10−5 (1,0)
Eg+

40 = 15306.79 Eu−
34 = 15306.74 5.2 x 10−2 (0,2)

Eg−
29 = 15263.69 Eu+

35 = 15263.70 -4.5 x 10−3 (1,1)
Eg+

39 = 15240.42 Eu−
33 = 15240.42 1.6 x 10−3 (2,0)

Eg+
38 = 15157.87 Eu−

32 = 15156.61 1.26 (0,3)
Eg−

28 = 15106.74 Eu+
34 = 15106.90 -0.16 (1,2)

Eg+
37 = 15067.83 Eu−

31 = 15067.65 0.18 (2,1)
Eg−

27 = 15053.61 Eu+
33 = 15053.64 -2.2 x 10−2 (3,0)

Eg+
36 = 15040.44 Eu−

30 = 15026.37 14.07 (0,4)
Eg−

26 = 14970.79 Eu+
32 = 14974.07 -3.28 (1,3)

Eg+
34 = 14928.57 Eu−

29 = 14929.54 -0.97 (2,2)

The eigenstates in Region IV are of course organized about (ψa, ψb) = (π, π). The

symmetry arguments in Section 8.8 suggest that these states will appear in g+/u−
and g−/u+ pairs that can be assigned quantum numbers (nC1 ,nC2), indicating the

number of quanta of excitation along each of the two important periodic orbits in

this region. The clearly assigned (0, 0) and (1, 1) eigenstates are depicted in the top

and middle rows of Fig. 8-10. Depicted at the bottom of Fig. 8-10 are the last pair

of eigenstates that fall within Region IV; they are assigned as (nC1 , nC2) = (2, 2).

This assignment is clearly somewhat approximate, and the distorted appearance of

the wavefunction can be considered to reflect the multiple bifurcations that have

occurred by this energy along the C1 coordinate. Table 8.2 lists the assignments for

the remaining states in Region IV.

Given that Regions I and IV are dominated by regular motion organized about

periodic orbits that evolve from the stable elliptical fixed points at the top and bottom
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Figure 8-10: Selected semiclassical eigenfunctions in Region IV of polyad [22,0]. The
wavefunctions are centered about (ψa, ψb) = (π, π) and appear in pairs of opposite
g/u symmetry and opposite parity. These states can be assigned as (nC1 , nC2) = (0,0)
(top), (1,1) (middle), and (2,2) (bottom).
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of the polyad, it is not surprising that the eigenfunctions that lie in these regions can

be assigned semiclassical quantum numbers in such a simple manner. The eigenstates

in Regions II and III, in which chaos plays a substantial role, can be expected to

present greater difficulties for assignment. Interestingly, however, the eigenstates

within Region II, which is the most highly chaotic region, present little difficulty

for semiclassical assignment. The local bend assignments (nL1 ,nL2) from Region I

can be continued throughout Region II, as can be seen in Table 8.1. The last three

assignments in Table 8.1 are, however, somewhat more approximate. The eigenstate

pairs Eg+
6 /Eu+

6 and Eg+
7 /Eu+

7 cannot be assigned a unique (nL1 , nL2) quantum number

label, but visual inspection of these eigenstates (see Fig. 8-11) makes it clear that each

can be assigned as a roughly 50/50 mixture of (2, 0) and (1, 2).4

The last assignment in Table 8.1 is also somewhat approximate, as can be seen

in the bottom two panels of Fig. 8-11. The g− and u− symmetry eigenstates in

this case appear to be nearly but not exactly identical. In both cases, a total of 7

nodes can be counted along the ψb direction from −π to π, but the wavefunction

is highly distorted from a harmonic oscillator state, such that the majority of the

probability is located in the outer lobes of the wavefunction, near ψb = ±π. This

accumulation of probability can of course be rationalized in terms of the classical

motions of the molecule; periodic orbit L2 at these energies rotates along ψb, but

slows down significantly near the saddle point (0, π), leading to the accumulation of

probability there. It will be seen below that this phenomenon is related to the role

that the saddle point plays in linking local bend with counter-rotation states.

Many of the eigenstates in Region III cannot be assigned as readily as those in the

other regions. The major reason for this appears not to be the existence of extensive

chaos in this region, since all eigenstates in the highly chaotic Region II could be

assigned, at least approximately. This is not the case in Region III, where a number

4That is, (2, 0) and (1, 2) states mutually perturb each other. This effect can be considered a
manifestation of anharmonicities in the dynamics in the abstract action/angle space. As E → Emin,
the periodic orbits L1 and L2 reduce to the normal modes of the deviation from “ideal” local
bend behavior, as represented by the fixed point (ψa, ψb) = (0, 0). As energy increases, however,
this orthogonality condition is relaxed, in much the same way that anharmonicities in molecular
potential energy surfaces make IVR possible.
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Figure 8-11: Selected semiclassical eigenfunctions in Region II of polyad [22,0]. The
wavefunctions remain organized primarily around (ψa, ψb) = (0, 0) and appear in
pairs of opposite g/u symmetry, as they do in Region I. Despite Region II being
almost entirely classically chaotic, all of the states in Region II can be assigned, at
least approximately, quantum numbers corresponding to excitation along the L1 and
L2 periodic orbits. The assignments for the two pairs of eigenfunctions shown here
are the most approximate ones within Region II. The upper eigenstate pair, Eg+

6

and Eu+
6 , is involved in a mutual perturbation with another pair of states, Eg+

7 and
Eu+

7 , which are not shown. Each of the states involved in the perturbation can be
assigned as a roughly 50/50 mixture of (nL1 , nL2) = (2,0) and (1,2). The bottom
pair of eigenstates can clearly be assigned as (nL1 , nL2) = (0,7), but notice that the
probability accumulates largely near (ψa, ψb) = (0, π), which acts as a saddle point of
the Hamiltonian.
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of eigenstates cannot be clearly assigned in terms of any of the periodic orbits, and

the assignments for many of the rest of the eigenstates are approximate. The key

to the increased complexity in Region III appears to be the fact that the two most

important fixed points, (ψa, ψb) = (0, 0) and (π, π), do not play any strong role in

organizing the dynamics, as they do in Regions I and IV, respectively. As a result

the important periodic orbits change their character rapidly in this region, from local

bend to counter-rotation character as energy increases, and the quantum eigenstates

reflect this complexity.

The saddle point at (0, π) does play some role in organizing the dynamics in

Region III, as can be seen from the eigenstates in Fig. 8-12. These eigenstates can

be assigned quantum numbers representing excitation along M2, which librates over

(ψa, ψb) = (0, π), and transverse to it (i.e., along Lr
2). The symmetry arguments that

were applied to the eigenstates in Region IV (i.e., that they should appear in pairs

of opposite g/u symmetry and opposite parity) apply here as well, since the states

are localized near ψb = π. The first pair of eigenstates in Fig. 8-12 can be assigned

as (nM2 , nL2) = (3, 0), and the second pair as (2, 1). Several other pairs of states can

be assigned similarly; the results are in Table 8.3. Note that the energy splittings

between the nominal symmetry pairs are much larger here than in Regions I and IV,

reflecting the increased complexity that results when all of the (ψa, ψb) configuration

space is accessible.

Two specific links between the local bend periodic orbits at the bottom and the

counter-rotation periodic orbits at the top of the polyad were discussed in the preced-

ing section. Each of these links is manifested in the quantum wavefunctions in Region

III. Some of the quantum manifestations of the link between L1 and C1, mediated

by L1a/b, M
r
1 , and C1a/b, are seen in Fig. 8-13. Here, only one of the four possible

symmetries of eigenstates (u−) are plotted, for simplicity. Near the bottom of Region

III, many eigenstates can be assigned approximately in terms of local bend quantum

numbers, such as Eu−
14 , which is localized around (ψa, ψb) = (0, 0), and is clearly

assignable as (nL1 , nL2) = (3, 1). Eigenstate Eu−
19 still appears to be localized primar-

ily around (ψa, ψb) = (0, 0), and can be assigned approximately as (nL1 , nL2) = (4, 1),
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Figure 8-12: Selected semiclassical eigenfunctions in Region III of polyad [22,0] that
organize around the point (ψa, ψb) = (0, π). These states can be assigned in terms of
the number of quanta of excitation along the M2 and L2 periodic orbits, and appear
in pairs of opposite g/u symmetry and opposite parity. The specific assignments are
(nM2 , nL2) = (3,0) (top), and (2,1) (bottom).
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Table 8.3: Semiclassical assignments for those eigenstates in Region III of polyad
[22, 0] that organize around the saddle point (ψa, ψb) = (0, π) and can be assigned
semiclassical quantum numbers (nM2 , nL2) referring to the periodic orbits associated
with the saddle point. All energies are in units of cm−1 and are referenced to the
zero-point energy.

g-symmetry eigenstate u-symmetry eigenstate Eg − Eu (nM2 , nL2)

Eg+
8 = 14213.12 Eu−

6 = 14228.06 -14.94 (0,0)
Eg−

7 = 14249.49 Eu+
8 = 14226.32 23.17 (0,1)

Eg−
12 = 14390.26 Eu+

14 = 14382.53 7.73 (1,1)
Eg+

15 = 14392.83 Eu−
13 = 14389.94 2.89 (1,0)

Eg−
16 = 14520.13 Eu+

19 = 14512.74 7.39 (2,1)
Eg+

21 = 14537.03 Eu−
18 = 14537.67 -0.64 (2,0)

Eg−
20 = 14658.48 Eu+

24 = 14621.02 37.46 (3,1)
Eg+

26 = 14662.71 Eu−
22 = 14669.94 -7.23 (3,0)

Eg−
23 = 14776.63 Eu+

26 = 14703.95 72.68 (4,1)
Eg+

30 = 14755.07 Eu−
25 = 14789.21 -34.14 (4,0)

but a small amount of probability is also localized around (ψa, ψb) = (π, π). In

Eu−
24 the situation is just the opposite. A small amount of probability is localized

around (ψa, ψb) = (0, 0) [and can be assigned as (nL1 , nL2) = (5, 1)], but the majority

organizes around (ψa, ψb) = (π, π) and the better assignment for this eigenstate is

(nC1 , nC2) = (4, 1).

The eigenstate Eu−
27 is included for comparison. Its energy places it at the bottom

of Region IV, and it is assignable as (nC1 , nC2) = (4, 0), although there is some

distortion in the outer lobes of the wavefunction that can be attributed to the linking

of C1 with L1 in the following way. At this energy the orbit C1 has already become

unstable in the pitchfork bifurcation, in which the orbits C1a and C1b branch off (see

Fig. 8-4). The bifurcated orbits are stable and are more important in directing the

dynamics than C1 itself. Therefore quantum eigenstates associated with these orbits

can be expected to have their probability concentrated around the turning points of

C1a and C1b, which do not lie exactly along the line ψa = π. Of course, quantum

mechanically the probability density must be distributed symmetrically between C1a

and C1b. Thus, the outermost lobes of the Eu−
27 wavefunction are split in a double

hump, with the humps located approximately at the turning points of the periodic
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Figure 8-13: Semiclassical eigenfunctions in Region III of polyad [22,0] that illustrate
the link between the L1 and C1 periodic orbits. Near the bottom of Region III,
many eigenstates, such as Eu−

14 , remain organized around (ψa, ψb) = (0, 0), and can
be assigned (nL1 , nL2) quantum numbers, which in this case are (3,1). The eigenstate
Eu−

19 can clearly be assigned as (nL1 , nL2) = (4,1), but notice the small amount of
probability around (ψa, ψb) = (π, π). For eigenstate Eu−

24 , the better assignment
is (nC1 , nC2) = (4,1), because it is organized primarily around (ψa, ψb) = (π, π).
Eigenstate Eu−

27 is shown for reference; although it can be assigned as (nC1 , nC2) =
(4,0), the outer lobes of the wavefunction are clearly distorted due to the C1a and C1b

bifurcated orbits.
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orbits C1a and C1b.

Similar observations can be made for the wavefunctions Eu−
19 and Eu−

24 . Note that

in each case, the probability density is large around the points ψa = ±π/2, ψb = ±π/2.

These are exactly the points where the orbits M r
1a and M r

1b have high curvature in

configuration space (see Fig. 8-7) and where they move with extremely low speed.

The second link between the top and bottom of the polyad is between L2 and C2,

mediated by the M2 periodic orbit that organizes within Region III around the saddle

point (ψa, ψb) = (0, π). The state Eg+
5 (Fig. 8-14), in Region II, is organized primarily

around (ψa, ψb) = (0, 0) and can be assigned as (nL1 , nL2) = (0, 6), although it is clear

that the probability is concentrated near the saddle point at (ψa, ψb) = (0, π). With

Eg+
8 , the primary organizing center is clearly (ψa, ψb) = (0, π), and thus this state

is assigned as (nM2 , nL2) = (0, 0). However, a close inspection of this eigenstate also

reveals that eight nodes can be counted between ψb = π and −π, so that this state

could also be assigned approximately as (nL1 , nL2) = (0, 8). This is the quantum

mechanical manifestation of the L2/M2 link.

Figure 8-15 provides another viewpoint on the transition from eigenstates being

dominated by the (ψa, ψb) = (0, 0) fixed point to the (0, π) saddle point. It plots the

energy differences between adjacent members of the (nL1 = 0, nL2) series of states, for

both g and u symmetry (nL2=odd states have − parity, and nL2=even states have +

parity). Up to nL2 = 6, the energy differences are very nearly the same for the g and

u symmetry series, indicating that the states occur in nearly degenerate g/u pairs.

[The energy difference between consecutive members of the sequence is, to a good

approximation, the period of the L2 periodic orbit at an energy half-way between

the two states.] By nL2 = 7, the two series diverge, indicating that the states are

organized primarily about the (0, π) saddle point.

The link between M2 and C2 can be seen in the eigenfunctions Eg+
30 and Eg+

35 . Eg+
30

is clearly organized around the saddle point (ψa, ψb) = (0, π), and can be assigned

as (nM2 , nL2) = (4, 0), while Eg+
35 is organized around (ψa, ψb) = (π, π) and can be

assigned as (nC1 , nC2) = (0, 5). This observation is consistent with the fact that Eg+
30

lies just below, and Eg+
35 lies just above, Ec, the boundary between Regions III and
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Figure 8-14: Semiclassical eigenfunctions in Region III of polyad [22,0] that illustrate
the link between the L2 and M2, and M2 and C2, periodic orbits. Eigenstate Eg+

5 can
be assigned as (nL1 , nL2) = (0,6), but its probability density is strongly localized near
the (ψa, ψb) = (0, π) saddle point. The eigenstate Eg+

8 , on the other hand, is clearly
localized around (ψa, ψb) = (0, π), and is best assigned as (nM2 , nL2) = (0,0). The
bottom two panels depict the way in which the series of eigenstates with excitation
along M2 link to the series of states with excitation along C2 (the change occurs at
Ec, the boundary between Regions III and IV). Eigenstate Eg+

30 , which lies within
Region III, is assigned as (nM2 , nL2) = (4,0), while eigenstate Eg+

35 , in Region IV, is
better assigned as (nC1 , nC2) = (0,5).
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Figure 8-15: Energy differences between adjacent members of the series of states
which can be assigned as (nL1 = 0, nL2). This series originates within Region I, where
the eigenstates appear in nearly degenerate pairs, with opposite g/u symmetry, which
share the same semiclassical assignment. Thus, the energy differences of the g and u
symmetry states are very nearly identical. As energy increases, free rotation becomes
possible for the L2 periodic orbit, which runs along ψb with ψa = 0, but the point
(ψa, ψb) = (0, π) acts as a saddle point, and the probability of the series of eigenstates
localizes near this point (for nL2 > 6 in particular). The divergence of the progressions
above nL2 = 6 indicates that the nominal assignments, as (nL1 = 0, nL2), are only
approximate.
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IV, where M2 becomes C2. However, both eigenstates are organized along ψb = π,

and the outer lobes of probability in each case are located at ψb ≈ π/2.

As mentioned previously, many of the states within Region III can be assigned

only approximately, or, in a few cases, not at all. Several such states are depicted

in Fig. 8-16. There exist several eigenstates like Eg+
10 that clearly organize around

(ψa, ψb) = (0, 0), but whose nodes appear to form a ring rather than align parallel

to either L1 or L2. No periodic orbit is known that forms such a ring structure,

but close inspection of this eigenfunction reveals that there is exactly one node in

the ψa direction, at ψa = 0, and thus this state can be assigned approximately as

(nL1 , nL2) = (1, 5). A corresponding state near the top of Region III, Eg+
31 , clearly

organizes primarily around (ψa, ψb) = (π, π), but again appears to form a ring, making

assignment difficult. This eigenstate can be assigned approximately as (nC1 , nC2) =

(2, 3), particularly after comparing it with the eigenstates at the bottom of Fig. 8-10,

which could be assigned as (nC1 , nC2) = (2, 2). The ring-shaped nodal structure of

states such as Eg+
10 and Eg+

31 appears to be generated by the multiple bifurcations that

L1 and C1 (respectively) have undergone before they enter Region III. That is, within

Region III, L1 and C1 are no longer as important as L1a/b and C1a/b in organizing

the quantum eigenfunctions, and the bifurcated orbits do not run along ψb = 0 and

ψa = π, respectively, but rather tend to move in a more diagonal direction.

