
Millimeter-Wave Dynamics and Control of

Rydberg-Rydberg Transitions

by

David Darrah Grimes

Submitted to the Department of Chemistry

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2017

c© Massachusetts Institute of Technology 2017. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Department of Chemistry

May 1, 2017

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Robert W. Field

Haslam and Dewey Professor of Chemistry

Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Robert W. Field

Chairman, Department Committee on Graduate Theses



2



Millimeter-Wave Dynamics and Control of Rydberg-Rydberg

Transitions

by

David Darrah Grimes

Submitted to the Department of Chemistry
on May 1, 2017, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

In this thesis, I report on the design and construction of a new atomic and molecular
beam source that exploits the unique capabilities of a buffer gas cooled ablation
source. Buffer gas cooled atomic and molecular beams generate samples with> 1000×
more particles and 10× slower translational velocities than typical ablation seeded
supersonic expansions. This increase in number density provides an ideal system
for the observation of qualitatively new cooperative emission effects. I describe the
detection of single-shot free space superradiance in a buffer gas cooled beam of barium
atoms. The frequency of this emission is shifted and broadened by a factor of ∼ 106×
greater than the natural lifetime, indicating the presence of quantum many-body
dipole-dipole effects in the cooperative emission. Additionally, the smaller lab-frame
velocity reduces the Doppler broadening enough to allow for coherent manipulation
of Rydberg states and a coherent coupling of an optical and millimeter-wave photon.
I demonstrate this coherent coupling in an ensemble of barium atoms, and provide
a theoretical description of how to provably perform complete STImulated Raman
Adiabatic Passage (STIRAP).

Thesis Supervisor: Robert W. Field
Title: Haslam and Dewey Professor of Chemistry
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Chapter 1

Introduction

In Section 1.1 I introduce the basic properties of Rydberg states, with particular

emphasis on core-nonpenetrating (CNP) states and their properties important for

chirped pulse millimeter wave (CPmmW) spectroscopy. In Sec. 1.2 I discuss the

techniques that I helped to develop of CPmmW spectroscopy and buffer gas cooled

beam formation and their applications to spectroscopy of Rydberg states. In Sec.

1.3 I outline future potential applications of Rydberg states using both CPmmW

spectroscopy and a buffer gas cooled beam. Finally, I outline each chapter of this

thesis in Sec. 1.4.

1.1 Properties of Rydberg states

A Rydberg state of an atom or molecule is a highly excited electronic state, defined

as a state with one electron, the Rydberg electron, in an excited state that can be

described as being formed from atomic orbitals of larger principal quantum number

than those of the ground state(s) of the constituent atom(s) [5]. This loosely bound

electron has an outer turning point that lies well outside of the ion core, and so it only

interacts weakly with the ion-core and the remaining core electrons. The Rydberg

electron/ion-core interaction is described to zeroth-order by the Coulomb interaction,

V (r) = − Ze2

4πε0r
, (1.1)
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where Z is the effective charge of the ion-core, e is the elementary charge carried

by the electron, ε0 is the vacuum permittivity, and r is the distance between the

electron and the ion-core. The allowed bound energies of the system therefore follow

the Rydberg equation

E = IP − Ry

(n− δ`)2
(1.2)

where IP is the ionization potential, Ry is the Rydberg constant, n is the principal

quantum number, and δ` is the n and ` dependent quantum defect (` is the orbital

angular momentum) that is exactly zero for hydrogen. For molecular systems, the

quantum defect is a function not just of n and `, but also λ (the projection of the

orbital angular momentum on the internuclear axis), N+ and v+ (the rotational and

vibrational quantum numbers of the molecular ion-core where properties of the ion

core are denoted by a superscript +) [6].

It is often more convenient to label Rydberg states by the effective principal

quantum number

n∗ =

√
Ry

IP − E
= n− δ`. (1.3)

This notation is useful because n∗ gives direct information about the energy of a

Rydberg state, and because the many properties of Rydberg states that are typically

said to scale with n more accurately scale with n∗. A table of some of these quantities

is given in Table 1.1 [7, 4]. These quantities scale non-linearly with n∗, allowing for

investigation of states with properties very different from the low-lying states.

Of particular interest for the purpose of mm-wave spectroscopy is that the spac-

ing between adjacent Rydberg states scales as n∗−3, the electric dipole transition

moment between adjacent (n∗ → n∗ ± 1) Rydberg states scales as n∗2, the electric

polarizability of a Rydberg state scales as n∗7, and the radiative lifetime of a Rydberg

state (summed over all potential lower states) scales as n∗3. The large electric dipole

transition moments and polarizabilities at moderate n∗ (n∗ ∼ 30) provide a large

handle for driving transitions between Rydberg states, and the transition energy lies
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Property Scaling Typical value for n = 30
Binding Energy n∗−2 150 cm−1

Transition energy for ∆n∗ = 1 n∗−3 10 cm−1

Orbital Radius n∗2 900 a0
Geometric Cross Section n∗4 2.5 · 106 a20

Electric Dipole Transition Moment
for ∆n∗ = 1

n∗2 2300 D

Electric Polarizability n∗7 400 MHz cm2/V2

Radiative Lifetime n∗3 2 ms
Fine Structure Interval n∗−3 3.5 MHz

Table 1.1: n∗-dependence of the properties of atomic Rydberg states. Adapted from
Ref. [4]

in the mm-wave regime. Additionally, the long radiative lifetimes of Rydberg states

enable long observation times and high-resolution spectroscopy [8, 9, 10]. These large

electric dipole transitions moments can interact with each other through long-range

dipole-dipole collisions at easily achievable Rydberg number densities (ρ ≈ 107 cm−3),

and these interactions can induce significant changes in the absorption and emission

profiles of an ensemble of Rydberg states [11, 1, 2]. One primary focus of this the-

sis is the investigation of these long-range dipole-dipole effects by the study of the

cooperative radiation that occurs at these Rydberg number densities.