Other eigenstates, such as Eg+
20 and Eg+

29 , do not appear to yield to even approx-

imate assignment. In the case of Eg+
29 , some fraction of the probability appears to

organize around (ψa, ψb) = (π, π), and this portion of the wavefunction can perhaps

be assigned approximately as (nC1 , nC2) = (4, 1). However, much of the probability

density is localized elsewhere, particularly near ψb = 0. Since there is substantial

probability localized near both ψb = 0 and ψb = π, this eigenstate will not appear in a

doublet (according to the symmetry arguments of Section 8.8), and thus is probably

best considered to be “unassignable”. Eigenstate Eg+
20 , on the other hand, has most

of its probability localized near (ψa, ψb) = (π, 0). Unlike (ψa, ψb) = (0, π), the point

(ψa, ψb) = (π, 0) cannot be considered a saddle point, but the L1 periodic orbit does

slow down substantially near this point, which probably accounts for the accumula-
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Figure 8-16: Several eigenstates of g+ symmetry within Region III that can only be
assigned semiclassical quantum numbers approximately, or not at all.
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tion of probability there. However, beyond this qualitative explanation, there appears

to be no reasonable quantum number assignment for this state.

At this point, it is probably worthwhile to say a few words about how the semi-

classical eigenstate assignments made here compare to the quantum mechanical as-

signments made in Chapter 7. In Chapter 7, a harmonically coupled, anharmonic

local mode model was derived for the bend modes of acetylene and shown to provide

a much better zero-order description of the eigenstates at high energy, as exemplified

by polyad [22,0], than the conventional normal mode model. A total of 65 of the

144 states in the polyad could be assigned local mode quantum numbers using the

Hose-Taylor criterion [149]. The same set of quantum numbers, |v�11 , v�22 〉, were used

to describe states both at the bottom and top of the polyad (for [22,0], a state like

|220, 00〉 would represent a local bender, and a state like |11−11, 11+11〉 would repre-

sent a counter-rotator). Many eigenstates in the middle of the polyad could not be

assigned in this way. In this chapter, although a few states in the middle of the polyad

might be considered “intrinsically unassignable”, many others have well-defined nodal

patterns that are simply not well described in terms of local bend or counter-rotation

motions.

To be fair, in this work, no rigorous basis set was defined for making the semi-

classical assignments; rather, visual inspection was used to reveal quantum number

assignments associated with particular isoenergetic periodic orbits. Three different

quantum number assignment schemes were used, depending on which fixed point of

the dynamics the eigenstate appeared to organize around, although the assignments

at the top and bottom of the polyad can be “linked” based upon the evolution of

the periodic orbits. Based upon visual inspection, 122 of the 144 states in the [22,0]

polyad can be assigned semiclassical quantum numbers, at least approximately. Each

assigned eigenstate is understood to be a quantum mechanical manifestation of a

particular type of classical motion. For example, the observed spectral pattern for

polyad [22, 0]g+ consists, to a good approximation, of just 3 peaks (see Chapter 6)

that terminate on eigenstates Eg+
26 (see Fig. 8-12), Eg+

30 (see Fig. 8-14) and Eg+
32 . Each

of these eigenstates can be assigned in terms of increasing excitation along M2 (Fig. 8-
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7), which, as mentioned above, implies an increasingly counter-rotational component

to the classical motion.

8.6 Conclusion

The aim of this concluding section is to place the work reported here into the con-

text of other recent studies of vibrational motion in small polyatomic molecules that

employ the techniques of non-linear dynamics. It is not possible to review the litera-

ture on semiclassical methods and their application to molecular vibrational motion;

the literature is too vast, and there exists an excellent, although by now somewhat

outdated, review article by Gomez and Pollak [150], as well as textbooks by Child

[151] and Gutzwiller [18], which provide didactic overviews of different aspects of the

field. However, several recent studies that have collectively provided inspiration for

this work include:

• Classical and semiclassical analyses of the local mode behavior of molecules

with multiple hydrogen stretch modes [152, 33];

• Studies of algebraic Hamiltonians with a single resonance, including a series of

papers by Kellman [109, 153, 119, 111, 112, 110, 154] and Ezra [155], as well as

earlier work of Heller and coworkers [123]; and

• Several studies of triatomic molecules, including water [156, 141] (as represented

by the Baggott Hamiltonian [105]) and HCP [26].

Acetylene has been the subject of several studies as well, including the early studies

of Holme and Levine [157, 158, 159], and the more recent studies of Farantos [160],

Kellman [109, 153], and McCoy and Sibert [27]. The most recent contribution is by

van der Pals and Gaspard [134], who studied the periodic orbits associated with an

effective Hamiltonian for all degrees of freedom of acetylene, including the bending

modes. Their study differs from this one in that quantum-classical correspondence is

addressed in the time-domain, using vibrograms, as opposed to the direct comparison

of eigenstates with periodic orbits performed here.
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One feature of this work that distinguishes it from all of the other classical and

semiclassical studies of acetylene listed above is that it is based upon a model that

reproduces the observed vibrational levels to very high internal energy (15,000 cm−1).

It is worth repeating that no potential surface was used in this work, since no surface

was available that could reproduce the observed eigenvalues adequately. As such, an

effective Hamiltonian model was fitted to the observed spectra and used to generate

a detailed semiclassical analysis of the bend degrees of freedom of acetylene. As has

been pointed out in previous work [141], this approach has a number of advantages.

Effective Hamiltonians not only tend to be much easier to fit to experimental spectra

than potential surfaces, but they can also make explicit the existence of approximately

conserved dynamical quantities (polyad numbers) that reduce the dimensionality of

the problem.

If a potential surface for acetylene with sufficient accuracy becomes available, then

two approaches will be possible. One is to use the potential surface to calculate di-

rectly the classical dynamics, as was done in the Prosmiti and Farantos study of acety-

lene [160]. In the case of acetylene, these calculations are six-dimensional, as opposed

to the two dimensional Hamiltonian considered in this chapter that resulted from

exploiting the existence of three approximately conserved polyad numbers. Thus,

assessing quantum-classical correspondence would be substantially more difficult if

one were to calculate the classical dynamics and quantum eigenstates directly from

the 6D potential surface.

A second possible approach if a potential surface is available is to use perturbation

theory (Gustavson [26] or canonical Van Vleck [24]) to solve the Hamilton-Jacobi

equations for the action-angle variables and also to construct to some high order an

effective Hamiltonian that can then be analyzed in a spirit similar to what is done here.

In such an approach, the lifting procedure, which relates the abstract action/angle

space of the classical calculations to the physical coordinates of the molecule, is exact.

This strategy appears in the work of Joyeux [26] as well as Sibert and McCoy [24],

who also have considered the bending modes of acetylene. The potential surface used

by Sibert and McCoy has not been refined sufficiently to reproduce the experimental
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eigenvalues up to 15,000 cm−1, but their approach influenced in many ways the work

reported here.

Recent work on the simpler system of HCP illustrates both approaches. An early

version of the HCP potential surface [116] was used directly for calculating peri-

odic orbits that were instrumental in elucidating unusual spectroscopic observations

[161, 162] associated with qualitative changes in the potential energy surface near

the barrier to isomerization. Recently, a potential surface has been constructed for

HCP that does an excellent job of reproducing the experimental stimulated emission

pumping spectra. This potential surface has been used by Joyeux [26] to obtain an

effective Hamiltonian using perturbation theory. This effective Hamiltonian has two

conserved polyad numbers that reduce the dimensionality of the problem to 1D.

Two major challenges face the application of the methods used here to other

systems. First, the approach used here relies on the existence of conserved quanti-

ties to reduce the number of degrees of freedom of the Hamiltonian to two or fewer.

These approximately conserved, polyad quantum numbers are known to exist in many

molecules. However, particularly for molecules larger than acetylene, the number of

such polyad numbers may not be sufficient to reduce the dimensionality of the prob-

lem substantially. The second problem is that effective Hamiltonian models are not

generally applicable to systems with multiple accessible minima, such as isomerizing

systems. Acetylene itself is known to be capable of isomerizing to vinylidene some-

what above 15,000 cm−1 [4]. Thus, the ability to extrapolate the effective Hamiltonian

model of acetylene bending dynamics to higher energies may be limited, although ju-

dicious use of such models may permit some insight at energies above a saddle point,

because initially only a small fraction of phase space will be occupied by trajectories

that access multiple minima. The situation is not unlike the successful use of bound

state methods to calculate resonances in the continuum [163].

Finally, the authors of this study wish to stress that the combination of classi-

cal, semiclassical, and quantum approaches holds a great advantage over methods

limited to any one approach. The periodic orbits give the stable classical motions

of the molecule; their projections into configuration space provide a natural set of
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coordinates for quantum number assignments (i.e., by node counting) which allow

the untangling of interleaved energy level sequences and wave function interferences

that occur upon quantization.
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8.7 Appendix: Lifting

This Appendix addresses the question of how to relate trajectories in the abstract

action/angle space (Ja, ψa, Jb, ψb) to physical motions of the molecule. The relation-

ships derived will necessarily be approximate; in the absence of an accurate potential

energy surface for the molecule, it is not possible to solve the Hamilton-Jacobi equa-

tions for the relation between position and momentum variables (p̄,x̄) and the actions

and angles (Ī,φ̄). However, it is possible to determine the relationship between the

(Ī,φ̄) and (p̄,x̄) for an approximate, physically plausible model, and assume these

actions and angles to be those of HC .

The natural model to relate the (Ī,φ̄) to (p̄,x̄) is that of two uncoupled, isotropic,

two-dimensional harmonic oscillators (i.e., the zeroth order part of the Hamiltonian

that was fit to the observed spectra):

H◦ = H◦
4 +H◦

5 (8.25)

H◦
i =

p2
xi

2
+
p2
yi

2
+
ω2
i

2
(x2

i + y2
i ) (i = 4, 5) (8.26)

278



   

in which the indices 4 and 5 refer, as usual, to the cis and trans bend normal coor-

dinates. A general solution for the motion of this system is

xi(t) = xid(t) + xig(t) = Aid cos(ωit+ αid) + Aig cos(ωit+ αig) (8.27)

yi(t) = yid(t) + yig(t) = Aid sin(ωit+ αid) − Aig sin(ωit+ αig), (8.28)

where the four constants Aid, Aig, αid, and αig are determined by the initial conditions.

The action of an oscillator i is given as

I◦i =
1

2π

∫ 2π/ωi

0
dt[ẋi(t)pix(t) + ẏi(t)piy(t)] (8.29)

and thus

I◦id = ωiA
2
id (8.30)

I◦ig = ωiA
2
ig. (8.31)

Since the oscillators do not interact in this model,

I◦total = I◦4d + I◦4g + I◦5d + I◦5g = ωi(A
2
4d + A2

4g + A2
5d + A2

5g). (8.32)

Thus, the total actions in zero order relate to those of the individual oscillators in

exactly the same manner as do their abstract analogues in the fully coupled case.

This suggests that the A’s and angles can be evaluated by equating the I◦ with I,

and ωt+ α with φ, all with the same index:

xi =
√
Iid/ωi cos(φid) +

√
Iig/ωi cos(φig) (8.33)

yi =
√
Iid/ωi sin(φid) −

√
Iig/ωi sin(φig). (8.34)

Invoking the canonical transformation gives the final result

x4(t) = [(Ka +Kb + Ja − Jb)/ω4]
1/2 cos[(θa + θb + ψa − ψb)/4] (8.35)

+ [(Ka −Kb + Ja + Jb)/ω4]
1/2 cos[(θa − θb + ψa + ψb)/4]
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y4(t) = [(Ka +Kb + Ja − Jb)/ω4]
1/2 sin[(θa + θb + ψa − ψb)/4] (8.36)

− [(Ka −Kb + Ja + Jb)/ω4]
1/2 sin[(θa − θb + ψa + ψb)/4]

x5(t) = [(Ka +Kb − Ja + Jb)/ω5]
1/2 cos[(θa + θb − ψa + ψb)/4] (8.37)

+ [(Ka −Kb − Ja − Jb)/ω5]
1/2 cos[(θa − θb − ψa − ψb)/4]

y5(t) = [(Ka +Kb − Ja + Jb)/ω5]
1/2 sin[(θa + θb − ψa + ψb)/4] (8.38)

− [(Ka −Kb − Ja − Jb)/ω5]
1/2 sin[(θa − θb − ψa − ψb)/4].

Finally, for purposes of plotting the orbits, one can transform to rectilinear coordi-

nates that describe the motions of the two individual hydrogens, which are labeled 1

and 2 (a similar transformation was invoked in Chapter 7):

x1 = x4 + x5 (8.39)

y1 = y4 + y5 (8.40)

x2 = −x4 + x5 (8.41)

y2 = −y4 + y5. (8.42)

These are the coordinates that are plotted in Figs. 8-5 and 8-7.

The prescription for obtaining the bending motions of the molecule in a physical

coordinate space is now in principle simple. For a given trajectory or periodic orbit

in the abstract space, Ja(t), Jb(t), ψa(t), and ψb(t) are known, as are Ka = (Nb +2)/4

and Kb = �/4. To use Eqs. 8.35–8.38, one also needs to know θa(t) and θb(t), which

can be obtained from solving Hamilton’s equations as

θ̇a,b(t) =
∂H(J̄(t), ψ̄(t), K̄)

∂Ka,b

. (8.43)

Several points are worth discussing here. First is the question of the initial conditions

to use in solving Eq. 8.43. The θ’s do not appear in HC , and thus all trajectories are

independent of these variables. In practice, different choices of the initial conditions

correspond to trivial differences in the orientations of the motions (e.g. bending along

the x versus y direction). This is because Eqs. 8.35–8.38 show that θa/4 represents
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a common shift of all oscillator phases, which is equivalent to a translation in time,

and θb/4 rotates the plane of the (x,y) coordinate system. Neither of these operations

affects the relative motions of the hydrogens.

A more subtle point concerning Eq. 8.43 is that, in general, most of the “lift”

comes from θa(t), while θb(t) has a small effect that comes in at higher orders. θa(t)

is a “fast” variable whose time dependence in the harmonic limit is 2(ω4 + ω5)t. To

appreciate this, notice that at the fixed points (ψa, ψb) = (0,0) or (π, π), all derivatives

of HC with respect to J̄ and ψ̄ must be zero, which in turn requires from Hamilton’s

equations that J̇ = ψ̇ = 0. Hence at the extreme points, θa is solely responsible for

the lifting, and according to Eq. 8.43, only the harmonic part of HC contributes to

the time dependence. As Kellman has pointed out [164], a fixed point in the abstract

action/angle space (ψa, ψb) must lift to a periodic orbit in the physical coordinates of

the molecule (i.e., x4, x5, y4, y5) that lies on a full dimension torus.

The lift of periodic orbits (as opposed to fixed points) in the abstract action/angle

space is still dominated by θa(t), but the lifted trajectory will now be quasiperiodic

on the torus in the physical coordinate space. Similarly, the lift of quasi-periodic

orbits in the abstract action/angle space results in quasi-periodic fluctuations in the

trajectory in the (x, y) coordinates that tend to replace the periodic orbit with a

braid-like trajectory. Note that the dominance of θa in controlling the lift implies

that the motion in the abstract action/angle coordinates tracks the deviation from

the “ideal” trajectory found at the fixed point. Near the fixed point where the 2D

motion is effectively harmonic, the two basic periodic orbits reduce to the normal

modes of this deviation.

8.8 Appendix: Symmetry Properties of the Semi-

classical Wavefunctions

This Appendix considers how g/u symmetry and parity, which are quantum mechan-

ically conserved, are manifested in the semiclassical eigenfunctions.

Parity is the symmetry with respect to inversion of the space-fixed axes, and is
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equivalent, for a symmetric top, to the σ̂v point group operation (see, for example,

Ref. [165]). In terms of the rectilinear displacement coordinates defined for each

hydrogen in Section 8.7, the effect of the parity operation can be taken to be

σ̂v(x1, y1, x2, y2) → (x1,−y1, x2,−y2). (8.44)

These relationships in turn imply that the normal mode displacement coordinates

transform as

σ̂v(x4, y4, x5, y5) → (x4,−y4, x5,−y5). (8.45)

Inspection of Eqs. 8.35–8.38 reveals that this transformation of the normal mode coor-

dinates can be generated by the following simple transformation among the abstract

coordinates:

σ̂v(Kb, θb, ψb, Jb) → (−Kb,−θb,−ψb,−Jb). (8.46)

This transformation can therefore be considered to represent the effect of the parity

operation in the abstract coordinates.

The g/u symmetry refers to inversion through the molecular center of symmetry,

denoted by ı̂. In the rectilinear displacement coordinates, the effect of inversion is

ı̂(x1, y1, x2, y2) → (−x2,−y2,−x1,−y1). (8.47)

or

ı̂(x4, y4, x5, y5) → (x4, y4,−x5,−y5) (8.48)

(mode 5, cis bend, has Πu symmetry, while mode 4, trans bend, has Πg symmetry).

This symmetry operation, like parity, can be generated by a simple transformation

among the abstract coordinates, which in this case is

ı̂(Kb, θb, Jb, ψb) → (Kb, θb + 2π, Jb, ψb + 2π). (8.49)

This transformation might appear to be a trivial one, since θb and ψb are cyclic in 2π.

However, notice that the canonical transformation of Eq. 8.7 is only one-to-one on a
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region of angles from 0 to 4π in ψa and in ψb. In a similar manner, the equations that

defined the “lift”, Eqs. 8.35–8.38, indicate that motion in the space (x1, x2, y1, y2) is

periodic upon changes of 4π in any or all of the four angles ψa, ψb, θa, θb, but is not

periodic upon changes of 2π.

In this chapter only polyads with Kb = 0 are considered, and for this case HC

is invariant under the both of the symmetry operations in Eqs. 8.46 and 8.49. In

addition, the semiclassical wavefunctions should be expected to, at most, change sign

under the corresponding transformations in the configuration space:

σ̂v(ψa, ψb) → (ψa,−ψb) (8.50)

ı̂(ψa, ψb) → (ψa, ψb + 2π). (8.51)

These symmetry properties can be used to explain the appearance of symmetry dou-

blets among the eigenfunctions in polyad [22,0] and other high energy polyads.