Rydberg states exist in all molecules as well as all atoms, and follow the same

scaling rules and general behaviors [12, 13, 14, 6]. However, one complication that

exists in the Rydberg states of molecules that in general does not exist in the Rydberg

states of atoms is fast non-radiative decay. In particular, predissociation and autoion-

ization operate on timescales of ns or faster [15, 16, 17, 18, 19]. Predissociation occurs

when the Rydberg electron is excited above the thermodynamic energy threshold to

dissociation of the molecule. Energy exchange between the electron and ion-core leads

to a de-excitation of the Rydberg electron, and dissociation of the molecule into two

atoms (for the case of diatomic molecules). Autoionization involves the opposite flow

of energy, and occurs when the excited Rydberg state converges on an (electronically,

vibrationally, or rotationally) excited state of the ion-core. In this case, energy ex-

change between the electron and ion-core leads to de-excitation of the ion-core and
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Figure 1-1: A schematic representation of predissociation in Rydberg states of
molecules. The blue, bound molecular potential energy surface corresponds to a Ryd-
berg state above the thermodynamic energy threshold to dissociation of the molecule,
while the red, dissociative molecular potential energy surface corresponds to the dis-
sociating state. The two states mix in the region of state space indicated by the red
circle, coupling the Rydberg state to the dissociation continuum.

ejection of the election. While rotational and vibrational autoionization can only oc-

cur in molecules, electronic autoionization can occur in both atoms and molecules [6].

These two processes (predissociation and autoionization) are schematically displayed

in Figures 1-1 and 1-2.

Rydberg states can be divided into core-penetrating (CP) and core-nonpenetrating

(CNP) states. Due to the `(`+1)/2r2 centrifugal barrier between the electron and ion-

core, the semi-classical inner turning point of the Rydberg electron orbital is controlled

almost entirely by the value of `. As such, for relatively low values of ` (` < 4),

the Rydberg electron wavefunction has significant overlap with the ion-core and is

called core-penetrating. For higher values of `, the Rydberg electron wavefunction has

essentially zero overlap with the core and is called core-nonpenetrating. The exchange
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Figure 1-2: A schematic representation of autoionization in Rydberg states of both
atoms and molecules. The left-hand level diagram illustrates a Rydberg series con-
verging on the ground state of the ion-core, while the right-hand level diagram illus-
trates a Rydberg series converging on an excited (rotational, vibrational, or electronic)
state of the ion-core. Rydberg states excited in the right-hand manifold above the
ground state ionization potential can couple to the ionization continuum, as indicated
by the red double-headed arrow.

of energy that causes predissociation and autoionization requires overlap between the

Rydberg electron and ion-core, thus CNP states escape the fast non-radiative decay

present in molecular Rydberg states [6].

In molecular Rydberg states, due to the lack of spherical symmetry, ` is generally

not a good quantum number. However, in CNP states, the Rydberg electron is

essentially decoupled from the ion-core, which leads to an atom-like structure with

δ` ≈ 0, and an “almost good” quantum number `. This allows for a simpler assignment

of CNP states due to the “pure electronic” transition selection and propensity rules

that govern the spectrum (∆` = ±1, ∆N+ = 0, ∆v+ = 0, ∆N = 0, ±1, + ↔ −,

where N is the total angular momentum excluding spin of the total molecule and
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+/− represent parity) [10].

Accessing molecular CNP states, however, can be difficult due to their relative

remoteness (primarily in angular momentum) from ground/valence electronic states.

In general, multiple photons are required to reach the required angular momentum

of CNP states, and at least one intermediate short-lived CP state must be traversed.

While a small number of molecules have long-lived CP states converging to the lowest

ionization potential (due to either an abnormally low ionization potential or atypi-

cally weak coupling to predissociating states), in order to access CNP states in a wide

variety of molecules, advanced population transfer methods such as STIRAP (STIm-

ulated Raman Adiabatic Passage) or Stark switching are required [20, 21]. The other

primary focus of this thesis is to demonstrate a proof-of-principle of a generalizable

method to robustly populate molecular CNP states in large number densities via a

coherent population transfer scheme.

These two goals, taken together, describe the fundamental goal of the research

that comprises this thesis: investigation, description, and control of the interaction

between mm-waves and Rydberg states of atoms. The long-term aim is to apply the

techniques pioneered here in atomic Rydberg states to Rydberg states of molecules.

The experiments described in this thesis provide the basis for future experimental

work on molecular systems and highly cooperative light-matter interactions.

1.2 Chirped pulse millimeter wave spectroscopy and

buffer gas cooling

Millimeter wave spectroscopy is a powerful alternative to the typically performed

laser-based spectroscopic experiments [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,

35]. One of the major advantages of mm-wave spectroscopy over laser spectroscopy

is the > 1000× higher resolution and accuracy of the mm-waves. Intracavity etalon-

narrowed pulsed dye lasers of the sort typically used in laser spectroscopy generally

have a spectral resolution of 1 GHz and high pulse energy [36]. Continuous wave
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(CW) lasers can be stabilized to have a much narrower spectral bandwidth, typically

on the order of 1 MHz, but can suffer from relatively low power. Mm-waves combine

relatively narrow bandwidth with relatively high pulse energy. Typical mm-wave

sources can routinely achieve ∼ 100 kHz (Doppler-limited) resolution, and due to the

large electric dipole transition moment for Rydberg-Rydberg transitions, can saturate

transitions with nJ of energy.

Conventional frequency-stepping spectroscopy can require days of experimental

time to cover 20 GHz of frequency with 100 kHz resolution [37]. Thankfully, the re-

cent development of Chirped-Pulse Fourier-Transform Microwave (CP-FTMW) spec-

troscopy by Pate and co-workers, and the extension to CPmmW spectroscopy in our

group, allows for the acquisition of a high resolution broadband spectrum in seconds

[38, 39, 34, 8, 9, 10, 40]. This technique combines a broadband pulse to polarize all

possible transitions within the frequency range of a broadband pulse in a single shot,

and time-domain detection to record the Free Induction Decay (FID). In addition to

combining broadband spectral coverage with high spectral resolution, direct detection

of electric fields in highly advantageous. Typical methods for detection of Rydberg

states exploit detection of ions, which requires high-voltage ion-optics near the active

volume, which can cause shifts and broadenings of the spectra. Electric field detection

does not require any high-voltage components and can more easily achieve low levels

of stray electric fields. Additionally, the direct field detection preserves both am-

plitude and phase information, which can provide important information about the

time-dependent emission frequency. CPmmW spectroscopy is the primary method

used for interrogating Rydberg states in this thesis.

The atoms of interest in this thesis are the alkaline earth atoms, calcium and

barium. The conventional sources for atomic beams of these species are either oven-

based sources or supersonic expansions coupled to laser ablation [41]. Neither of

these techniques are well suited to Rydberg spectroscopy as they result in relatively

fast beam velocities and low atom flux, leading to reduced signal-to-noise ratios and

significant Doppler broadening. I use the buffer gas cooling technique, as pioneered

by the DeLucia group in the 1980s [42, 43, 44], and further developed into a beam
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expansion by the Doyle and DeMille groups in the mid-2000s [45, 46, 47, 48, 49, 50,

51, 52]. Compared to a supersonic expansion coupled to a laser ablation source, the

buffer gas cooled atomic beam achieves a smaller beam velocity (decreased by up

to a factor of ten) and a much larger number density (increased by up to a factor

of 1000). This typically corresponds to an effective increase in signal strength of

104. This increase not only aids the sensitivity of standard spectroscopy experiments,

but enables access to a regime of very optically dense ensembles which behave in a

qualitatively different manner than dilute atomic ensembles, including such behaviors

as superradiance.

1.3 Applications of Rydberg spectroscopy

The primary applications of Rydberg spectroscopy that utilize CPmmW spectroscopy

and buffer gas cooled atomic beams center around the selective preparation of molec-

ular CNP states and the investigation of optically dense ensembles. Selective prepara-

tion of CNP states allows for Rydberg-State-Enabled Stark deceleration and trapping

of molecules by exploiting the enormous electric dipole moments and polarizabilities

of Rydberg states, while additionally making use of the long lifetimes of CNP states

[53, 54, 55, 56, 57, 58, 59, 60, 61]. Similarly, CNP states can be used to prepare

molecular cations in single, selected quantum states by selective autoionization or

photoionization methods [15, 62, 63, 64, 65, 66, 67]. These state-selected cations can

then be used for investigations of ultracold chemistry or in novel quantum computing

schemes [68, 69, 70]. Stroboscopic resonances between internal and electronic motions

in molecular CNP states can provide insight into the mechanisms of energy transfer

between light, fast electrons and heavy, slow nuclei [71, 72, 73, 74, 75, 19, 76, 77]. Ad-

ditionally, in CNP states with relatively low ` (4 ≤ ` ≤ 8), the Rydberg electron can

act as a sensitive probe of the electronic structure (e.g. multipolar moments and po-

larizabilities) of the molecular ion-core [78, 79, 80, 30, 31, 81, 82, 83, 84, 85, 86, 87, 88].

Finally, molecular CNP states enable investigations of fundamental quantum mechan-

ics through the creation of exotic states such as pendular quantum states that combine
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permanent and induced electric dipole interactions [89, 90, 91].

Optically dense ensembles are interesting because the physics that governs their

collective radiative properties is described by the same physics as many areas of

condensed phase photochemistry and laser physics [1]. Intermolecular interactions

can induce or modify photochemical reactions, such as in the case of J-aggregates

[92]. Collective radiation from dense ensembles of Rydberg states is fundamentally

the same process as a mirrorless laser, and allows for investigation of light propagation

through a highly nonlinear medium [23, 25, 26, 28, 93, 94, 95, 96]. Finally, the

dynamics of many-body quantum states can be investigated at a fundamental level

at both high time and frequency resolution [97, 98, 34, 35, 99, 100, 10, 101, 102, 2].

1.4 Thesis outline

In Chapter 2, I describe the experimental apparatus used in my experiments in this

thesis. I present the hydrodynamics of the buffer gas cooled atomic beam expansion

and outline the requirements for creating a beam that combines high flux and low

velocity. I discuss the lasers involved in the experiment and discuss their coherence

properties. Finally, I address the construction of two CPmmW spectrometers that

operate in two different frequency ranges, how to apply CPmmW spectroscopy to

Rydberg states, and provide a comparison of the pros and cons of each frequency

range.