Consider first a semiclassical eigenfunction that is localized around ψb = 0 (i.e.,

a state that has very nearly zero amplitude near ψb = π). Because the accessible

phase space in Region I is restricted to the vicinity of (ψa, ψb) = (0, 0), all eigenstates

in Region I fulfill this condition, but certain states in Regions II and III could be

similarly restricted due to dynamical localization. First, the symmetry property in

Eq. 8.50 implies that any semiclassical eigenfunctions must be either symmetric or

antisymmetric about ψb = 0; this symmetry reflects the parity of the eigenstate.

In the context of states localized around ψb = 0, those states with even quanta of

excitation along L2 have positive parity, and states with odd quanta have negative

parity. The symmetry property of Eq. 8.51 implies that the wavefunction must be

symmetric or antisymmetric with respect to a shift of 2π along ψb; this operation

reflects the g/u symmetry. Thus, if a state has negligible amplitude near ψb = π, then

it must appear in a doublet with a state of opposite g/u symmetry (i.e., a state with

nearly identical probability distribution, but different signs at ψb = 0, 2π, 4π, · · ·). If

the state is mostly organized around ψb = 0, but has non-negligible amplitude in the

vicinity of ψb = π, then the doublet pairs will be split slightly, in a manner analogous
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to tunneling in a double well minimum.

Similar arguments can be given for states localized about ψb = π, which includes

all states within Region IV, as well as those states in Region III that are organized

around (ψa, ψb) = (0, π) or (π, π). Note that reflection about the line ψb = π is

equivalent to the application of both symmetry operations, Eqs. 8.50 and 8.51, in

succession (in either possible order). As a result, states with an even number of

quanta of excitation in the ψb direction [i.e., along C1, for those states organized

about (ψa, ψb) = (π, π); or along L2, for those states organized around (ψa, ψb) =

(0, π)], must have either g+ or u− symmetry; those states with an odd number of

quanta in the ψb direction must be either g− or u+. As long as the states in question

have little probability near ψb = 0, then they will appear in doublets of g+/u− or

g−/u+.
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Chapter 9

Anomalously Simple Stretch-Bend

IVR
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This chapter, other than the Appendix, has been published in the Journal of Chemical

Physics as Ref. [166].

9.1 Introduction

Chapters 6, 7, and 8 examined in some detail the bending vibrational dynamics of

acetylene, particularly at high vibrational energy (∼15,000 cm−1). This chapter ex-

plores vibrational energy flow between the bend and stretch degrees of freedom, with

particular emphasis on the phenomenon of anomalously slow intramolecular vibra-

tional redistribution (IVR). At high internal energy (>10,000 cm−1) most of the

observed bright states (which have nonzero quanta in the CC stretch and trans bend

modes) display complicated fractionation patterns, corresponding to fast IVR (see

Fig. 5-13). However, a series of bright states can be identified, up to at least 15,000

cm−1, that display virtually no fractionation at all (at ∼7 cm−1 resolution). The

bright states that display this anomalously slow IVR share the property that v4 ≤ 8,

with the rest of the vibrational excitation in the CC stretch mode. Thus, at high

internal energy, the rate of IVR is very sensitive to the way in which vibrational

excitation is divided among the two Franck-Condon active modes.

This observation is clearly at odds with statistical models of vibrational relaxation,

but it should also be noted at the outset that this phenomenon is not well-described

by the theoretical constructs of “extreme motion” or “exterior” states [100, 101],

which are frequently invoked to explain similar instances of anomalously slow IVR.

Exterior states are those zero-order states which have all of their vibrational excitation

residing in just one of the modes (or, in the case of larger molecules, in a small

number of modes) of the molecule. At a phenomenological level, exterior states are

expected to have fractionation patterns that are atypically simple, because they are

coupled to fewer other zero-order states, via the important anharmonic resonances,

than states with vibrational excitation that is distributed more democratically among

the modes. More rigorous justifications for this type of anomalously slow IVR have

been advanced, in terms of an adiabatic decoupling of the extreme motion (exterior)
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Figure 9-1: Acetylene S1 → S0 dispersed fluorescence spectra recorded using the Q(1)
lines of the V 2

0 K
1
0 (dotted line) and 21

0V
2
0 K

1
0 (solid line) absorption bands. Groups of

lines in the spectra can be assigned as single fractionated bright states using a pattern
recognition approach.

states from other states [100, 101]. However, these formalisms provide little insight

into the slow IVR that is reported here, because the bright states which have been

identified as anomalous do not have all of their vibrational excitation in one mode;

rather, several of these states approach the limit v2 ≈ v4. By contrast, the bright

states with all of their vibrational excitation in the trans bend mode (v2 = 0) do not

display anomalously slow IVR (see Chapter 6).

9.2 Vibrational Assignments

Figure 9-1 illustrates the coexistence of minimally and extensively fractionated bright

states at high internal energy. The two spectra depicted are dispersed fluorescence

(DF) spectra of acetylene S1 → S0 emission, which were recorded using the Q(1) lines

of the V 2
0 K

1
0 (dotted line) and 21

0V
2
0 K

1
0 (solid line) absorption bands (V represents the

trans bending mode, v′3 in the S1 state and v′′4 in the S0 state; “2” represents the CC

stretch; and K has its conventional meaning as the unsigned body-fixed projection

of the total angular momentum). See Chapter 5 for experimental details.

287



    

Using the arguments laid out in Section 5.4, the clump of peaks at the low energy

end of Fig. 9-1 can be identified as a single fractionated bright state, because the

relative intensities of the peaks are nearly identical in both of the spectra. The zero-

order bright state that gives rise to this fractionation pattern has been assigned as

(0, 1, 0, 160/2, 00) based upon its approximate zero-order energy1 [the “0/2” superscript

on the v4 quantum number reflects the fact that both (J = 1, � = 0) and (J = 2,

� = 2) rotational lines are observed experimentally]. The relative intensity of the

pattern in the two spectra implies that the Franck-Condon factor for this bright

state is greater in the 21
0V

2
0 K

1
0 spectrum than it is in the V 2

0 K
1
0 spectrum. Two

other bright state fractionation patterns can be identified similarly. Note that the

(0, 2, 0, 140/2, 00) bright state has virtually zero Franck-Condon intensity in the V 2
0 K

1
0

spectrum. The (0, 4, 0, 80/2, 00) bright state has appreciable Franck-Condon intensity

in both spectra, but it appears to consist of a single peak, despite being located

directly between two bright states that each fractionate, in a complicated fashion,

over several hundred cm−1. Thus, in this region of internal energy, there coexist

three bright states, distinguished only by the way in which vibrational excitation is

divided between the Franck-Condon bright modes, with greatly disparate rates of

IVR.

In the preceding discussion, the identity of the small peak at 12,742.5 cm−1 in the

V 2
0 K

1
0 DF spectrum in Fig. 9-1 was not considered. Clearly, this peak does not belong

to the (0, 2, 0, 140/2, 00) fractionation pattern, since this bright state has nearly zero

Franck-Condon intensity in the V 2
0 K

1
0 spectrum. A more likely hypothesis is that this

small peak belongs to the (0, 4, 0, 80/2, 00) bright state pattern, and its identity has

been somewhat obscured by overlap with the (0, 2, 0, 140/2, 00) fractionation pattern.

As described in Chapter 5, the Extended Cross Correlation pattern recognition tech-

nique (Chapter 2) allows the individual fractionated bright states to be disentangled

from each other by processing all five of the DF spectra in the data set simultane-

ously, even when the bright states overlap each other strongly. Using this procedure,

1The zero-order energy of the bright state can be approximated by the center of gravity of the
observed fractionation pattern.
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the fractionation patterns of 38 bright states, with up to 15,000 cm−1 of internal

energy, have been identified. The application of the numerical pattern recognition

algorithms to the data in Fig. 9-1 (together with the other three DF spectra, which

are not shown) confirms that the peak at 12,742.5 cm−1 does, in fact, belong to the

(0, 4, 0, 80/2, 00) bright state pattern. In other words, this transition is observable

in the spectrum because the vibrational level on which the transition terminates is

involved in a (relatively weak) mutual perturbation with the zero-order bright state

(the vibrational level at 12,541.2 cm−1 is the slightly perturbed bright state). This

minor fractionation of the (0, 4, 0, 80/2, 00) bright state implies highly restricted IVR,

at least on the ∼1 ps timescale associated with the resolution (∼7 cm−1) of the DF

spectra.

It would be difficult to identify unambiguously the perturber of (0, 4, 0, 80/2, 00)

based upon just one fractionation pattern. However, between 10,000 and 15,000

cm−1 of internal energy, five other anomalously simple fractionation patterns were

observed, each of which has been assigned to a bright state with either 6 or 8 quanta

of trans bend, and the remainder of the excitation in the CC stretch mode.2 Figure

9-2 displays all of the fractionated bright state patterns of the form (0, v2, 0, 6
0/2, 00)

or (0, v2, 0, 8
0/2, 00) that were extracted from the DF data set up to 15,000 cm−1.

The IVR associated with all of the zero-order bright states represented in Fig. 9-2 is

minimal. Each of the fractionation patterns consists of one main peak which carries

at least 90% of the intensity (the perturbed bright state), and in most cases, at least

one smaller peak at higher internal energy (“perturbers” of the bright state). For

all of the bright states with v2 ≤ 4, the second tallest peak in each fractionation

pattern, which contains ∼3-7% percent of the bright state intensity, is marked with

an asterisk. Note that the positions of these peaks appear to follow a well-defined

trend, gradually growing more distant from the perturbed bright state as v2 increases.

2It should be noted that several fractionated bright states with v4 = 4 were also extracted, but
with poor signal-to-noise, because the Franck-Condon factors for those bright states are small for
transitions from all of the vibrational levels that were used as intermediates in the S1 state of acety-
lene. As a result, all of the extracted fractionation patterns for the bright states (0, v2, 0, 4

0/2, 00)
are single spectral lines.
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Figure 9-2: Fractionated bright state patterns with v4 = 6 or 8 that were extracted
from the DF data set using numerical pattern recognition, up to Evib=15,000 cm−1.
The patterns for all of the bright states with v2 ≤ 4 consist of one main peak and
one or more “perturber” peaks. No perturber peaks were identified for the v2 > 4
bright states, likely due to the weaker intensities of these patterns in the DF spectra
(small Franck-Condon factors). The centers of the most intense peaks in each pattern
are aligned vertically in each column. The second most intense peaks in each of the
v2 ≤ 4 patterns are marked with asterisks; note the increase in the energy difference
between the two most intense peaks as v2 increases.
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Figure 9-3: Energy differences between the two most intense peaks in the v2 ≤ 4
fractionated bright state patterns in Fig. 9-2. The crosses represent the series of
bright states with v4 = 6, and the circles, v4 = 8. For both series, the energy difference
appears to increase approximately linearly with v2. The dotted lines represent the
predicted energy differences of the refined global effective Hamiltonian.

In fact, as Fig. 9-3 makes clear, the splittings between these pairs of peaks grow

very nearly linearly with increasing v2. Several of the fractionation patterns also

show evidence of other perturbers, even weaker (∼1% of the bright state intensity)

than the peaks with the asterisk, but the positions of these peaks do not follow any

simple trend. No perturber peaks were identified by the numerical pattern recognition

algorithms for the bright states with v2 > 4. This does not imply that these bright

states are free from perturbation, but rather that any perturbation that exists is too

weak to be detected. It should be noted that the bright states with high v2 tend

to have small Franck-Condon factors in the DF spectra, and as such, the necessarily

weak perturber peaks, if they exist, approach the noise level in the spectra.

The most remarkable aspect of Fig. 9-2 is that IVR appears not to increase with

v2, the number of quanta of CC stretch. The minimally fractionated bright state in

Fig. 9-1, (0, 4, 0, 80/2, 00), has a fractionation pattern which is at least as “simple” as

that of (0, 0, 0, 80/2, 00), despite being more than 7,000 cm−1 higher in internal energy.

The anomalously slow IVR at high internal energy can thus be considered to be a
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manifestation of the insensitivity of the rate of IVR to the number of quanta of CC

stretch for these series of bright states (v4 ≤ 8). The remainder of this chapter is

devoted to understanding the IVR that is represented in Fig. 9-2. A starting point for

this analysis is the recognition that the fractionation patterns for the two bright states

with v2 = 0 have already been adequately modeled. These two bright states belong to

polyads in which all of the states involve excitation only in the trans and cis bending

modes, the so-called pure bending polyads. In Chapter 6 it is demonstrated that

an effective Hamiltonian which incorporates only 3 quartic anharmonic resonances

(Darling-Dennison Bend I and II, vibrational �-resonance) is capable of reproducing

all experimentally observed pure bending eigenstates (up to 15,000 cm−1), with ± 1.4

cm−1 accuracy (1σ). This model reveals that the relatively weak “perturber” peaks

that are observed for the (0, 0, 0, 60/2, 00) and (0, 0, 0, 80/2, 00) bright states gain their

intensity through Darling-Dennison bending resonances. More precisely, within the

constraints of the effective Hamiltonian model, the redistribution of the vibrational

excitation from the bright states to the rest of the polyad must proceed through one

of two “gateway” states, which are coupled directly to the bright state. For instance,

the gateway states that correspond to the (0, 0, 0, 60, 00) bright state are (0, 0, 0, 40, 20)

and (0, 0, 0, 4+2, 2−2), which interact with the bright state through Darling-Dennison

Bend I and II resonances respectively. At higher internal energy, the vibrational

excitation can flow from the gateway states into the interior of the polyad, creating

more complicated IVR, but for v4 ≤ 10, the IVR is adequately described in terms of

restricted energy flow only among the bright state and the two gateway states.

Within polyads that do involve excitation in the stretching degrees of freedom,

a number of additional anharmonic resonances have been demonstrated to exist [5],

including a Darling-Dennison stretch resonance (between the two CH stretch modes)

and at least four resonances that couple the stretch and bend degrees of freedom.

However, only one of these additional resonances can couple a zero-order bright state,

(0, v2, 0, v
0/2
4 , 00), directly with another zero-order state within the polyad. This an-

harmonic resonance is referred to as (1,244), meaning that it exchanges two quanta of

trans bend together with one quantum of CC stretch for one quantum of symmetric
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CH stretch. Thus, for any (� = 0) bright state with v2 > 0, there are three possible

gateway states:

1. (0, v2, 0, (v4 − 2)0, 20), via a Darling-Dennison Bend I resonance

2. (0, v2, 0, (v4 − 2)+2, 2−2), via a Darling-Dennison Bend II resonance

3. (1, v2 − 1, 0, (v4 − 2)0, 00), via a (1,244) resonance.

Because the IVR represented in Fig. 9-2 does not suddenly increase from v2 = 0 to

v2 = 1, it appears to be unlikely that the (1,244) resonance plays a significant role in

the observed IVR for the bright states with v2 �= 0. On the contrary, the regularity

of the positions and intensities of the peaks marked with asterisks from v2 = 0 to 4

suggests that the rather weak IVR in the v2 �= 0 bright states is also due primarily,

though not necessarily exclusively, to Darling-Dennison bending resonances.

The hypothesis that the perturber peaks gain their intensity through Darling-

Dennison bending resonances is also supported by the gradual, nearly linear increase

in the separation between the two most intense peaks with increasing v2 (Fig. 9-3).

Although the relevant Darling-Dennison matrix elements do not depend on v2, the

increase in the separation can be explained in terms of a detuning of the zero-order

energy of the bright state relative to the Darling-Dennison gateway states. The zero-

order energy of the (0, v2, 0, v
0
4, 0

0) bright states can be expressed, up to x-terms,

as

Eb = ω2v2 + ω4v4 + x22v
2
2 + x44v

2
4 + x24v2v4 , (9.1)

while the gateway state (0, v2, 0, (v4 − 2)0, 20) has

Eg = ω2v2 + ω4(v4 − 2) + 2ω5 + x22v
2
2 + x44(v4 − 2)2

+ 4x55 + x24v2(v4 − 2) + 2x45(v4 − 2) + 2x25v2 . (9.2)

Note that the energy of the other gateway state, (0, v2, 0, (v4 −2)+2, 2−2), is identical,

except for the following additional terms: 4g44 − 4g45 + 4g55. The zero-order energy
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difference between the bright state and the Darling-Dennison perturber is therefore

Eg − Eb = −2ω4 + 2ω5 − 4(v4 − 1)x44 + 4x55 − 2x24v2

+ 2x45(v4 − 2) + 2x25v2 + [4(g44 − g45 + g55)] , (9.3)

where the term in square brackets is relevant only to the perturber with �4 = −�5 = 2.

Note that for either of the Darling-Dennison gateway states, only 2 of the terms in

this expression depend on v2, and this simple model predicts, as observed, a linear

dependence on v2 of the zero-order energy difference between the bright state and the

gateway states. More precisely, the model predicts a dependence of 2v2(x25 −x24) for

the energy difference. Using previously published values for x24 and x25 of -12.5 cm−1

and -1.83 cm−1 [5], the predicted dependence is 21.4v2 (cm−1), which is in modest

agreement with the approximate slopes of the lines in Fig. 9-3 (∼13 cm−1), considering

that the level shifts due to mutual perturbation have been neglected, as well as higher

order terms in the Dunham expansion. Nonetheless, a more complete model is clearly

needed to obtain quantitative agreement with the observed fractionation patterns.

Such a model is presented in the next two sections, which also provides insight into

the precise mechanism of the anomalously slow IVR (e.g. which of the two Darling-

Dennison gateway states is the primary perturber of the bright state?).