In Chapter 3, I build up a description of the phenomenon of superradiance in

a stepwise fashion. First I describe the situation purely classically and show that

explicit inclusion of cooperative radiation effects is essential to a treatment that con-

serves energy in a two-dipole system. Then I present the Dicke model of simplified

superradiance in a purely quantum mechanical system. I follow this with a more

complete semi-classical derivation based on the Bloch-Maxwell equations. Finally, I

present three separate fully quantum-mechanical approaches to calculating the effects

of superradiance that provide different trade-offs between computational complexity

and extraction of useful information.
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In Chapter 4, I present results that show collective and cooperative emission in

dense sample of Rydberg atoms. First I discuss the utility of extended samples of

Rydberg states in studying superradiance. Then I present my initial observations of

untriggered superradiance in the buffer gas cooled beam source. Finally I present

observations of externally triggered superradiance and describe how it matches semi-

classical theory, but also where it diverges from the semi-classical theory and requires

a fully quantum theoretical description.

In Chapter 5, I discuss a variety of population transfer methods that involve

both two- and three-level systems, with the ultimate goal of describing STIRAP.

First I present three methods of population transfer in two-level systems: incoherent

population transfer, coherent population transfer, and adiabatic rapid passage. I

then draw parallels between these methods and Stimulated Emission Pumping (SEP),

coherent π-pulse transfer, and STIRAP in three-level systems. Finally, I develop the

theory required to describe STIRAP in both an ideal experiment and a realistic non-

ideal experiment, and provide examples of the effects of each non-ideality, in particular

the convenient but generally not Fourier-transform limited pulsed dye laser.

In Chapter 6, I present results that demonstrate coherent coupling between an

optical and a mm-wave photon en route to STIRAP. First I describe the level struc-

ture required for a proof of principle demonstration of optical-mm-wave STIRAP in

atomic systems. Then I present results from both the low Rabi frequency regime that

demonstrate the onset of coherent population transfer, and the high Rabi frequency

regime that demonstrate the evolution to full STIRAP. Finally, I describe some of

the difficulties in applying STIRAP to molecular systems and how to overcome them.
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Chapter 2

Experimental Design

In this chapter, I discuss the experimental details associated with the results presented

in my thesis. Section 2.1 broadly covers the vacuum system and buffer gas cooled

beam, Sec. 2.2 provides details on the pulsed laser systems used to populate Rydberg

states, and Sec. 2.3 covers the mm-wave systems used in the work described in my

thesis, both the W-band (70 - 100 GHz) and high frequency (260 - 300 GHz) systems.

2.1 Vacuum system for the buffer gas cooled molec-

ular beam

Rydberg experiments in this research group have traditionally been performed on

atomic beams formed either from an effusive oven source or through ablation cou-

pled into a supersonic expansion [103, 104, 105, 106, 107, 108, 109, 82, 77, 110, 8, 9].

While both techniques are well-suited to various aspects of Rydberg spectroscopy,

but neither is well-suited to performing millimeter-wave (mm-wave) spectroscopy of

Rydberg states of molecules and investigating cooperative radiation effects (such as

superradiance) in ensembles of Rydberg states. Therefore, I (along with former grad-

uate student Yan Zhou) constructed a completely new class of system based on the

hydrodynamic expansion of a buffer gas cooled atomic or molecular beam. This sys-

tem better matches the requirements of mm-wave spectroscopy of Rydberg states of
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molecules and investigations of collective effects. In this section, I first describe the

fundamental fluid dynamics associated with the buffer gas cooled molecular beam

source. Most theoretical work on this topic comes from the Doyle, DeMille, and

Morse groups [52, 51, 111]. Then I give an overall description of the buffer gas cooled

beam chamber as designed by myself and Yan Zhou [10]. Additionally, I present

a description of the optimization of laser ablation as well as future possibilities for

seeding the expansion with a wide variety of atomic and molecular species.

There are three important processes that describe the performance of a buffer

gas cooled atomic or molecular beam apparatus: the beam expansion process, the

process of thermalization of the species of interest with the buffer gas atoms, and the

process of extracting the beam from the chamber in which it was produced. Each

of these processes is most sensitive to a different set of experimentally controllable

parameters, and I will treat each process in the above order.

2.1.1 Beam expansion characteristics

The fundamental physical picture that I will use to describe each of the three regimes

of beam expansions (effusive, hydrodynamic, and supersonic) will be that of a seeded

buffer gas. This means that I consider two distinguishable types of particles, a, the

species of interest and b, the buffer gas. In the limit of a seeded buffer gas, I assume

that these two particles have number densities na and nb such that nb � na. This

allows for the assumption that collisions involving either two a particles or an a and

a b particle are vanishingly unlikely, and so we can write the mean free path of each

particle as:

λa =
1

nbσab
√
ma/mb + 1

(2.1)

λb =
1√

2nbσbb
(2.2)

where σab is the elastic collision cross section between species a and b, σbb is the

elastic collision cross section between two b particles, and ma and mb are the masses
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of a and b, respectively. In practice, particle b is usually a noble gas, either helium or

neon. In my chamber, either helium or neon can be used, but I used exclusively neon

for the experiments in this thesis. Typically, ma > mb and σab ≈ σbb. Cross-sections

depend strongly on temperature when T < 10 K, and can be very difficult to measure.

I use typical values of σHeHe = 1 × 10−14 cm2 at 4 K, and σNeNe = 2 × 10−14 cm2

at 20 K [112, 113]. Collisional cross sections for rotational and vibrational cooling

collisions in molecules are discussed in detail below, in the context of thermalization.