9.3 Effective Hamiltonian Fit

A global Heff for the acetylene S0 state was first reported by Abbouti Temsamani

and Herman, who demonstrated that 122 observed vibrational energy levels, up to

12,000 cm−1, could be reproduced with 0.74 cm−1 (1σ) accuracy using a total of 35

parameters, including a Dunham expansion for the diagonal elements and 9 anhar-

monic resonances (off-diagonal elements) [5]. The bending constants in this model

have since been extensively refined (see Chapter 6). In particular, the pure bending

effective Hamiltonian reproduces 84 pure bending vibrational levels of acetylene, up

to 15,000 cm−1, with 1.4 cm−1 (1σ) accuracy, using only 16 parameters. In the con-
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text of the anomalously slow IVR discussed here, the global Heff model does, in fact,

qualitatively reproduce the minimal fractionation for the bright states in Fig. 9-2.

However, the energies of the predicted vibrational levels are in error by up to 30 cm−1

at high internal energy. For this reason, the global Heff has been selectively refined

against the data in Fig. 9-2 in order to permit the most detailed possible analysis of

the anomalous IVR (and also, as will be seen in Chapter 10, to permit identification

of similar states above 15,000 cm−1).

Of the 39 parameters in the global Heff model, only a handful can be expected to

impact sensitively the observed vibrational energy levels in Fig. 9-2 (using qualitative

arguments like the ones presented in the preceding section, or a quantitative sensi-

tivity analysis of the Heff). Further, several of these important parameters belong to

the set of “pure bending parameters” that have been extensively refined (Chapter 6),

using observed levels with up to 22 quanta of bending excitation. These include the

Dunham expansion terms ω4, ω5, x44, x45, x55, g44, g45, g55, y444, y445, y455, and y555,

as well as the parameters relevant to the bending resonances, r◦45, r445, r545, and s45.

On the other hand, the global Heff model has not previously been refined using states

with high excitation in the CC stretch mode, and thus the ω2, x22, x24, x25, and y244

parameters in the Heff are less well-characterized (no y222 or y224 terms were included

previously, and I did not find it necessary to include them here).

Accordingly, I have chosen to perform a selective refinement of just these 5 pa-

rameters in the global Heff . That is, standard least-squares techniques (a modified

version of the Numerical Recipes [44] Levenberg-Marquardt algorithm) have been

used to minimize the difference between the experimental and predicted eigenvalues

by adjusting only the ω2, x22, x24, x25, and y244 terms in the global Heff model. The

experimental data that were included in the fit are listed in Table 9.1. These vibra-

tional energy levels include the most intense lines in each of the fractionation patterns

in Fig. 9-2, as well as all of the levels marked by an asterisk. Note, however, that the

v2 = 0 patterns are excluded, because the energies of these vibrational levels are in-

dependent of the 5 fit parameters. The vibrational levels listed in the bottom section

of Table 9.1 were observed primarily by absorption spectroscopy and were previously
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included in the Abbouti Temsamani and Herman fit [5]. These vibrational levels are

included in this fit because they involve excitation primarily in the CC stretch, trans

bend, and cis bend modes, and thus can be expected to aid in determining the 5

parameters in question.

Details of the methodology of the fit can be found in Section 6.2. The parameters

that were determined from the fit are listed in Table 9.2, along with their (2σ) un-

certainties, as estimated from the covariance matrix. All five of the parameters have

been determined to higher precision than in the Abbouti Temsamani and Herman fit,

due to the inclusion in this fit of much more highly excited states. The two parameters

that changed by the greatest fractional amount relative to the previous fit are x25 and

y244, which have the new/old values of -1.83/-2.151 and 0.15/0.3021 respectively. The

five parameters in Table 9.2, together with the 34 other parameters in the global Heff

which were not modified in the fit, reproduce the 31 vibrational levels in Table 9.1 to

±1.7 cm−1 (1σ). The agreement between the model and experimental observations

is also depicted in Fig. 9-3. The dotted lines represent the splittings between the two

most intense lines in the calculated bright state fractionation patterns. Overall, the

refined parameters reproduce the splittings fairly accurately, but the observed split-

ting for the (0, 1, 0, 60/2, 20) bright state pattern appears to be an outlier. A portion

of the discrepancy between the observed and predicted splitting can be accounted

for by measurement error (∼3 cm−1, based on estimates of the calibration error; see

Chapter 5), but the remainder of the error may be due to a local perturbation that

is omitted from, or poorly modeled by, the Heff . In the absence of an explanation

for this discrepancy, however, I chose not to omit these vibrational energy levels from

the fit.

9.4 Mechanism of Anomalous IVR

The refined global Heff for the acetylene S0 state can be used to gain detailed insight

into the origin and mechanism of the anomalously slow IVR. To focus the discus-

sion of these insights, the (0, 4, 0, 80, 20) bright state fractionation pattern will be
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Table 9.1: Eigenenergies included in the fit. The top portion of the table contains
eigenstates that were identified in the DF data set, as detailed in Chapter 5. These
levels were not included in previous fits. The bottom portion of the table contains
eigenstates that were included in the Abbouti Temsamani and Herman fit, which were
observed by primarily by absorption spectroscopy. The Nres, Ns, and � columns list
the polyad quantum numbers (defined in Chapter 5) for the vibrational levels; the g/u
labels have their conventional meaning as symmetry with respect to inversion in the
body-fixed coordinate system through the molecular center of symmetry. The “Nom-
inal Assignment” column indicates the zero-order state with maximal character in the
eigenstate, as determined from the fit model. Note that �4 and �5 are not specified
for certain levels because the eigenstates correspond to a mixture of (0, v2, 0, v

0
4, 2

0)
and (0, v2, 0, v

+2
4 , 2−2); see Section 9.4 for details.

Nres Ns � g/u Nominal Assignment Eobs Ecalc Reference

9 1 0/2 g (0, 1, 0, 60/2, 00) 5676.3 5678.8 [68]
9 1 0/2 g (0, 1, 0, 4, 2) 5873.6 5870.0 [68]
11 1 0 g (0, 1, 0, 80, 00) 6960.0 6960.3 [68]
11 1 0 g (0, 1, 0, 6, 2) 7122.6 7122.9 [68]
12 2 0/2 g (0, 2, 0, 60/2, 00) 7570.5 7571.5 [68]
12 2 0/2 g (0, 2, 0, 4, 2) 7773.0 7776.6 [68]
14 2 0/2 g (0, 2, 0, 80/2, 00) 8836.3 8837.6 [68]
14 2 0/2 g (0, 2, 0, 6, 2) 9012.6 9015.1 [68]
15 3 0/2 g (0, 3, 0, 60/2, 00) 9449.4 9448.2 [68]
15 3 0/2 g (0, 3, 0, 4, 2) 9665.8 9670.7 [68]
17 3 0/2 g (0, 3, 0, 80/2, 00) 10698.1 10697.2 [68]
17 3 0/2 g (0, 3, 0, 6, 2) 10886.4 10888.1 [68]
18 4 0/2 g (0, 4, 0, 60/2, 00) 11309.0 11309.0 [68]
18 4 0/2 g (0, 4, 0, 4, 2) 11543.4 11547.6 [68]
20 4 0/2 g (0, 4, 0, 80/2, 00) 12541.2 12540.9 [68]
20 4 0/2 g (0, 4, 0, 4, 2) 12742.5 12745.3 [68]
21 5 0/2 g (0, 5, 0, 60/2, 00) 13154.6 13153.8 [68]
23 5 0/2 g (0, 5, 0, 80/2, 00) 14368.3 14368.5 [68]
24 6 0/2 g (0, 6, 0, 60/2, 00) 14983.5 14982.6 [68]
3 1 0 g (0, 1, 0, 00, 00) 1974.3 1975.1 [167]
4 1 1 g (0, 1, 0, 11, 00) 2574.7 2575.3 [87]
4 1 1 u (0, 1, 0, 00, 11) 2703.1 2703.2 [168]
5 1 0 g (0, 1, 0, 00, 20) 3420.4 3419.9 [169]
5 1 2 u (0, 1, 0, 00, 22) 3434.1 3433.8 [169]
5 1 0 u (0, 1, 0, 11, 1−1) 3300.6 3300.7 [170]
5 1 2 u (0, 1, 0, 11, 11) 3307.7 3307.8 [170]
6 1 1 u (0, 1, 0, 00, 31) 4140.1 4139.1 [171]
6 2 0 g (0, 2, 0, 00, 00) 3933.9 3934.2 [172]
8 2 0 u (0, 2, 0, 11, 1−1) 5230.0 5230.2 [168]
11 2 1 g (0, 2, 0, 51, 00) 6945.3 6944.9 [138]
11 3 0 g (0, 3, 0, 20, 00) 7037.0 7036.5 [138]
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Table 9.2: Parameters determined from least-squares fit to the data set described in
the text. Numbers in parentheses are 2σ uncertainties in the last digit, as determined
from the covariance matrix.

ω2 1983.054 (87)
x22 -7.981 (32)
x24 -12.910 (50)
x25 -2.151 (42)
y244 0.3021 (63)

used as a representative example. Figure 9-4 illustrates the agreement between the

observed and calculated fractionation patterns for the (0, 4, 0, 80/2, 00) bright state.

Both the energies and intensities of the two largest peaks in the pattern are repro-

duced well by the model. The most intense transition in the spectrum terminates

on the lowest energy eigenstate within the polyad and contains 95.3% bright state

character, which reconfirms that it is reasonable to label it as the nominal, or per-

turbed, bright state. The zero-order state with the second highest character in this

eigenstate is (0, 4, 0, 60, 20), at 3.9%. By contrast, the other possible Darling-Dennison

perturber, (0, 4, 0, 6+2, 2−2), contributes <0.1% character to this eigenstate. This ob-

servation would appear to indicate that the most intense perturber line, at 12742.5

cm−1, should be assignable (nominally) as (0, 4, 0, 60, 20). This is not quite the case.

The eigenstate at 12742.5 cm−1 is not well represented by either one of the Darling-

Dennison gateway states, but rather is composed of a mixture of the two: 49.7%

character of (0, 4, 0, 60, 20) and 39.6% (0, 4, 0, 6+2, 2−2).

The key to reconciling these observations is that the two Darling-Dennison gate-

way states mutually perturb each other, quite strongly, via vibrational �-resonance.

This phenomenon can be understood by applying degenerate perturbation theory to

a simplified Heff of 3 interacting states: the bright state, |B〉, and the two Darling-

Dennison perturbers, |P0〉 (�4 = �5 = 0) and |P2〉 (�4 = −�5 = 2). The matrix

representation of this three-level system is depicted in the left column of Fig. 9-5.
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Figure 9-4: Agreement between the predictions of the effective Hamiltonian (vertical
lines) and the experimentally identified fractionation pattern for the (0, 4, 0, 80/2, 00)
bright state (solid line). The thick and thin vertical lines represent the calculated
fractionation patterns for (0, 4, 0, 80, 00) and (0, 4, 0, 82, 00), respectively. The transi-
tion represented by the large, off-scale peak on the left terminates on the perturbed
bright state; it has been cut off in order to emphasize the smaller perturbing lines.
(Note that the vertical lines have been scaled such that their maximum is equal to the
maximum of the experimental pattern). The peaks at 12649.2 and 12,742.5 cm−1 can
be identified as Darling-Dennison perturbers of the bright state. The lower intensity
Darling-Dennison perturber is itself perturbed by an anharmonic (3,245) resonance.
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|B〉 |P0〉 |P2〉 |B〉 |P+〉 |P−〉

|B〉 Eb x0 x2 |B〉 Eb ax0 + bx2 bx0 − ax2

|P0〉 x0 Ep + ∆/2 x� |P+〉 ax0 + bx2 Ep − α 0

|P2〉 x2 x� Ep − ∆/2 |P−〉 bx0 − ax2 0 Ep + α

Figure 9-5: Left: Matrix representation of the simple three-level model for anoma-
lously simple IVR. Right: The three-level model with the vibrational �-resonance
pre-diagonalized.

The diagonal elements of the system (zero-order energies) will be designated as

〈B|Heff |B〉 = Eb (9.4)

〈P0|Heff |P0〉 = Ep +
∆

2
(9.5)

〈P2|Heff |P2〉 = Ep −
∆

2
, (9.6)

where ∆, the zero-order energy difference between the two Darling-Dennison gateway

states, is 9.8 cm−1 for all of the relevant polyads. The values of Eb and Ep, of course,

vary from polyad to polyad, but (Ep − Eb) � ∆ in all cases (Ep − Eb > 100 cm−1).

The off-diagonal elements (and their Hermitian conjugates) are

〈B|Heff |P0〉 = x0 [Darling-Dennison Bend I] (9.7)

〈B|Heff |P2〉 = x2 [Darling-Dennison Bend II] (9.8)

〈P0|Heff |P2〉 = x� [vibrational �-resonance]. (9.9)

All three of these matrix elements are independent of v2, but do depend on v4. For

v4 = 6, x0 = −25.7 cm−1, x2 = 8.9 cm−1, x� = −29.8 cm−1; for v4 = 8, x0 = −34.3

cm−1, x2 = 12.7 cm−1, x� = −41.8 cm−1. Note that in either case, x� > ∆, which

indicates that the P0/P2 sub-block of the matrix should be pre-diagonalized before

applying nondegenerate second-order perturbation theory.
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This prediagonalization is equivalent to defining new basis states according to

|P+〉 = a|P0〉 + b|P2〉 (9.10)

|P−〉 = b|P0〉 − a|P2〉 , (9.11)

where the normalized a and b coefficients are determined from diagonalizing the P0/P2

sub-block:

a =
α− ∆√

4x2
� + (α− ∆)2

(9.12)

b =
−2x�√

4x2
� + (α− ∆)2

(9.13)

with α =
√

∆2 + 4x2
� . The matrix representation of the three-level model in this

new basis is depicted in the right column of Fig. 9-5, and consists of the following

elements:

〈P+|Heff |P+〉 = Ep − α (9.14)

〈P−|Heff |P−〉 = Ep + α (9.15)

〈P+|Heff |P−〉 = 0 (9.16)

〈P+|Heff |B〉 = ax0 + bx2 (9.17)

〈P−|Heff |B〉 = bx0 − ax2 . (9.18)

By applying second-order perturbation theory to this system, the lowest energy eigen-

state, |1〉, can be approximated as

|1〉 ≈ |B〉 +

(
ax0 + bx2

Eb − Ep + 0.5α

)
|P+〉 +

(
bx0 − ax2

Eb − Ep − 0.5α

)
|P−〉 . (9.19)

Evaluating this expression numerically for the polyad that contains the (0, 4, 0, 80, 00)

bright state yields

|1〉 ≈ |B〉 + 0.108|P+〉 + 0.165|P−〉 (9.20)
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≈ |B〉 + 0.195|P0〉 − 0.029|P2〉 . (9.21)

That is, this simple 3 level model predicts that the bright state should gain 3.8%

character from one Darling-Dennison perturber, (0, 4, 0, 60, 20), but only 0.08% char-

acter from the other, (0, 4, 0, 6+2, 2−2). These results are in very close agreement with

the predictions of the full global Heff that were discussed above (3.9% and 0.06%,

respectively). Thus, despite the large number of parameters in the global Heff and

the relatively large total number of states within the polyad (38), the perturbation

of the bright state is describable in terms of just three mutually interacting states.

Similarly, the highest energy eigenfunction of the 3-level system can be approxi-

mated as

|3〉 ≈ |P−〉 +

(
bx0 − ax2

Ep + α− Eb

)
|B〉 = 0.747|P0〉 − 0.665|P2〉 − 0.165|B〉 .

In other words, this eigenstate contains 2.7% bright state character, but is other-

wise well-described as a mixture of both perturbers, 55.8% (0, 4, 0, 60, 20) and 44.2%

(0, 4, 0, 6+2, 2−2). The predicted bright state character agrees closely with that pre-

dicted by the global Heff model (2.6%), but the global Heff predicts only 49.7% and

39.6% character for the two Darling-Dennison gateway states (respectively), which

is lower, for each, by ∼5% than predicted by the 3-level model. The origin of this

discrepancy is that the three levels that are included in the simplified Heff together

account for only 92.0% of the character of the eigenstate near 12,742.5 cm−1. The

remainder of the character of that eigenstate is accounted for largely by states with 4

quanta of cis bend, i.e., states in the next tier of the Darling-Dennison ladder. Note,

however, that the ratio of the characters of the two gateway states, |〈3|P2〉|2/|〈3|P0〉|2,
is nearly identical (1.26 in both cases) for both the global and simplified models, im-

plying that the 12,742.5 cm−1 eigenstate can be labeled as a perturbed |P−〉 state.

Thus, the simplified 3-level Hamiltonian, treated at the level of second-order pertur-

bation theory, replicates all of the key behaviors of the global Heff noted previously,

namely that the bright state appears to be perturbed by only one of the Darling-
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Dennison gateway states, but the second most intense line in the fractionation pat-

tern (marked by an asterisk) corresponds to an eigenstate with significant character

of both gateway states.

The simplified model also predicts the existence of a third eigenstate, intermediate

in energy between the two just discussed, which is characterized as

|2〉 ≈ |P+〉 +

(
ax0 + bx2

Ep − α− Eb

)
|B〉 = 0.665|P0〉 + 0.747|P2〉 − 0.108|B〉 . (9.22)

This eigenstate is predicted to have less intensity than |3〉 (1.2% bright state character,

as opposed to 3.8%), and is predicted to have an energy of

E2 ≈ Ep −
α

2
+

(ax0 + bx2)
2

Ep − Eb − 0.5α
= 12672.0 . (9.23)

Here, the predictions of this simple model differ from those of the global Heff . As can

be seen in Fig. 9-4, the global Heff predicts a line at 12641.8 cm−1, which is in better

agreement with the weak transition that is observed in the experimental fractiona-

tion pattern at 12,649.2 cm−1. The origin of the discrepancy between the reduced

model and the global Heff is that the Darling-Dennison gateway states are themselves

perturbed via a (3,245) stretch-bend anharmonic resonance. In the example under

consideration, the (0, 3, 1, 5+1, 1−1) zero-order state perturbs both the (0, 4, 0, 60, 20)

and (0, 4, 0, 6+2, 2−2) gateway states.