The mean free paths of the particles in the cell, along with the diameter of the

aperture leading out of the cell, daperture, are the physical quantities that most

directly control the behavior of the beam expansion. The mean free paths can be

easily controlled by changing nb, while the aperture diameter is typically set for

a particular cell geometry by the requirements of thermalization of particle a and

extraction of the beam into vacuum, as I will consider later. Since particle b is

generally a noble gas, nb cannot typically be directly measured in the cell, but it

can be determined from the controllable flow rate through the cell, f0,b. Typical flow

rates for buffer gas beams are f0,b = 1−100 SCCM (Standard Cubic Centimeters per

Minute 1 SCCM ≈ 4×1017 particles/s) and can be varied using a mass flow controller.

Since the buffer gas flow is continuous and under steady state conditions (denoted

by the subscript 0), the output flow rate, fout, determined by the conductance of the

aperture and the mean exit velocity, vexitb , of particle b, must be equal to the steady

state input flow rate, f0,b.

fout =
n0,bv

exit
b Aaperture

4
= f0,b (2.3)

n0,b =
4f0.b

Aaperturevexitb

(2.4)

where Aaperture is the area of the aperture of the cell output orifice, with typical

values of 5 − 25 mm2. The mean exit velocity depends slightly on flow rate, and

is fundamentally related to the thermal mean of the magnitude of the velocity of

particles b inside the cell
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v̄0,b =

√
8kbT0
πmb

(2.5)

where T0 is the temperature of the cell (4 K for helium buffer gas and 20 K for

neon buffer gas). Typical values for the mean thermal velocity of the buffer gas are

around 145 m/s for both 4K helium and 20 K neon. When the flow rate is small,

the expansion is effusive, and the exit velocity can be determined by integrating the

classical velocity distribution in the beam, f(v), over all velocities

f(v) =
32

π2v̄40,b
v3e−4v

2/πv̄20,b (2.6)

vexitb = veffb =

∫ ∞
0

vf(v)dv =
3π

8
v̄0,b. (2.7)

This provides a lower bound of ∼ 1.2v̄0,b on the mean exit velocity. As the input

flow rate is increased, collisions in and around the aperture begin to occur and boost

the forward velocity of the buffer gas atoms above the mean thermal velocity. When

the flow rate is very large, the velocity is boosted to the maximum value given by the

fully supersonic velocity

vexitb = vss‖,b =

√
2γkBT0

(γ − 1)mb

=

√
πγ

4(γ − 1)
v̄0,b (2.8)

where γ is the Poisson constant, or the ratio of specific heats, and is 5/3 for a

monatomic ideal gas. This provides an upper bound of ∼ 1.4v̄0,b on the mean exit

velocity of the gas. As the flow rate is increased, vexitb evolves smoothly from the

effusive toward the supersonic limit.

It is convenient to define the Reynolds number, Re, as describing the overall

behavior of the beam expansion. The Reynolds number is defined as the ratio of

inertial to viscous forces in a fluid flow

Re =
Finertial
Fviscous

≈ 2Kn−1 =
2daperture

λb
≈ 8
√

2f0,bσbb
daperturevexitb

(2.9)
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where Kn is the Knudsen number, which is a gas kinetic quantity expressed by the

ratio of the aperture size to the mean free path, and is related the Reynolds number

by the von Kármán relationship, and where I have made the substitution Aaperture ≈

d2aperture. The variation in mean exit velocity as a function of flow rate causes a small

uncertainty in the exact value of the Reynolds number, but the variation is a slow

function of flow rate, and the uncertainty is smaller than the uncertainties introduced

by the approximation inherent in the von Kármán relationship and by approximating

Aaperture ≈ d2aperture. The possible types of flow can be roughly divided into three

Reynolds number regimes. I discuss each regime in order.

• Re . 1: In this regime, the effusive regime, the mean path length of both

particles is longer than the aperture, generally on order of the size of the cell.

In this case, the resultant beam simply samples the thermal distribution of

particles in the cell.

• 100 . Re: In this regime, the supersonic regime, there are many collisions near

the aperture, and the buffer gas begins to behave like a fluid with properties

similar to those cooled in a fully isentropic supersonic expansion.

• 1 . Re . 100: In this regime, the intermediate or hydrodynamic regime, there

are a sufficient number of collisions near the aperture to significantly alter the

properties of the beam and result in an approximately isentropic expansion. The

experiments described in my thesis all take place in the hydrodynamic regime,

although the chamber that I built can operate in any of the three regimes.

Effusive sources are defined by the mean free path of the buffer gas being much

larger than the aperture diameter, such that no collisions occur as the molecules pass

through the aperture. The behavior of the beam expansion is then entirely determined

by the geometry of the cell and the thermal behavior of the species in the cell. The

number density of particles in the beam at a given position moving at a given velocity

can be described by a semi-isotropic spatial distribution and a normalized velocity

distribution
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neff (R, v, θ) = neff (R, θ)
v̄0,a/b
v

f(v) (2.10)

neff (R, θ) =
n0 cos θ

4πR2
dA (2.11)

where R is the distance from the aperture, θ is the angle from the vector normal to

the aperture, n0 is the steady state number density of the gas in the cell, and dA is the

aperture area differential. Note that since the buffer gas particles, b, and the particles

of interest, a, do not interact during the extraction, the spatial distribution of each is

the same, but the velocity distribution of each is different. The mean forward velocity

of the buffer gas particles, b, is given by Eq. 7, and the mean forward velocity of

the particles of interest, a, are identical to within a factor of
√
ma/mb. Due to the

thermal equilibrium of the beam, the velocity spreads in the forward and transverse

directions are identical, and follow 1-D Maxwell-Boltzmann distributions

∆veff‖,a/b = ∆veff⊥,a/b =

√
8 ln 2kBT0
ma/b

≈ 1.5v̄0,a/b. (2.12)

The full width half maximum (FWHM) of the angular spread, ∆θeff , and char-

acteristic solid angle, ∆Ωeff , can be determined by solving

neff (R,∆θeff ) = (neff (R, 0))/2, (2.13)

which yields:

∆θeff =
2π

3
(2.14)

∆Ωeff = 2π(1− cos(∆θ/2)) = π (2.15)

Effusive beams can be formed from the output of a buffer gas cell, but are also

commonly formed from the output of an oven operated at 500 - 1000 K in order to

interrogate certain metal atoms or low-reactivity molecules with high vapor pressure.
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In this latter situation there is no buffer gas, b, only the species of interest, a.

Supersonic sources are defined by a mean free path much smaller than the aperture

diameter, which leads to many collisions between particles as they exit through the

aperture. In this case the simple gas kinetic theory that governs the effusive expansion

is no longer applicable, as the gas behaves more like a compressible fluid. The beam

properties in this case are governed both by the thermal equilibrium in the cell and

the dynamical flow of the gas. There are, in principle, two intertwined approaches

often used to treat these supersonic expansions: one can thermodynamically treat the

expansion as adiabatic and isentropic and fit adjustable parameters in the resultant

equations to the numerical solutions of the Navier-Stokes equation. Numerically

solving the Navier-Stokes equation is beyond the scope of this thesis, therefore the

following discussion will focus on the thermodynamic relationships.

The assumptions of adiabaticity and reversibility (equivalent to the requirements

for an isentropic expansion) implies that the sum of the enthalpy and kinetic energy

of the expansion is constant

H(x) +
mbvb(x)2

2
= constant (2.16)

where H(x) is the position-dependent molar enthalpy of the gas at position x mea-

sured from the point of expansion, and vb(x)2 is the average flow velocity at that

position. One can calculate the maximum velocity of the expansion

vmaxb =

√
2H(T0)

mb

=

√
2CpT0
mb

=

√
2γkBT0

(γ − 1)mb

(2.17)

where H(T0) is the molar enthalpy of the gas at the temperature of the cell, and I have

assumed the expansion is that of an ideal gas, so Cp is independent of temperature.

Assumption of an ideal gas and use of the ideal gas law allows calculation of the

conditions (p1, T1, n1,b) at any point compared to those in the cell (p0, T0, n0,b),

where p is pressure
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T1
T0

=

(
p1
p0

)(γ−1)/γ

(2.18)

n1,b

n0,b

=

(
p1
p0

)1/γ

(2.19)

n1,b

n0,b

=

(
T1
T0

)1/(γ−1)

(2.20)

These equations are important primarily because they imply that an expansion

from a high pressure source will lead to a large reduction in temperature. This is

true for any expansion that is close to adiabatic and reversible, and applies to both

the supersonic case and the hydrodynamic case I treat next. I can also calculate the

speed of sound, ab, in an ideal gas, as

ab(T ) =

√
γRT

mb

(2.21)

where R is the ideal gas constant. The Mach number, M(x), can then be defined

as the ratio of the average flow velocity of the expanding gas at any position, vb(x),

to the local speed of sound of the gas, such that M(x) = vb(x)/ab(x). The cooling

described by the thermodynamic equations 2.18 - 2.20, above, also implies a large

reduction of the local speed of sound in the expanding gas, while the average flow

velocity increases as the molar enthalpy is converted into directed kinetic energy.

The gas expansion is described as supersonic when the Mach number becomes larger

than one. Combining equations 2.18 - 2.21, above, I can describe the temperature,

pressure, and number density of the expansion at any position in the expansion in

terms of the Mach number

T (x)

T0
=

(
1 +

γ − 1

2
M(x)2

)−1
(2.22)

p(x)

p0
=

(
1 +

γ − 1

2
M(x)2

)−γ/(γ−1)
(2.23)
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nb(x)

n0,b

=

(
1 +

γ − 1

2
M(x)2

)−1/(γ−1)
(2.24)

The only information left to be determined is the Mach number at each position,

a non-trivial task. This has been done by developing a fitting formula and fitting

parameters to match the numerical results of the Navier-Stokes equation; only the

results are presented here

M(x) = A

(
x− x0
daperture

)γ−1
− (γ + 1)(γ − 1)

2A [(x− x0/daperture)]γ−1
(2.25)

where A and x0/daperture are the unitless fitting parameters, and depend on γ. For a

monatomic ideal gas, γ = 5/3, A = 3.26, and x0/daperture = 0.075 [111]. In the far

field, when x � daperture, equations 2.22 - 2.25 can be simplified to express general

scaling laws for the behavior of a supersonic expansion of a monatomic ideal gas

T (x) ∝ x−4/3 (2.26)

p(x) ∝ x−10/3 (2.27)

nb(x) ∝ x−2 (2.28)

The temperature, pressure, and density of the beam decrease rapidly as the parti-

cles fly away from the nozzle. The density decrease is consistent with an inverse-square

law, as expected when particles expand in straight lines but diverging paths. The

temperature decrease continues until the mean free path of the buffer gas particles

becomes larger than the average distance between neighboring particles and the gas

ceases to act like a fluid, generally on the order of x ≈ (10 − 20) × daperture for

supersonic expansions.