The reduced effective Hamiltonian model can be extended to include this stretch-

bend resonance. The (3,245) perturber will be represented as as |Pε〉, and

〈Pε|Heff |P0〉 = ε0 (9.24)

〈Pε|Heff |P2〉 = ε2 . (9.25)

Transforming to the P+/P− basis,

〈Pε|Heff |P+〉 = aε0 + bε2 ≈ −43.54 (9.26)

〈Pε|Heff |P−〉 = bε0 − aε2 ≈ 0.57 , (9.27)
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where the numerical values refer to the polyad containing the (0, 4, 0, 80, 00) bright

state. Thus, the eigenstate at 12,742.5 cm−1, which is dominated by |P−〉, can only

be minutely influenced by the (3,245) perturber. On the other hand, the eigenstate

near 12,649.2 cm−1, which is dominated by |P+〉, is influenced by this perturbation.

That is, this eigenstate is observed experimentally at lower internal energy than pre-

dicted for the |2〉 ≈ |P+〉 level by the 3-level model, because the (3,245) perturber

lies at higher internal energy. The discrepancy between the observed peak position

and that predicted by the global Heff indicates that the (3,245) resonance is inad-

equately modeled by the global Heff . Either the zero-order energy of the (3,245)

perturber or the strength of the resonance predicted by the global Heff is in error,

or perhaps both, and a further refinement of the Heff will be necessary to eliminate

the discrepancy. The results presented here are insufficient for such a refinement, but

the other, more highly fractionated (but not yet fitted) bright states at high internal

energy are expected to yield a wealth of information about the acetylene stretch-bend

resonances.

The selectivity of the (3,245) resonance with respect to the two (prediagonal-

ized) Darling-Dennison gateway states is not unique to the polyad that contains the

(0, 4, 0, 80, 00) bright state. In fact, the value of the 〈Pε|H|P−〉 matrix element does

not exceed 1.0 cm−1 for any of the polyads represented in Fig. 9-2 (this consistent

behavior arises from the fact that the ratio ε2:ε0 is independent of v2 and similar in

magnitude to the ratio b:a). As a result, the highest energy eigenstate in the reduced

model, |3〉, which is closely approximated as |P+〉, will in general display no measur-

able effects of the (3,245) perturbation, except in unusual circumstances when the

zero-order energy of the (3,245) perturber is very close to that of |P+〉. Thus, the reg-

ularity in the progression of the peaks marked by asterisks in Fig. 9-2 results, in part,

from a “shutting off” of the important (3,245) resonance, which otherwise could lead

to further fractionation, corresponding to exchange of energy between the stretch and

bend degrees of freedom. On the other hand, vibrational levels that correspond to the

|2〉 eigenstate of the 3-level model, when they are observed, are heavily perturbed,

and unlike the peaks marked by asterisks, do not form a simple progression.
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To summarize, in all of the fractionated bright states that have been studied in

this chapter, two nearly perfect interference effects have been observed. In each frac-

tionation pattern, the bright state appears to be perturbed by only one state, despite

being strongly coupled to two Darling-Dennison perturbers. In addition, one of the

two (prediagonalized) Darling-Dennison perturbers is itself strongly perturbed via the

(3,245) resonance, while the other is almost entirely unaffected. These two interfer-

ence effects are, of course, intimately related, since each can be described by the simple

4-level model. The key conceptual element of this model is the prediagonalization of

the two Darling-Dennison perturbers, which are coupled by vibrational �-resonance.

Thus, the double interference effect suggests that a “dressed basis set”, in which the

vibrational �-resonance is pre-diagonalized and “absorbed” into the basis set, is more

appropriate for describing the dynamics in these polyads, and others. In the Ap-

pendix to this chapter, I demonstrate that it is possible to define an analytical and

completely general transformation from the conventional normal mode basis set to a

basis set in which the vibrational �-resonance has been effectively eliminated. This

transformation provides greater insight into the dual interference effects discussed in

this section, and I also discuss how these interference effects profoundly impact the

dynamics of zero-order bright states that do not display anomalously simple IVR.

9.5 Conclusion

This chapter has examined a surprising trend in the unimolecular dynamics of acety-

lene. The IVR of a series of bright states with relatively low quanta of trans bend

(≤ 8) depends only weakly on the number of quanta of CC stretch (up to at least

6 quanta); thus, IVR does not increase with internal energy for this series of bright

states, up to at least 15,000 cm−1. As a result, there exist bright states at high inter-

nal energy that display minimal fractionation, such that certain observed vibrational

levels can be assigned normal mode quantum numbers up to at least 15,000 cm−1;

some of these normal mode assignments are labelled in the 21
0V

2
0 K

1
0 DF spectrum in

Fig. 9-6. A simple model of four mutually interacting zero-order states, coupled by

305



   

15,00014,00013,00012,00011,00010,000

Internal Energy (cm
-1
)

(0,3,0,8,0) (0,4,0,6,0)

(0,4,0,8,0)

(0,5,0,6,0)

(0,5,0,8,0)

(0,6,0,6,0)

Figure 9-6: The 21
0V

2
0 K

1
0 DF spectrum, with nominal normal mode quantum number

assignments for several observed vibrational levels. The majority of the unlabeled
levels cannot be assigned normal mode quantum numbers, even approximately.

Darling-Dennison bending resonances, vibrational �-resonance, and an anharmonic

(3,245) resonance, is sufficient to describe the weak IVR. The bright states which dis-

play this anomalously simple IVR at high internal energy do so because they remain

isolated from the other states within the relevant polyad. That is, the anharmonicities

of the molecule conspire to cause the bright state to be located substantially lower in

energy than any of the other zero-order states with which it can interact strongly via

the known anharmonic resonances.

From this perspective, the existence of the minimally fractionated bright states

at high internal energy is striking evidence of the approximate conservation of the

polyad quantum numbers up to 15,000 cm−1. Although the minimally fractionated

zero-order states are well isolated from other states within the same polyad, they are

nearly degenerate with many zero-order states from different polyads; if strong inter-

polyad couplings did exist, then at least some of these bright states should display

more complicated fractionation patterns than the simple two or three line patterns

that were analyzed here.
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Based upon the data presented here, one cannot rule out the possibility that the

nominal bright states that have been assigned here are fractionated within the res-

olution (∼7 cm−1) of the DF spectra, which would imply destruction of the polyad

quantum numbers on a timescale longer than ∼1 ps. However, Prof. David Moss

(Boston University) has performed stimulated emission pumping (SEP) experiments

in our laboratory that suggest that the polyad quantum numbers are conserved on

a significantly longer timescale. Specifically, he observed the nominal (0, 5, 0, 80, 00)

bright state, which displays anomalously slow IVR (see Fig. 9-2 and 5-6), in SEP spec-

tra with ∼0.05 cm−1 resolution [80]. This resolution corresponds to a timescale of

roughly 100 ps, and if the polyad quantum numbers were destroyed on that timescale,

one would expect the DF feature corresponding to the nominal (0, 5, 0, 80, 00) bright

state to be fractionated at the SEP resolution. However, no such fractionation was

observed, at least at low rotational quantum number (there was evidence of a weak

perturbation at J ≈ 9, but this perturbation has not yet been fully analyzed). This

experiment does not rule out the possibility that the polyad numbers become non-

conserved on a ∼100 ps timescale for other states at high internal energy, but it is

striking evidence that extremely stable vibrational motions exist at ∼15,000 cm−1.
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9.6 Appendix: A New Basis Set for Acetylene

This is the most conceptually difficult section of this thesis. The goal here is to

demonstrate that the interference effect involving the (3,245) resonance (described in

Section 9.4) also profoundly impacts the dynamics associated with many bright states

that do not display anomalously simple IVR. In addition, a more detailed theoretical
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foundation is provided for this interference effect, and in the process a basis set for

acetylene is discovered which has a number of advantages over the traditional normal

mode basis set. It should be emphasized from the outset that this treatment raises a

number of interesting questions which have yet to be fully answered, and that I hope

that algebraic theory [118] will provide deeper insights into the intriguing results

presented here.

First, I briefly review the nature of the (3,245) interference effect, as observed in

the bright state fractionation patterns that display anomalously simple IVR. These

bright states, (0, v2, 0, v
0
4, 0

0) with v4 = 6 or 8, are minimally perturbed through

Darling-Dennison resonances by the states (0, v2, 0, (v4 − 2)0, 20) and (0, v2, 0, (v4 −
2)+2, 2−2), and these Darling-Dennison perturbers are each themselves perturbed,

through a (3,245) resonance, by the state (0, v2 − 1, 1, (v4 − 3)+1, 1−1). The Darling-

Dennison perturbers are nearly degenerate and strongly coupled by vibrational �-

resonance, and thus “prediagonalizing” these two states in the effective Hamiltonian

yields the greatest insights into the dynamics. The (3,245) “interference effect” refers

to the observation that one of the two resultant prediagonalized Darling-Dennison

perturbers is strongly coupled to the state (0, v2 − 1, 1, (v4 − 3)+1, 1−1) by the (3,245)

resonance, while the other is almost entirely unaffected.

This (3,245) interference effect also profoundly impacts the dynamics of other

classes of bright states. As an example, consider the bright state (0, 3, 0, 140, 00).

This bright state does not display anomalously simple IVR (see the IVR map, Fig. 5-

13), and the associated dynamics cannot be described in terms of a simple 4-state

model as in Section 9.4. The polyad that contains the (0, 3, 0, 140, 00) bright state

(characterized by Ns = 3, Nres = 23, � = 0) includes a total of 111 states. Only a few

of these states are included in Fig. 9-7, but the states chosen represent the most impor-

tant IVR pathways. The basis states are represented in Fig. 9-7 by horizontal lines at

the appropriate zero-order energy, as determined by the refined effective Hamiltonian

model (this chapter and Chapter 6). Two important resonances that couple these

zero-order states, vibrational �-resonance and the (3,245) stretch-bend resonance, are

represented by arrows, and the numerical values of the specific matrix elements (in
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units of cm−1) are labeled in boxes near the relevant arrows. Other resonances, such

as (1,244), (1,255), and (14,35) [5], play a more minor role in the short-time dynam-

ics and are not discussed here. Note that the 4-state model, discussed in Section

9.4, represents a subset of the states included in Fig. 9-7; 5 additional states have

been included here, in order to understand the more extensive IVR associated with

(0, 3, 0, 140, 00).

The zero-order states that are included in Fig. 9-7 are grouped into two “Darling-

Dennison stacks”; that is, the states in these stacks are coupled to each other by

the Darling-Dennison I and II resonances (the arrows for these resonances are omit-

ted to reduce clutter). The Darling-Dennison stack on the left includes the bright

state. As explained in Section 9.4, only three zero-order states are directly coupled

to the (0, 3, 0, 140, 00) bright state. One of these, (1, 2, 0, 120, 00), is coupled to the

bright state through the (1,244) resonance, and is not considered here because it

is relatively unimportant to the dynamics, particularly for the discussion that fol-

lows. The other two states are the Darling-Dennison perturbers (0, 3, 0, 120, 20) and

(0, 3, 0, 12+2, 2−2); here, the term “perturber” is used loosely, because these states are

coupled quite strongly to the bright state, and perturbation theory is inappropriate.

The two (0, 3, 0, 12, 2) states in turn interact through Darling-Dennison resonances

with (0, 3, 0, 100, 40), (0, 3, 0, 10+2, 4−2), and (0, 3, 0, 10+4, 4−4). The Darling-Dennison

stack continues upward, with (0, 3, 0, 8, 6), (0, 3, 0, 6, 8), etc., but for this discussion

it is sufficient to truncate the stack. The states in this first Darling-Dennison stack

interact through the (3,245) resonance with another Darling-Dennison stack, which

is represented on the right side of the diagram and is characterized by v1 = 0, v2 = 2

and v3 = 1.

It is clear from this diagram that states differing only in �4 and �5 are nearly

degenerate and are very strongly coupled through vibrational �-resonance. Following

the approach outlined in Section 9.4, each of these “�-stacks” can be numerically

prediagonalized. Having done so, the resultant zero-order states can no longer be

labeled using �4 and �5; Roman numerals are used instead to mark the rank of the

state within an �-stack. The results of this numerical procedure are presented in
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Figure 9-7: Zero-order energy diagram for the polyad (Ns = 3, Nres = 23, � = 0). Only
9 of the 111 zero-order states in the polyad are included, but these states represent the
most important IVR pathways that originate with the (0, 3, 0, 140, 00) bright state.
The arrows mark interactions (anharmonic resonances) between zero-order states,
and the numbers in boxes are specific values of interaction matrix elements, in cm−1.
The solid arrows indicate vibrational �-resonance, and the dotted arrows indicate the
(3,245) stretch-bend resonance. Darling-Dennison resonances are omitted, to reduce
clutter, but couple states within the two columns.
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Fig. 9-8. The prediagonalization, of course, eliminates all vibrational �-resonance

interactions from the diagram. However, the prediagonalization also has another

effect, which is entirely nontrivial. Many of the (3,245) resonances that couple the

two Darling-Dennison stacks become very nearly zero. In fact, only 3 of these matrix

elements have numerical values greater than 1.0 cm−1. By contrast, in the original

normal mode basis set, there were a total of 6 nonzero (3,245) resonance matrix

elements.

This simplification of the (3,245) couplings in the prediagonalized basis set pro-

vides insights into acetylene IVR that are not obvious in the normal mode basis set.

The interference effect discussed in Section 9.4 is one example, but these insights

are not limited to polyads with anomalously simple IVR. The IVR associated with

the (0, 3, 0, 140, 00) bright state is also easier to understand in the basis set in which

vibrational �-resonance has been prediagonalized. The observed fractionation pat-

tern for the (0, 3, 0, 140/2, 00) bright state, depicted in the bottom panel of Fig. 9-9,

appears to consist primarily of two peaks. The effective Hamiltonian model repro-

duces the pattern fairly well (middle panel), despite the fact that this bright state

was not included in any fits of the model. The top panel of Fig. 9-9 reveals something

remarkable. When the (3,245) resonance is excluded from the model, the predicted

fractionation pattern appears to become more complicated! This is highly counter-

intuitive, and in fact, appearances are deceptive in this case. The fractionation in the

middle panel, as judged by the dilution factor (see Section 6.4), is actually greater

than that in the top panel. The fractionation only appears to be simpler in the mid-

dle panel because many small peaks (i.e., eigenstates with a few percent or less of

bright state character) blend together near the baseline. When the (3,245) resonance

is slowly turned on, it becomes clear that the states marked by the asterisks are virtu-

ally unchanged (other than shifting somewhat in energy), whereas the peaks marked

by # gradually fractionate into a large number of very small peaks.

These observations are entirely consistent with the view of IVR that arises from

Fig. 9-8. The most important IVR pathway for the (0, 3, 0, 14, 0) bright state is the

chain of Darling-Dennison resonances that connect it with (0, 3, 0, 12, 2), (0, 3, 0, 10, 4),
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Figure 9-8: Zero-order energy diagram for the polyad (Ns = 3, Nres = 23, � = 0),
after the vibrational �-resonance has been numerically prediagonalized. The �4 and �5
quantum numbers are meaningless after this transformation, and the states are labeled
with Roman numerals that indicate rank within an �-stack. The prediagonalization
not only eliminates the vibrational �-resonance from the diagram, but also modifies
the (3,245) resonances such that many of the individual matrix elements become
quite small and can be ignored. The states in the Darling-Dennison stack on the left,
which contains the bright state, become divided into two sets—those that couple to
the adjacent stack through (3,245), and those that do not.
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Figure 9-9: Example of the “interference” effect involving the (3,245) resonance in
the (Ns = 3, Nres = 23, � = 0) polyad. Bottom: The observed fractionation pattern
for the (0, 3, 0, 140/2, 00) bright state. Middle: The prediction of the Heff model for
the (0, 3, 0, 140, 00) bright state fractionation pattern; the predicted pattern for the
� = 2 bright state is similar. Top: Same as in the middle panel, except with all of
the stretch-bend resonances “turned off”.
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etc. The (prediagonalized) states in this first Darling-Dennison stack belong to two

classes: states that are “immune” to the (3,245) resonance, including (0, 3, 0, 12, 2)II

and (0, 3, 0, 10, 4)III, and states that are strongly affected by it (the remaining states).

It can be envisioned that the peaks marked by asterisks are somehow associated with

the former group, and the peaks marked by # with the latter group, and in fact this

hypothesis can be verified by projecting the eigenstates of the effective Hamiltonian

onto the prediagonalized basis set. For example, for the state on the right marked by

the asterisk (middle panel), the three largest components of its projection onto the

first Darling-Dennison stack consist of

|∗〉 ≈ 0.46(0, 3, 0, 14, 0)I − 0.28(0, 3, 0, 12, 2)II − 0.39(0, 3, 0, 10, 4)III. (9.28)

All three of these states are expected, on the basis of Fig. 9-8, to be minimally

influenced by the (3,245) resonance. By contrast, the state near 14,650 cm−1 that

is marked by a # (top panel) has the following composition (again, three largest

components within the primary Darling-Dennison stack):

|#〉 ≈ 0.36(0, 3, 0, 14, 0)I + 0.39(0, 3, 0, 10, 4)II − 0.29(0, 3, 0, 8, 6)III. (9.29)

The (0, 3, 0, 8, 6)III state is not depicted in Fig. 9-8 due to space constraints, but it,

like (0, 3, 0, 10, 4)II, belongs to the class of prediagonalized states that are strongly

perturbed through the (3,245) resonance.