I can use this limiting distance to calculate spatial and velocity distributions,

similar to as I did for the effusive beam case above. The forward velocity in an ideal

monatomic gas expansion is given in equations 2.8 and 2.17, above, while the forward

49



velocity spread is given as

∆vss‖,b =

√
γRTfinal
mb

=

√
Tfinal
T0

v̄0,b ≈ 0.08v̄0,b (2.29)

where Tfinal is the final temperature achieved by the beam expansion. The angular

spread (FWHM) ∆θss and beam divergence ∆Ωss can be calculated by solving the

equation nss(R,∆θss) = (nss(R, 0))/2 where

nss(R, θ
ss) ≈ nss(R, 0) cos2

(
πθ

2.8

)
. (2.30)

The solution to this equation gives the angular spread and beam divergence

∆θss ≈ 0.4π (2.31)

∆Ωss ≈ 0.4π (2.32)

All of the equations above for a supersonic expansion have been explicitly written

only in terms of the buffer gas mass, density, and velocity. This is because, in the case

of a seeded buffer gas beam, there are a sufficient number of collisions in the region of

the aperture that species a will always remain in thermal equilibrium with the buffer

gas. This means that the equations above apply equally well to particle a as to particle

b, without any changes at all. The primary advantage of this analysis is that it allows

essentially any target species to have a well-defined lab frame velocity and velocity

distribution. Additionally, if the species of interest is a molecule, and has sufficiently

large collisional cross sections for cooling rotational and vibrational motions, these

internal motions can be thermalized to the translational temperature as well. In

general, rotational cooling cross-sections are approximately an order of magnitude

smaller than σab, the elastic collision cross section, while vibrational cooling cross-

sections are three or four orders of magnitude smaller [114, 115]. In practice this

means that the rotational temperature of a molecule in a supersonic expansion can be

easily thermalized to the translational temperature, but the vibrational temperature
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can only rarely be cooled as efficiently.

The final category of beam expansions is the regime intermediate between effusive

and supersonic beams, called the hydrodynamic regime. In this category of beam

expansions, the rate of collisions between particles as they exit the cell is large enough

to modify the final velocity and temperature of the beam, but not enough to behave

in a truly fluid manner, as in a supersonic expansion. The forward velocity and beam

temperature can be determined by interpolation between the effusive and supersonic

limits, but the transverse velocity spread, angular spread, and divergence of the beam

cannot be interpolated in this manner and must be calculated independently. For the

purposes of high resolution spectroscopy, this type of expansion is preferred because

it achieves both a narrow velocity distribution as in a supersonic expansion as well as

a low lab-frame velocity as in an effusive expansion. Additionally, under the proper

circumstance, a hydrodynamic expansion can operate with a narrower angular spread

than either an effusive or supersonic expansion. In the experiments described in this

thesis, I operate our buffer gas cooled beam entirely within the hydrodynamic regime.

In order to interpolate between the forward velocity of an effusive beam (∼ 1.2v̄0,a)

and the forward velocity of a supersonic beam (∼ 1.4v̄0,b), I first consider the few-

collision regime. Intuitively, when there are few collisions, I expect the velocity to

increase linearly with the number of collisions, and saturate as the number of collisions

increases. As the particles exit through the aperture, each undergoes roughly Re/2

collisions. Each of these collisions gives the particles a momentum boost of ∼ mbv̄0,b

in the forward direction, corresponding to a net velocity boost of ∼ mbv̄0,bRe/2ma.

This provides the linear portion of the interpolation

vhydro‖,a ≈ 1.2v̄0,a + 0.6v̄0,b
mbRe

ma

(2.33)

which is empirically accurate for Reynolds numbers 1 . Re . 10. As the Reynolds

number increases further, this model breaks down, and a new model must be used.

The most common model used is a “sudden freeze” model, where particles a are in

equilibrium with the buffer gas until the density of buffer gas molecules becomes so
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Figure 2-1: A schematic representation of the forward velocity of the beam expansion
vs. Reynolds number

small that there are no more collisions. The functional form that this takes is

vhydro‖,a ≈ 1.4v̄0,b
√

1− 4Re−4/5 (2.34)

which is empirically accurate for Reynolds numbers 10 . Re . 100. The velocity of

a buffer gas beam as a function of Reynolds number across all three beam expansion

regimes is given in Figure 2-1.

The velocity spread of a hydrodynamic expansion can be similarly interpolated.

Again, intuitively, I expect an initial linear dependence on Reynolds number as col-

lisions in the area of the aperture begin to occur, followed by saturation as the ex-

pansion approaches the limit of an ideal isentropic supersonic expansion. The final

translational temperature (and hence the forward velocity distribution) can be calcu-

lated using the thermodynamic techniques described above for a supersonic expansion.

Empirical formulas can be constructed similar to those for the mean forward velocity
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∆vhydro‖,a ≈ 1.5v̄0,b − v̄0,b
mbRe

ma

(2.35)

∆vhydro‖,a ≈ 0.4v̄0,b
√

1− 4Re−4/5 (2.36)

which are empirically accurate for Reynolds numbers 1 . Re . 10 and 10 . Re .