Figure 9-10 provides a time domain perspective on the IVR associated with the

(0, 3, 0, 14, 0) bright state. The survival probability (see Section 6.3) undergoes a

fast early-time decay (∼100 fs 1/e time) followed by a series of regular partial recur-

rences, which reach nearly 50%. This behavior can also be rationalized in terms of

Fig. 9-8. As the excitation leaves the bright state and delocalizes into the primary

Darling-Dennison stack, some fraction of the excitation (roughly half) is quickly ran-

domized into all of the modes of the molecule, with the (3,245) resonance acting as

the facilitator of the fast and irreversible component of the IVR. Much of the remain-

ing excitation becomes “trapped” in those states in the primary Darling-Dennison
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Figure 9-10: Survival probability of the (0, 3, 0, 140, 00) bright state as predicted by
the effective Hamiltonian. The fast early-time decay is followed by a regular series of
partial recurrences.

stack that are uncoupled from (3,245), accounting for the regular series of partial

recurrences.

This is an intriguing type of IVR that is not encountered elsewhere in this thesis,

and I wish to make a few speculative remarks regarding its significance. Although

it is easiest to discuss the IVR using a state space framework, one can also visualize

the IVR associated with (0, 3, 0, 14, 0) using a wavepacket picture. Roughly half of

the wavepacket would quickly and irreversibly fragment and explore large regions of

phase space (to use a semiclassical term), while the other half would remain trapped

in a relatively small region of phase space. The portion of the excitation that remains

trapped, on a timescale of several picoseconds, will certainly be associated with a

stable classical motion of the molecule, while the irreversible component of the IVR

would likely be associated with chaotic regions of phase space. This hypothesis can

be directly tested using the semiclassical methods of Chapter 8, but the number of

dimensions involved poses technical challenges.

At this point, it has been established that the interference effect involving the

(3,245) resonance that was discussed in Section 9.4 also has important implications

for bright states that do not display anomalously simple IVR, using the case of

(0, 3, 0, 140, 00) as an example. In both Section 9.4 and here, it has been empha-

sized that the interference effects observed are “nearly” perfect, meaning that when
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the vibrational �-resonance is prediagonalized, certain (3,245) matrix elements be-

come very nearly, but not precisely zero. I now demonstrate that it is possible to

define a new basis set which has two remarkable properties:

1. In this new basis set, the values of (roughly) half of the (3,245) matrix elements

become precisely zero.

2. The new basis set is related to the normal mode basis set by an analytical

transformation.

Before defining this new basis set, I note first that the “prediagonalization” of the

vibrational �-resonance that is discussed above is equivalent mathematically to per-

forming a unitary transformation on the normal mode basis set, in which the unitary

matrix is defined by the eigenvectors of the Hamiltonian

Ĥ = â4dâ
†
4gâ

†
5dâ5g + c.c. . (9.30)

This is the vibrational �-resonance written in terms of raising and lowering operators

for the bend modes of acetylene; see Section 7.2 for an explanation of the notation.

It has already been established that, by applying the unitary transformation defined

by the eigenvectors of this Hamiltonian, certain (3,245) matrix elements become very

nearly zero. But is there a unitary transformation that would make certain (3,245)

matrix elements become exactly zero? The remarkable answer, which I discovered

serendipitously, is that such a unitary transformation does exist, and it is defined by

the eigenvectors of the Hamiltonian

Ĥ =
�̂4�̂5
2

+ â4dâ
†
4gâ

†
5dâ5g + c.c. (9.31)

This is simply the vibrational �-resonance plus a diagonal term, which is usually

associated with the constant g45. Here, g45 and r45, the constant generally used to

describe the strength of the vibrational �-resonance, are constrained according to

g45 = r45/2.
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What is even more remarkable (to me at least) is that this unitary transformation

can also be generated analytically, and is in fact formally equivalent to the Clebsch-

Gordan coefficients for transforming between coupled and uncoupled representations.

To see this, I first demonstrate that the Hamiltonian in Eq. 9.31 is equivalent to a

Hamiltonian that represents angular momentum coupling. Let us define for the bend

degrees of freedom of acetylene a (pseudo)-angular momentum basis set |j4,m4, j5,m5〉
which has a one-to-one correspondence with the traditional normal mode basis set

|v�44 , v�55 〉 according to

j4 = v4/2 (9.32)

j5 = v5/2 (9.33)

m4 = �4/2 (9.34)

m5 = �5/2 . (9.35)

Now, consider the Hamiltonian

Ĥ = �J4 · �J5. (9.36)

Introducing the usual angular momentum ladder operators, this Hamiltonian is equiv-

alent to

Ĥ =
1

2
(J4+J5− + J4−J5+) + J4zJ5z. (9.37)

The J4zJ5z term generates diagonal matrix elements

〈j4,m4, j5,m5|J4zJ5z|j4,m4, j5,m5〉 = m4m5. (9.38)

Transforming to the conventional normal mode basis set,

〈v�44 , v�55 |J4zJ5z|v�44 , v�55 〉 =
1

4
�4�5 ; (9.39)

thus J4zJ5z is equivalent to the g45 term in the normal mode basis. The (J4+J5− +
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J4−J5+) term generates off-diagonal matrix elements

〈j4,m4, j5,m5|(J4+J5− + J4−J5+)|j4, (m4 ± 1), j5, (m5 ∓ 1)〉 =

[(j4 ∓m4)(j4 ±m4 + 1)(j5 ±m5)(j5 ∓m5 + 1)]1/2 (9.40)

which in the normal mode basis set becomes

〈v�44 , v�55 |(J4+J5− + J4−J5+)|v�44 , v�55 〉 =

1

4
[(v4 ∓ �4)(v4 ± �4 + 1)(v5 ± �5)(v5 ∓ �5 + 1)]1/2 . (9.41)

These matrix elements are identical to those for the vibrational �-resonance (see, for

example, Ref. [5], or Chapter 7).

Thus, it should be clear that the Hamiltonian in Eq. 9.31 is exactly equivalent

to an angular momentum coupling term such as �J4 · �J5; the operators specifically

transform as

Jz ⇔ a†dad − a†gag = � (9.42)

J+ ⇔ a†dag (9.43)

J− ⇔ ada
†
g. (9.44)

The angular momentum coupling term �J4 · �J5 is, of course, diagonal in the basis

|j4, j5, J,M〉, where J and M are the total angular momentum and its projection.

Specifically,

�J4 · �J5 =
1

2
(J2 − J2

4 − J2
5 ) (9.45)

and

〈j4, j5, J,M | �J4 · �J5|j4, j5, J,M〉 =
1

2
[J(J + 1) − j4(j4 + 1) − j5(j5 + 1)]. (9.46)
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Recall that j4 = v4/2 and j5 = v5/2. The quantum number M is defined by

M = m4 + m5 =
1

2
(�4 + �5) =

�

2
, (9.47)

and is thus equivalent to the total angular momentum polyad number � (other than

a factor of 2), which is conserved by the effective Hamiltonian, but J is a new,

nonconserved quantum number, which corresponds roughly to the “rank” within an

�-stack that was used in Fig. 9-8.

The transformation between the |j4,m4, j5,m5〉 and |j4, j5, J,M〉 basis sets is de-

fined by the Clebsch-Gordan coefficients [173]. Thus, it is possible to define a new

bending basis set for acetylene, |v4, v5, J〉, by applying an analytical unitary transfor-

mation, using the appropriate Clebsch-Gordan coefficients, to the usual normal mode

basis |v�44 , v�55 〉. The |v4, v5, J〉 basis set is nearly identical to the basis set in Fig. 9-8,

in which the vibrational �-resonance was prediagonalized, but with two key differ-

ences. First, the transformation from |v�44 , v�55 〉 to |v4, v5, J〉 is analytical, while the

prediagonalized basis set could only be defined by a numerical unitary transformation.

Second, as can be seen in Fig. 9-11, in the |v4, v5, J〉 basis set many of the (3,245)

matrix elements are precisely zero, whereas in the prediagonalized basis set they were

only nearly zero. In fact, among the states included in Fig. 9-11, the only strong

resonance couplings that remain in the |v4, v5, J〉 basis set are the (modified) Darling-

Dennison resonances that couple states within a column, and three (3,245) resonances.

This simplification of the resonance couplings makes the |v4, v5, J〉 basis set excep-

tionally useful for understanding the dynamics associated with the (0, 3, 0, 140, 00)

bright state, and many others.3

It should be emphasized that the above discussion of the formal equivalence of vi-

brational �-resonance with angular momentum coupling is implicit in algebraic theory

3In Chapter 7, a local mode basis set is defined for the acetylene bend degrees of freedom. This
basis set is demonstrated to be very useful for describing the pure bending dynamics of acetylene
above ∼10,000 cm−1. The |v4, v5, J〉 basis set introduced here is useful primarily at lower levels of
bend excitation (<16 quanta), and because of the simplification of the (3,245) resonance structure,
is particularly useful for polyads with nonzero stretch excitation. The conventional normal mode
basis set only provides a good zero-order representation in the limit of very low bend excitation.
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J basis set. Only three (3,245) matrix elements are nonzero.
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[118] treatments of acetylene and other linear molecules. Specifically, it is equivalent

to treating each (bending) two-dimensional oscillator using the U(3) Lie algebra [174].

It is my hope that algebraic theory will provide deeper insight into the intriguing but

mysterious simplification of the (3,245) resonance structure in the |v4, v5, J〉 basis.
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Chapter 10

Ongoing Work
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This chapter summarizes ongoing work on the unimolecular dynamics of acetylene

that has not yet been published. In the preceding chapters, a detailed and essentially

complete understanding of the short-time (∼1 ps) unimolecular dynamics of acetylene

below 15,000 cm−1 has been developed. Thus, much of the ongoing work discussed

here is concerned with understanding the vibrational dynamics of acetylene above

the isomerization barrier. The work in Section 10.4 represents a collaboration with

Michelle Silva, who will continue the work on 13C2H2; Richard Duan also contributed

substantially to this work.

10.1 Identity of the “Extra Patterns”

In Chapter 5, pattern recognition algorithms based upon the XCC (Chapter 2) were

utilized to extract fractionated bright state patterns from the 12C2H2 DF data set.

However, this procedure also identified an unexpected series of patterns that could not

be accounted for by the expected bright states. In Section 5.6, several experimental

studies of these “extra” patterns are described. Although these studies failed to

identify the origin of the unexpected patterns, they did confirm that the unexpected

patterns do not arise from emission from the single rovibrational levels in the S1 state

that are populated by the laser in the DF studies. Since the unexpected features in

the DF spectra could be identified as patterns and extracted, they posed no serious

difficulties for the analysis of vibrational dynamics/structure in 12C2H2.

I have recently performed a new series of experiments that has identified of the

origin of the extra patterns. In Fig. 10-1 are depicted small sections of a dispersed

emission spectrum recorded using the Q(1) rotational line of the V 2
0 K

1
0 band. The

top panel shows the results of a pressure study. The relative intensities of several

small peaks in the dispersed emission spectrum were determined to be dependent on

pressure. These peaks are marked by arrows and correspond to the unexpected pat-

terns that were identified previously by pattern recognition. The pressure dependence

of these features suggests that collisional energy transfer plays a role in their origin.

Additional evidence for this hypothesis is presented in the bottom panel of Fig. 10-1.
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The amplitude of the extra patterns depends also on the time window (relative to

the laser pulse passing through the sample cell) used to record the spectra. The DF

spectra in Section 5 were recorded using a 1.5 µs gate, which permitted the entire

fluorescence decay of acetylene to be recorded. Here, it is clear that the amplitudes

of the unexpected patterns are relatively larger at later times. Our ICCD system

is not capable of using gate widths much smaller than those depicted here, so other

experiments will be needed to obtain precise kinetic information. However, this study

is certainly consistent with the hypothesis that the extra patterns arise from some

species created through collisions.

To identify the mechanism for the appearance of the unexpected patterns, it is

quite helpful to first separate them from the expected patterns, which can be accom-

plished using the XCC pattern recognition technique. This task has already been

largely accomplished in Chapter 5, by extracting the patterns from a data set of five

DF spectra recorded using different vibrational bands. A more straightforward ap-

proach is illustrated here, in which no attempt is made to identify individual bright

state fractionation patterns, but only to extract all of the unexpected features from

the spectra. The assumption underlying this approach is that the amplitude of all

of the extra patterns varies in the same way with pressure. Thus, the XCC can be

applied to the 2 spectra in the top panel of Fig. 10-1 (plus an additional spectrum

recorded at 1.00 Torr) to identify all of the unexpected features as a single pattern;

all of the expected fractionated bright state patterns will of course also be identified

as a second pattern.

The results of this application of the XCC/linear inversion technique (see Chapter

2) are depicted in Figs. 10-2 and 10-3. As expected, all of the features in the “main”

pattern can be identified as fractionated bright state patterns.1 The features observed

in Fig. 10-3 are intriguing because they tend to appear as doublets with a spacing

of ∼56 cm−1. This energy happens to be nearly equal to the splitting between the

1It is my recommendation that in the future all dispersed fluorescence spectra be recorded at two
pressures or with two different time windows (gates). The XCC can then be used to pre-process the
spectra and remove any spectral features due to species created through collisions, as has been done
in Fig. 10-2.
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Figure 10-1: Dispersed emission that results from PUMPing the Q(1) rotational line
of the V 2

0 K
1
0 band, at varying pressure (top) and at varying time windows following

the laser pulse (bottom). The two spectra in the top panel, as well as two of the three
in the lower panel, are normalized to the intensity of the tallest peak. The arrows
point to features whose intensities change as a function of pressure and gate position;
these are the extra patterns discussed in Section 5.6.
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Figure 10-2: The expected bright state fractionation patterns, extracted from the
spectra in the top panel of Fig. 10-1 using the XCC pattern recognition technique. The
features in this pattern can be accounted for by emission from K ′

a = 1 intermediate

states to (0, v2, 0, v
0/2
4 , 00) bright states with v4=even. Only the predicted �4 = 0

patterns are depicted; the �4 = 2 patterns are nearly identical.

K ′
a = 0 and 2 subbands of the 2v′3 vibrational level in the 12C2H2 S1 state. No K ′

a =

0 or 2 levels are populated by the laser; with ∼0.05 cm−1 resolution, it is possible

to populate only the (J ′ = 1, K ′
a = 1) level. However, K ′

a = 0 and 2 levels could

be populated through collisions of K ′
a = 1 molecules with molecules in the ground

electronic state.

This hypothesis for the origin of the unexpected patterns can be tested numerically

using the effective Hamiltonian developed in Chapters 6 and 9. The K ′
a − �′′ = ±1

propensity rule implies that only states with odd �′′ will be observed in emission from

K ′
a = 0 or 2 levels. In Chapter 5, the Franck-Condon principle is used to demonstrate
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Figure 10-3: The unexpected DF features, extracted as a pattern from the spectra in
the top panel of Fig. 10-1 using the XCC pattern recognition technique. The most
intense features in this pattern can be accounted for by emission from K ′

a = 0 or 2
intermediate states to (0, v2, 0, v

�4
4 , 00) bright states with v4=odd. Only the predicted

�4 = 1 patterns are depicted; the �4 = 3 patterns are nearly identical.
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that only zero-order states of the form (0, v2, 0, v
�4
4 , 00) are bright in emission from

the S1 state of acetylene. Thus, �4 = �′′, and if �′′ is odd, v4 must be odd also. Both

K ′
a = 0 and K ′

a = 2 levels can emit to �′′ = 1 levels; K ′
a = 2 levels can also emit to

�′′ = 3 levels, but these levels will tend to be nearly degenerate with the corresponding

�′′ = 1 levels, for the same reason that �′′ = 0 and �′′ = 2 levels cluster together (see

Section 5.2 and Ref. [69]). The emission from a pair of K ′
a = 0 and K ′

a = 2 levels

to the same �′′ = 1 state, however, will not be observed at the same frequency in

emission due to the difference in term values between K ′
a = 0 and K ′

a = 2, which

is 4A′ ≈ 56 cm−1. The negative-going sticks in Fig. 10-3 represent the predicted

positions of the odd v4 bright state fractionation patterns in the DF spectrum, from

both K ′
a = 0 and K ′

a = 2 levels (assuming minimal change in J ′). It is clear that the

K ′
a-changing collisions can account for all of the most intense “unexpected” features

in the spectrum.

Thus, in most of the acetylene DF spectra that our group had recorded up to

this point, we had been unintentionally been performing studies of K-changing inter-

molecular energy transfer in acetylene, akin to the many performed for formaldehyde

(see, for example, Refs. [175, 176]). Our group is now investigating these energy

transfer processes deliberately; Richard Duan has initiated experiments to determine

a kinetic model for the energy transfer. Acetylene provides an interesting system to

study this type of energy transfer, because the odd and even K ′
a levels emit to entirely

distinct bright states/polyads (even v′′4 bright states from odd K ′
a, and odd v′′4 bright

states from even K ′
a). The relatively large separation between the emission features

originating from even and odd K ′
a will make the study of collisional energy transfer

in this system relatively simple. Another intriguing aspect of the collisional energy

transfer is its highly nonlinear dependence on pressure. The two spectra in the top

panel of Fig. 10-1 were recorded using pressures differing by a factor of 250, but the

amplitude of the features arising from K ′
a = 0 or 2 varies only by a factor of ∼7.
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10.2 New Dispersed Fluorescence Methodologies

The methodology that we utilize to record dispersed fluorescence spectra continues to

evolve as we strive to obtain the best quality spectra possible (frequency calibration,

intensity calibration, signal-to-noise). The spectra that are discussed in Sections 10.3

and 10.4 were recorded and processed using somewhat different techniques than those

presented in Chapter 5, and the most significant improvements are discussed here.

The first improvement, primarily as a time-saving measure, is an automated means

of removing “cosmic rays” from spectra. Because gamma rays from the sun can

be detected by our ICCD detector, every spectrum is always recorded twice; it is

unlikely that a gamma ray will strike the same pixels on the detector during two

separate accumulations of signal. Under the conditions that are typically used to

record spectra, 0–10 spurious peaks are observed in any one spectrum. It is not

difficult to remove these spurious peaks from the spectrum manually, by comparing

the two spectra recorded under the same conditions and noting discrepancies between

the two.

This process is tedious, however, and I have devised an automated algorithm for

removing the spurious peaks. Figure 10-4 illustrates the use of this technique with two

sample spectra. Plotting a recursion map (see Chapter 2) for the two spectra (bottom

left panel) reveals the presence of spurious peaks in the two spectra as “outliers”.

That is, since the two spectra were recorded under nearly identical conditions, most

of the points on the recursion map cluster closely near the line I1 = I2. Note that the

slope of this line is not precisely 1.0 because the laser power varies slightly for each

spectrum. In this case, the laser power was slightly higher during the recording of

spectrum 1. The presence of a spurious peak in spectrum 1 (such as the one marked

by the letter B) is marked on the recursion map by points that lie above the line

I1 = I2; spurious peaks in spectrum 2 (such as “A”) give rise to points below that

line.

The outliers can be identified numerically and automatically in the following way.

The first step is to determine the precise slope of the line of points in the recursion
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Figure 10-4: Top: Two sample spectra recorded under nearly identical conditions.
Spurious peaks due to cosmic rays can be observed in each spectrum. These spurious
peaks are particularly obvious in the recursion map representation of the data (lower
left). They can be removed by applying a cutoff to |δ|, the absolute weighted deviation
from a fit line determined by XCC. The recursion map after removal of the spurious
peaks is shown in the lower right panel.
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map. Least-squares fitting would not be a good choice, since the presence of outliers

due to spurious peaks will skew the fit results. A robust estimator is a better choice,

and in fact the XCC (Chapter 2) is ideal. Having determined the best-fit slope (ratio

direction) using the XCC, the outliers can then be identified by their distance from

the fit line. More specifically, one can choose a cutoff for the absolute value of the

weighted residuals |δ|:
δ =

Iobs − Icalc

σ
(10.1)

where σ is the estimated measurement error (experimental noise). Here a cutoff of

|δ| = 5 was used, which insures that there is an exceptionally small chance of labeling

a real peak as “spurious”. Having isolated the spurious peaks, it is then trivial to

remove them by changing the intensity in the relevant spectrum such that δ = 0 for

the affected points.

A second, more significant improvement to the dispersed fluorescence method-

ology is a doubling of the number of individual spectral segments recorded. At any

grating angle of the monochromator, the dispersed fluorescence of the molecule can be

recorded over a range of wavelengths which spans several nm (10–20 nm, depending

on which monochromator and grating order are used). Previously, we would record

the dispersed fluorescence at one grating angle, and then change the angle such that

the next segment would overlap minimally with the previous one. This procedure

permits the quickest possible recording of a spectrum. However, intensity calibration

of the resultant spectra can be somewhat problematic. In order to compare the in-

tensities of the peaks in adjacent segments, one needs to normalize for fluctuations in

the laser power. This was accomplished previously by monitoring the integrated flu-

orescence signal out a side window of the DF cell using a PMT. These measurements

required great care in order to be reproducible.

Intensity calibration of the spectra is much simpler if twice as many DF segments

are recorded for each spectrum. That is, instead of choosing the grating angles for

adjacent segments to create minimal overlap between the wavelength ranges covered,

one can choose to overlap the adjacent segments significantly, as with the two segments
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depicted in the top panel of Fig. 10-5. Intensity calibration between adjacent segments

is then trivial. Once the segments are frequency calibrated, a recursion map can be

constructed for those portions of the segments that overlap. The slope of the line

in the recursion map reveals the relative intensities of the laser between segments

(as well as any other changes that could result in different signal levels). These

particular segments were chosen because the signal levels vary significantly between

the segments; in general the slope on the recursion map is closer to one. Least-squares

fitting can be used to find the proper scaling coefficient for the two spectra, as long as

all cosmic rays have already been removed (otherwise XCC would be a better choice).

Note that an error estimate can be obtained for the scaling coefficient (i.e., from the

covariance matrix of the least-squares fit), which can be propagated to estimate the

global error in the intensity calibration.

It is particularly convenient to choose the grating angles such that each segment

overlaps with half of each adjacent segment, as in the top panel of Fig. 10-6. In addi-

tion to providing excellent intensity calibration, this arrangement permits an increase

in signal-to-noise, since the emission at each wavelength is recorded twice and can be

averaged. In addition, since each segment is frequency calibrated independently, it is

possible to obtain an accurate estimate of the frequency calibration error, and gross

errors can be identified and eliminated. Note that in general, one must choose the

segments to overlap each other by slightly more than half in order to have a margin

of safety. Any “excess” spectrum can be discarded (the “X’s” in the top panel of

Fig. 10-6).

10.3 Dispersed Fluorescence of 12C2H2 above the

Isomerization Barrier

The pattern recognition analysis of the DF data set in Chapter 5 was terminated

at 15,000 cm−1 of vibrational energy. Although bright state fractionation patterns

could be identified above this energy in the data set, both by eye and with numerical

pattern recognition algorithms, the extreme congestion at such high internal energy
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Figure 10-5: Top: Two adjacent DF spectra with substantial overlap. Middle: Recur-
sion map of the overlap region between the two segments. Bottom: The two segments
scaled properly, using the slope of the line on the recursion map.
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segment overlaps with at least one-half of each adjacent segment. The emission at
every wavelength is recorded at (at least) two different grating angles and is averaged
to create the final concatenated spectrum.
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made the analysis difficult. In addition, above Evib ≈ 15,200 cm−1, acetylene is

believed to be energetically capable of isomerizing to vinylidene [4], and it is desirable

to obtain the best possible quality DF spectra above this energy in order to identify

any spectroscopic manifestations of isomerization, which may be subtle. To this end,

I have recently recorded the dispersed fluorescence from the 21
0V

1
0 K

1
0 and 21

0V
2
0 K

1
0

bands of acetylene at 4.0 cm−1 resolution using the methodologies in Section 10.2.

Other experimental conditions were identical to those described in Chapter 5. The

resultant calibrated spectra are depicted in Fig. 10-7; the frequency calibration is

good to ∼0.5 cm−1 (1σ).

The advantage of these higher resolution spectra over the lower resolution spectra

that are documented in Chapter 5 is made clear in Fig. 10-8. Depicted here is the

(0, 0, 0, 220/2, 00) bright state fractionation pattern that has been extracted, using

XCC, from spectra with resolutions of ∼18 cm−1, ∼8 cm−1, and ∼4 cm−1. The

∼4 cm−1 resolution spectra reveal details of the fractionation pattern that the lower

resolution spectra cannot, with excellent signal-to-noise. Many of the fractionation

patterns that are observed at higher internal energy are even more congested.

Dispersed fluorescence spectra with ∼4 cm−1 resolution have, so far, only been

recorded using two absorption bands, 21
0V

1
0 K

1
0 and 21

0V
2
0 K

1
0 . The reason that no more

spectra have been recorded is not due to the difficulty of recording these spectra (they

are relatively easy to obtain, when the optical alignment of the apparatus is optimal),

but is rather due to the success of a new research direction, involving 13C2H2, which

is detailed in Section 10.4. As explained below, it is my belief that 13C2H2 is a

better choice than 12C2H2 for studies of unimolecular dynamics above the threshold

of isomerization, due to the relative simplicity of the observed fractionation patterns.

Thus, efforts to record additional high resolution DF spectra of 12C2H2 have been

dropped in favor of moving forward rapidly with 13C2H2.

However, it is probably worthwhile to provide a brief summary of the insights

that the ∼4 cm−1 resolution spectra have already provided. In particular, it has been

possible to assign polyad quantum numbers to quite a few of the eigenstates above

15,000 cm−1, although a complete analysis using the numerical pattern recognition
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Figure 10-7: High resolution (4.0 cm−1) dispersed fluorescence spectra of acetylene
recorded using the 21

0V
1
0 K

1
0 and 21

0V
2
0 K

1
0 absorption bands. In the 21

0V
2
0 K

1
0 spectrum,

the peaks marked with asterisks represent low lying (<5000 cm−1) vibrational levels
observed in third order; the remaining peaks are observed in second order. For
the 21

0V
2
0 K

1
0 spectrum, a long-pass optical filter was used so that only second order

emission was recorded.
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Figure 10-8: The (0, 0, 0, 220/2, 00) bright state fractionation pattern that has been
extracted, using XCC, from DF spectra with resolutions of ∼18 cm−1, ∼8 cm−1, and
∼4 cm−1.
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algorithms (XCC with linear inversion) is not possible with just two spectra (there are

regions of energy where 3 patterns overlap). In addition, the effective Hamiltonian

model that has been developed in Chapters 9 and 6 has been found to extrapolate

nicely above 15,000 cm−1; that is, it is able to predict the qualitative fractionation

patterns for bright states that were not included in the fit. This is, of course, evidence

that the feasibility of isomerization does not result in a catastrophic breakdown of

the polyad model, at least up to ∼18,000 cm−1; more substantial evidence for this

statement is presented in Section 10.4.

First we consider the pure bending polyads above 15,000 cm−1. The highest pure

bending fractionated bright state that was identified in Chapter 5 and studied in

Chapters 6–8 was (0, 0, 0, 220/2, 00). In the ∼4 cm−1 resolution spectra, the frac-

tionated bright state patterns for (0, 0, 0, 240/2, 00) and (0, 0, 0, 260/2, 00) can also be

identified and are depicted in Fig. 10-9. Note that the (0, 0, 0, 260/2, 00) fractionation

pattern could not be extracted by linear inversion, because it overlaps strongly (above

17,700 cm−1) with at least two other patterns. However, most of the (0, 0, 0, 260/2, 00)

fractionation pattern can be clearly identified in the 21
0V

2
0 K

1
0 spectrum by comparison

with the predictions of the Heff model, which does a good job of predicting the key

qualitative features of the fractionation patterns.

The other series of fractionated bright states that are particularly easy to iden-

tify above 15,000 cm−1 are those with a large number of quanta of excitation in

the CC stretch mode (v2 ≥ 5), i.e., states similar to those considered in Chapter 9

which displayed anomalously slow IVR. Figure 10-10 depicts two such bright states

that have been identified in the ∼4 cm−1 resolution spectra, (0, 5, 0, 100/2, 00) and

(0, 6, 0, 100/2, 00). Both bright states are minimally fractionated and are readily iden-

tified using the Heff model. The (0, 5, 0, 120/2, 00) and (0, 6, 0, 80/2, 00) bright states

can be identified in a similar manner.

The assignments that have been made above 15,000 cm−1 (using pattern recogni-

tion and the Heff model) can be confirmed using Franck-Condon trends. Figure 10-11

displays the experimentally observed Franck-Condon factors for the (0, v2, 0, 100/2, 00)

series of bright states. The Franck-Condon factors for the bright states with v′′2 ≤ 4
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Figure 10-9: Identification of the (0, 0, 0, 240/2, 00) and (0, 0, 0, 260/2, 00) bright state
fractionation patterns in the ∼4 cm−1 resolution dispersed fluorescence spectra. Top:
The (0, 0, 0, 240/2, 00) fractionation pattern as extracted by XCC/linear inversion from
the two ∼4 cm−1 resolution DF spectra. Bottom: The (0, 0, 0, 260/2, 00) fractionation
pattern could not be extracted by linear inversion, because it overlaps strongly (above
17,700 cm−1) with at least two other patterns. However, in the section of the 21

0V
2
0 K

1
0

spectrum shown here, most of the (0, 0, 0, 260/2, 00) fractionation pattern can be iden-
tified by comparison with the predictions of the Heff model. In both the top and
bottom, the thick vertical sticks are the predictions for the (J = 1, � = 0) rotational
components, and the thin vertical lines are for the (J = 2, � = 2) components.
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Figure 10-10: Identification of the (0, 5, 0, 100/2, 00) and (0, 6, 0, 100/2, 00) bright state
fractionation patterns in the ∼4 cm−1 resolution dispersed fluorescence spectra. Left:
The (0, 5, 0, 100/2, 00) fractionation pattern as extracted by XCC/linear inversion from
the two ∼4 cm−1 resolution DF spectra. Right: The (0, 6, 0, 100/2, 00) bright state,
which is minimally fractionated, can be clearly identified in the 21

0V
1
0 K

1
0 DF spectrum,

by comparison with the predictions of the Heff model. In both panels, the thick
vertical sticks are the predictions for the (J = 1, � = 0) rotational components, and
the thin vertical lines are for the (J = 2, � = 2) components.

were obtained by integrating the fractionation patterns that were extracted from the

∼18 cm−1 spectra using numerical pattern recognition (see Chapter 5). The states

with v′′2 > 4 are those that are identified in Fig. 10-10. Their Franck-Condon factors

were estimated by identifying the corresponding peaks in the ∼18 cm−1 spectra (the

only series that is fully intensity calibrated) and integrating these peaks. Note that

in the emission from both the 21
0V

1
0 K

1
0 and 21

0V
2
0 K

1
0 bands, there is one minimum in

the Franck-Condon factors at v′′2 = 2, which corresponds to the node along the CC

stretch coordinate in the excited state wavefunction. The continuity of the v′′2 = 5

and 6 Franck-Condon factors with the trends observed for the bright states below

15,000 cm−1 (v′′2 ≤ 4) lends credibility to the assignment of (0, 5, 0, 100/2, 00) and

(0, 6, 0, 100/2, 00) in Fig. 10-10.

Other bright state fractionation patterns have been successfully identified above

15,000 cm−1 in the 12C2H2 DF spectra but will not be reported here, because the

corresponding analysis for the 13C2H2 DF spectra, considered in Section 10.4, is sig-

nificantly simpler.
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Figure 10-11: The observed relative Franck-Condon factors for the (0, v2, 0, 100/2, 00)
bright states in the 21

0V
2
0 K

1
0 (circles) and 21

0V
1
0 K

1
0 (triangles) DF spectra. For pro-

gressions of bright states with constant v′′4 , the emission from S1 state vibrational
levels with v′2 = 1 displays one minimum in the Franck-Condon factors at v′′2 = 2,
which corresponds to the node in the excited state wavefunction. The bright states
with v′′2 ≤ 4 lie below 15,000 cm−1, while those with v′′2 > 4 lie above 15,000 cm−1.
The continuity of the Franck-Condon trends helps to confirm the assignments made
above 15,000 cm−1.
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10.4 Dispersed Fluorescence Studies of 13C2H2

The dispersed emission has been recorded at ∼18 cm−1 from the Q(1) lines of four

vibrational bands of 13C2H2: V
2
0 K

1
0 , 21

0V
1
0 K

1
0 , 21

0V
2
0 K

1
0 , and V 4

0 K
1
0 .2 13C2H2 has been

studied much less extensively than 12C2H2, and for this reason, none of these bands,

other than V 2
0 K

1
0 [10], had been identified spectroscopically previously, to our knowl-

edge. As a reference for future studies of 13C2H2, we depict in Figs. 10-12, 10-13, and

10-14 a few of the laser induced fluorescence (LIF) spectra that we recorded in order

to identify these bands. The vibrational assignments of the bands were made by es-

timating the isotope shifts for the relevant vibrational levels from 12C2H2 to 13C2H2.

In all cases, the bands depicted were located within ∼10 cm−1 of the calculated tran-

sition frequency; the vibrational assignment of the bands can be confirmed from the

Franck-Condon trends observed in the DF spectra. The rotational transitions were

assigned by combination-differences.

A number of peaks in the 21
0V

1
0 K

1
0 and 21

0V
2
0 K

1
0 LIF spectra are unassigned and

are assumed to be due to interloping absorption bands (probably hot bands). There

is no evidence of these bands being significantly perturbed, either from the LIF spec-

tra or the DF spectra recorded from the Q(1) lines; however, the bands have not

extensively analyzed, in terms of fitting them to an effective rotational Hamiltonian.

The V 4
0 K

1
0 band appears to be relatively free from overlap with other bands, but

there are a number of striking intensity anomalies, the most notable of which is Q(4),

which is at least twice as intense as expected based upon the intensities of the other

lines. There also appears to be an intriguing intensity alternation in the R-branch,

with the transitions terminating on even-J ′ being anomalously weak. These inten-

sity anomalies have not been explained. Evidence is presented below that the 4ν ′
3,

Ka = 1 vibrational level is perturbed, but the perturber is remote, in the sense that

the strength of the perturbation (mixing coefficient) appears to be independent of J .

As such, we believe the intensity anomalies to be unrelated to the perturbation. It

2As in 12C2H2, the V 3
0 K

1
0 band is not used because the 3ν′3 vibrational level appears to be strongly

perturbed at low J .
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Figure 10-12: LIF spectra of the V 2
0 K

1
0 and 21

0V
1
0 K

1
0 bands of 13C2H2.

should be noted that the 4ν ′
3 vibrational level lies above the first ground electronic

state dissociation limit.

The calibrated dispersed fluorescence spectra that have been recorded for 13C2H2

are displayed in Fig. 10-15. The dispersed fluorescence methodologies described in

Section 10.2 were employed. In addition, only 1.0 Torr of acetylene was used to record

these spectra, as opposed to 5.0 Torr, which was used to record the spectra described

in Chapter 5. Using lower acetylene pressure has a number of advantages. One practi-

cal consideration is that, at higher pressures, the windows on the DF cell “burn” much

more quickly where the UV laser beam passes through them (presumably due to poly-

acetylene formation on the windows), necessitating frequent cleaning/replacement of

343



  

45,65045,64045,63045,62045,61045,600

Transition Frequency (cm
-1
)

ν2'+2ν3'

45,62245,62045,61845,61645,61445,61245,610

Transition Frequency (cm
-1
)

Q(1)

Q(2)

Q(3)
Q(4)Q(5)

Q(6)
R(0)

R(1)

ν2'+2ν3'

Figure 10-13: LIF spectra of the 21
0V

2
0 K

1
0 band of 13C2H2, which overlaps significantly

with at least one other (as yet unassigned) band.
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Figure 10-14: LIF spectra of the V 4
0 K

1
0 band of 13C2H2, which displays a number of

intensity anomalies. The Q(4) line is anomalously strong and the R-branch lines that
terminate on even J ′ are anomalously weak.
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the windows. At 1.0 Torr, it was possible to complete an entire spectrum, which

entails several hours of total signal integration time (roughly half a million laser shots

with energy > 0.5 mJ), without changing the windows. Another advantage of lower

acetylene pressure is that the amplitude of the quasi-continuous baseline and the “ex-

tra patterns”, both of which are believed to be related to collisional energy transfer,

are diminished at lower pressure, as discussed in Chapter 5. These unwanted con-

tributions to the DF spectra are also minimized by gating over only the first 200 ns

after the laser fires, as opposed to ∼1 µs, as was conventionally used for the spectra

in Chapter 5. The success of these strategies at diminishing the quasi-continuous

baseline is evident in Fig. 10-15; these spectra have not been processed using baseline

stripping algorithms. The “extra patterns”, which are believed to be due to emission

from K ′
a = 0 and 2 levels populated by collisions, are present in the data set, but

are much less prominent than in the 12C2H2 data set. Finally, I wish to point out

the excellent signal-to-noise that is achieved in these spectra. Fig. 10-16 is a close-up

view of the 21
0V

2
0 K

1
0 DF spectrum at low internal energy. The spectrum is scaled such

that the tallest peak has intensity 1.0, and the noise level is less than 0.001.

Dispersed fluorescence spectra recorded using corresponding absorption bands in

13C2H2 and 12C2H2 are not expected to be grossly different; after all, the only differ-

ence between the two molecules is that the mass of the carbons varies by 8%. Figure

10-17 appears to validate this conclusion. The DF spectra at ∼18 cm−1 resolution,

recorded using the 21
0V

2
0 K

1
0 band, are compared for 12C2H2 and 13C2H2 at relatively

low internal energy. It is possible to make correspondences between the peaks in

each of the spectra. Specifically, for every intense peak in the 12C2H2 spectrum, there

is a corresponding intense peak, at somewhat lower internal energy, in the 13C2H2

spectrum. The energy shifts between the two spectra are expected to be due largely

to the difference in the CC stretch frequency (ω2) between the two molecules, which

should be ∼4%. Eigenstates with greater CC stretch excitation would then exhibit

greater shifts.

All of these predictions can be verified numerically at low energy, where the

(0, v2, 0, v4, 0) bright states are minimally fractionated. However, the difference is car-
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Figure 10-15: Dispersed fluorescence spectra recorded at ∼18 cm−1 resolution via the
Q(1) lines of four vibrational bands of 13C2H2: V 2

0 K
1
0 , 21

0V
1
0 K

1
0 , 21

0V
2
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1
0 , and V 4

0 K
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Figure 10-16: Closer view of the 21
0V

2
0 K

1
0 DF spectrum in Fig. 10-15 at low internal

energy. The spectrum is scaled such that the tallest peak has intensity 1.0, and the
noise level is less than 0.001.
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Figure 10-17: Dispersed fluorescence spectra recorded via the 21
0V

2
0 K

1
0 bands of 12C2H2

(bottom, inverted) and 13C2H2 (top).
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bon masses also IVR—the redistribution of energy from the zero-order bright states

into other states of the molecule. This issue can, of course, be addressed by pro-

cessing the 13C2H2 spectra using the same numerical pattern recognition algorithms

(XCC plus linear inversion) that provided us with so much insight into the vibra-

tional dynamics of 12C2H2. The V 4
0 K

1
0 band DF spectrum has been excluded from

this analysis, because there is strong evidence (discussed at the end of this section)

that the 4ν ′
3 vibrational level is perturbed.

Figure 10-18 is the IVR map that has been constructed for 13C2H2 (the corre-

sponding plot for 12C2H2 is Fig. 5-13). This IVR map includes all of the fractionated

bright state patterns that have been extracted from the DF data set using numerical

pattern recognition up to 18,000 cm−1. “Holes” appear in the IVR map because not

every fractionated bright state pattern could be extracted from the spectra, for one of

two reasons. First, certain bright states have low Franck-Condon factors in all three

of the DF spectra analyzed. An example is (0, 2, 0, 18, 0). Intermediate vibrational

levels with v′2 = 1 have nearly zero emission to zero-order bright states with v′′2 = 2

(i.e., the node in the excited state wavefunction creates a minimum in the Franck-

Condon progressions). Thus, the (0, 2, 0, 18, 0) bright state does not appear in the

DF spectra recorded using the 21
0V

1
0 K

1
0 or 21

0V
2
0 K

1
0 bands. In addition, intermediate

vibrational levels with v′3 = 2 have nearly zero emission to zero-order bright states

with v′′4 = 12 or 18. Thus, the (0, 2, 0, 18, 0) bright state also does not appear in the

DF spectrum recorded using the V 2
0 K

1
0 absorption band. We intend to record the

origin band DF spectrum for 13C2H2 to alleviate this problem (since the zero-point

vibrational level has no nodes, all bright states should appear).

The second reason for the “holes” in the IVR map is that the numerical pattern

recognition algorithms were unable to identify and extract all of the fractionated

bright states that are observed in the spectra. This occurs when two patterns that

overlap in the spectra happen to have nearly identical ratio directions (relative am-

plitudes in each of the spectra). As discussed in some detail in Chapter 2, even if

the XCC succeeds in identifying such pairs of fractionated bright states as separate

patterns, the noise amplification associated with the linear inversion process will be
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nearly infinite. The recording of the origin band DF spectrum for 13C2H2 is expected

to alleviate this problem as well; it is less likely that two overlapping patterns will

have the same ratio directions in four spectra than in just three.

Even with these holes, the IVR map still provides an enormous quantity of infor-

mation about vibrational energy redistribution in 13C2H2. Among the most intriguing

aspects of this IVR map is its simplicity relative to the IVR map for 12C2H2. Figure

10-19 provides a close-up view of a few of the bright state fractionation patterns (v′′2

= 0 or 1; v′′4 = 10–14) for both 12C2H2 and 13C2H2. For 13C2H2, the fractionation

patterns for the bright states with the same v′′4 but different v′′2 are extremely similar,

almost uncannily so. For 12C2H2, on the other hand, the fractionation patterns for

the bright states with v′′2 = 1 appear to be significantly more complicated than those

for the corresponding v′′2 = 0 bright states. The simplicity of the (vertical) trends in

the 13C2H2 IVR map is not limited to v′′2 = 0 and 1. Fig. 10-20 depicts two of the

columns of the 13C2H2 IVR map, v′′4 = 8 and v′′4 = 14. In both columns, the fraction-

ation decreases in a regular, consistent manner with increasing v′′2 (see Section 9.4 for

a qualitative explanation of this trend), and it is possible to identify simple trends in

the fractionation patterns.

The relative simplicity of the 13C2H2 IVR map, particularly with respect to in-

creasing v′′2 , appears to be due to the relative unimportance of the (3,245) stretch-bend

resonance in 13C2H2. The v′′2 = 0 bright states belong to the pure bending polyads

that are discussed in Chapters 6, 7, and 8. All of the states in these polyads are

characterized by zero stretch excitation, and thus resonances that exchange bend and

stretch excitation play no role. These stretch-bend resonances can, however, impact

the observed IVR (fractionation patterns) for bright states with v′′2 > 0. If this is the

case, as it appears to be for 12C2H2 (Fig. 10-19), then the bright state fractionation

increases significantly from v′′2 = 0 to v′′2 = 1. Previous studies of the (0, v2, 0, v4, 0)

bright state fractionation patterns have emphasized the particular importance of the

(3,245) resonance (see Ref. [177], as well as Chapter 9), which strongly influences the

vibrational dynamics in 12C2H2 because the energy difference ω3 − (ω2 +ω4 +ω5) ≈ 2

cm−1. In 13C2H2, on the other hand, ω3 − (ω2 +ω4 +ω5) > 50 cm−1 (using previously
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Figure 10-18: IVR map for 13C2H2. The fractionated bright state patterns are ar-
ranged according to the number of quanta of the two Franck-Condon active modes:
CC stretch (v2) and trans bend (v4).
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Figure 10-19: Comparison of portions of the IVR maps for 12C2H2 and 13C2H2. In
12C2H2, the fractionation patterns with v′′2 = 1 are substantially more complex than
the v′′2 = 0 fractionation patterns with the same v′′4 . In 13C2H2, the fractionation
patterns appear to be essentially independent of v′′2 .

352



  

v 2

v4 =14

0

1

2

3

4

5

v 2

v4 = 8

0

1

2

3

4

5

Figure 10-20: Close-up view of two of the columns of the 13C2H2 IVR map. For both
v′′4 = 8 and v′′4 = 14, IVR decreases with increasing quanta of CC stretch.
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published constants plus our own preliminary fits), and thus the (3,245) resonance

can be expected to play a much less significant role in the dynamics. The striking

regularity of the progressions of 13C2H2 bright state fractionation patterns with differ-

ing v′′2 (Fig. 10-19) suggests that stretch-bend resonances in general play little role in

the observed IVR. We are currently developing both normal and local mode effective

Hamiltonian models for 13C2H2 in order to study the IVR in greater detail.

Another remarkable aspect of the 13C2H2 IVR map is that it contains twelve bright

state fractionation patterns that lie above 16,000 cm−1, and thus above the energy

at which acetylene-vinylidene isomerization is expected to be energetically feasible

[4]. These fractionation patterns were no more easy or difficult to extract from the

spectra than those below 16,000 cm−1 and do not demonstrate any significant increase

in complexity. On the contrary, these fractionation patterns appear to simply continue

the trends in IVR observed at lower internal energy. For example, the v′′2 = 4 and 5,

v′′4 = 14 fractionation patterns in Fig. 10-20 both lie above 16,000 cm−1. Figure 10-21

provides another example. Of the fractionation patterns depicted here, only the v′′4 =

22 and 24 pure bending bright states (v′′2 = 0) lie below 16,000 cm−1. The remaining

patterns reproduce the same qualitative pattern, which consists primarily of just 3

lines and is associated with the local mode limit for the bend degrees of freedom

(see Chapters 6, 7, and 8). Although these results should be considered preliminary,

the regularity of the bright state fractionation patterns above 16,000 cm−1 certainly

suggests that vinylidene plays little role in the <1 ps dynamics that is sampled by our

spectra, up to at least 18,000 cm−1. However, careful numerical modelling of these

results may reveal systematic changes above 16,000 cm−1, and higher resolution DF

and SEP spectra may reveal that vinylidene influences the IVR on a longer timescale.

The V 4
0 K

1
0 band DF spectrum was excluded from the above analysis of the 13C2H2

DF data set due to a suspected perturbation of the 4v′3, K
′
a = 1 vibrational band.

Figure 10-22 provides evidence for this suspected perturbation. In each panel, the

V 4
0 K

1
0 band DF spectrum is compared with the pure bending bright state fractionation

patterns extracted from the V 2
0 K

1
0 , 21

0V
1
0 K

1
0 , and 21

0V
2
0 K

1
0 band DF spectra. Each of

these panels provides evidence of two classes of bright states in the emission from the
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Figure 10-21: Close-up view of the v′′4 ≥ 20 bright state fractionation patterns that
have been identified in the 13C2H2 DF data set.
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4v′3, K
′
a = 1 vibrational band. The usual bright states, (0, v2, 0, v4, 0), are of course

present, but there is also strong evidence that states of the type (0, v2, 0, v4 − 2, 2)

have their own intrinsic intensity as well.

Consider the top left panel of Fig. 10-22 first. The dotted line is the (0, 0, 0, 60/2, 00)

bright state fractionation pattern extracted from the V 2
0 K

1
0 , 21

0V
1
0 K

1
0 , and 21

0V
2
0 K

1
0

DF spectra. The solid line is the scaled V 4
0 K

1
0 band DF spectrum. The peak at

∼3720 cm−1 is the perturbed bright state and can be assigned the nominal normal

mode quantum numbers (0, 0, 0, 6, 0). The peak at ∼3910 cm−1 can be assigned as

the Darling-Dennison perturber of the bright state, (0, 0, 0, 4, 2) (see Chapter 9 for

more detail). In the extracted fractionation pattern, the relatively weak intensity of

this peak arises solely from resonant interaction with the bright state. However, the

intensity of this peak in the V 4
0 K

1
0 band DF spectrum is significantly larger (relative

to the perturbed bright state). A likely explanation is that in the V 4
0 K

1
0 DF spectrum,

the (0, 0, 0, 4, 2) state has its own intrinsic intensity, as opposed to only borrowing

intensity from the bright state.

This hypothesis is bolstered by the top right panel of Fig. 10-22. In this case, the

dotted line is the extracted bright state fractionation pattern for (0, 0, 0, 80/2, 00). The

peak at ∼5010 cm−1 is the perturbed bright state, and at least two weak perturbers

can be observed at ∼5090 cm−1 and ∼5170 cm−1. The (0, 0, 0, 8, 0) bright state,

however, has nearly zero Franck-Condon intensity from the 4v′3, K
′
a = 1 vibrational

level (the four “nodes” in the trans-bend, v′′4 , Franck-Condon progression occur at

8, 14, 18 and 24 quanta); the peak at ∼4975 cm−1 in this spectrum arises from a

different bright state, (0, 2, 0, 2, 0). Despite the perturbed (0, 0, 0, 8, 0) bright state

having little intensity in the V 4
0 K

1
0 DF spectrum, the perturbers of the bright state

[(0, 0, 0, 60, 20) and (0, 0, 0, 6+2, 2−2)]x do have appreciable intensity. The discrepancies

in the fractionation patterns in the lower two panels can also be qualitatively explained

in terms of interference effects between (0, v2, 0, v4, 0) and (0, v2, 0, v4 − 2, 2) bright

states.

Zero-order states of the type (0, v2, 0, v4 − 2, 2) are usually not bright in our dis-

persed fluorescence spectra because the cis-bend mode is Franck-Condon inactive.
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Figure 10-22: Comparisons of the V 4
0 K

1
0 band DF spectrum (solid line) with several

pure bending bright state fractionation patterns extracted from the V 2
0 K

1
0 , 21

0V
1
0 K

1
0 ,

and 21
0V

2
0 K

1
0 band DF spectra (dotted line). The fractionation patterns observed in

the V 4
0 K

1
0 band DF spectrum indicate the presence of two classes of bright states,

(0, v2, 0, v4, 0) and (0, v2, 0, v4 − 2, 2). Bright states with v′′5 = 2 could only have
intrinsic intensity if the 4v′3, K

′
a = 1 vibrational level is perturbed.
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The only way that such states can have their own intrinsic brightness in emission is if

the excited state wavefunction has some cis-bending character. The 4v′3, K
′
a = 1 vi-

brational level, of course, nominally involves excitation only in the trans bend mode,

but it could acquire cis bend character through a perturbation with a state involving

excitation in the v′4 (cis bend) or v′6 (torsion) modes, both of which correlate to the

v′′5 ground state cis bend mode. Anharmonic perturbations of this general type have

been postulated to be responsible for the extensive perturbation of the 3v′3, Ka = 1

band in 12C2H2 [178, 179].

The results presented here are insufficient to unambiguously identify the perturber

of the 4v′3, K
′
a = 1 vibrational level. However, Fig. 10-23 provides strong evidence

that the perturber is remote and that the perturbation is rotationally homogeneous.

Specifically, Fig. 10-23 depicts the dispersed fluorescence recorded from the Q(1),

Q(2), Q(3), Q(4), R(0), R(1), R(2), and R(3) lines of V 4
0 K

1
0 over the same energy

region as the lower right panel of Fig. 10-22. The observed fractionation pattern

in this region of the V 4
0 K

1
0 DF has been attributed to interference effects between

(0, 0, 0, 12, 0) and (0, 0, 0, 10, 2) bright states, and the exact appearance of the spec-

trum should be quite sensitive to the relative intensities of the two bright states.

That is, if the mixing fraction between the 4v′3, K
′
a = 1 vibrational level and its per-

turber were to change with J ′, then the observed pattern of lines in the DF spectra

recorded from different J ′ should change as well. However, Fig. 10-23 makes it clear

that the changes in the observed patterns are minor, which implies that the perturber

of the 4v′3, K
′
a = 1 vibrational level is likely remote and likely interacts through an

anharmonic mechanism.
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Figure 10-23: Dispersed fluorescence recorded from the Q(1), Q(2), Q(3), Q(4), R(0),
R(1), R(2), and R(3) lines of V 4

0 K
1
0 over the same energy region as the lower right
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