100, as above. The final translational temperature dependence on Reynolds number,

across all three beam expansion regimes, is shown in Fig. 2-2. However, the behavior

of the transverse velocity distribution is more complicated and cannot be cleanly

interpolated. In the region near the aperture, empirical equations similar to equations

2.35 and 2.36 are reasonably accurate, but I am concerned with the behavior far from

the cell, after collisions have ceased. Empirically, the behavior far from the cell is

that the transverse velocity is almost a constant for 1 . Re . 10, and then increases

significantly, approaching the supersonic limit (∼ 2.2v̄0,b) as Re approaches ∼ 100. A

variety of hydrodynamic simulations have been performed to accurately describe this

behavior, which are beyond the scope of this thesis. Further, this behavior has been

observed in experiments with both helium and neon buffer gases [45, 49].

The angular spread (FWHM) of the beam can be computed from the transverse

velocity spread of the beam and the forward velocity by the relation

∆θssa ≈ 2

√
mb

ma

(2.37)

∆Ωss
a ≈

πmb

ms

. (2.38)

The divergence can be much smaller (∼ 0.1π) than either the effusive (π) or

supersonic (0.4π) limits. Additionally, seeding the beam with heavier particles leads

to ever smaller angular spreads and solid angles. The divergence of an atomic beam

of calcium, for example, is ∼ 0.5π, while the divergence of an atomic beam of barium

is ∼ .14π.

As a visual comparison of the properties of each of the regimes of molecular beam
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Figure 2-3: A comparison of the forward velocity and velocity spread of an effusive
beam, a supersonic beam, and a hydrodynamic beam.

expansion, I have plotted an example of each in Fig. 2-3. The effusive beam source

is considered at 500 K (typical of many oven sources), the supersonic source uses

argon as the buffer gas, while the buffer gas source (like mine) uses neon as the

backing gas. Only the buffer gas beam has both a low forward velocity and a low

translational temperature. Additionally, with the proper tuning of the flow rate, the

buffer gas beam can have a much smaller divergence than either effusive or supersonic

expansions. A comparison of the relevant parameters from each of the three types

of beam expansion is given in Table 2.1.1. The values for transit time and Doppler

broadening are given for a 300 GHz mm-wave beam spot of 1.75 cm2.

2.1.2 Thermalization

Up until now I have focused on a pair of particles assumed to already be in thermal

equilibrium in the cell. However, in many methods of introducing the species of

interest (such as ablation of a solid precursor target) the particles a are introduced at
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Effusive Oven
Expansion

Supersonic
Expansion

Hydrodynamic
Expansion

Beam Velocity 200 - 800 m/s 500 - 2000 m/s 150 - 200 m/s
Translational
Temperature

500 - 2000 K 1 - 5 K 1 - 5 K

Rotational
Temperature

500 - 2000 K 1 - 5 K 1 - 5 K

Particles/Pulse CW ∼ 1010 ∼ 1012

Number Density ∼ 106 cm−3 ∼ 105 cm−3 ∼ 108 cm−3

Number
Density/Quantum

State

∼ 103 cm−3 ∼ 104 cm−3 ∼ 107 cm−3

Transit Time
Broadening

60 kHz 150 kHz 15 kHz

Doppler
Broadening

600 kHz 600 kHz 60 kHz

Table 2.1: Comparisons of effusive, supersonic, and hydrodynamic expansions.

a higher temperature, either room temperature (for high vapor pressure species) or

significantly higher (∼ 1000− 10000 K, typical of ablation products). Before forming

a beam, there should be a sufficient number of collisions between the cold buffer gas

and the hot species of interest in order to decrease the temperature of the target

species to that of the cold cell (20 K). The average temperature change of the species

of interest per collision with a buffer gas particle is given by

∆Ta = − (Ta − Tb) /κ (2.39)

κ ≡ (ma +mb)
2

2mamb

(2.40)

where Ta and Tb are the temperatures of the species of interest and the buffer gas. I

can then write the temperature of the species after N collisions as

Ta(N)− TA(N − 1) = −(Ta(N − 1)− Tb)/κ (2.41)

and iteratively solve to find the temperature. However, if I treat N as large and the

temperature change per collision as small, I can approximate this as a differential
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equation

dTa(N)

dN
= −(Ta(N)− Tb)/κ (2.42)

which yields a solution that provides a ratio between the species and buffer gas tem-

peratures

Ta(N)

Tb
= 1 +

(
Ta(0)

Tb
− 1

)
e−N/κ ≈ 1 +

Ta(0)

Tb
e−N/κ (2.43)

The approximation made in this final step is equivalent to assuming that the

species is introduced to the cell at a temperature much larger than the buffer gas

temperature. For typical parameters, the target species can be expected to thermalize

to the temperature of the buffer gas within 50 - 100 collisions, and in a time of a few

milliseconds and a distance of a few centimeters. In order to ensure that the cell

is large enough to provide enough time and distance for a particle to thermalize to

the buffer gas bath before exiting, the cell should be designed to be larger than the

required thermalization distance.

The above discussion focuses entirely on translational thermalization. For molec-

ular targets, rotational and vibrational motions are cooled slightly differently. Ro-

tational collisional cross sections are approximately one order of magnitude smaller

than elastic collisional cross sections [114, 115]. However, due to the lack of a relative

mass factor (
√
ma/mb) in the rotational cooling process, the thermalization efficiency

can be comparable to or greater than that of the translational thermalization which

is most efficient when ma ≈ mb. Vibrational collisional cross sections are generally

quite small, three or four orders of magnitude smaller than elastic collisional cross

sections, thus the vibrational temperature of the final beam is typically similar to

that of the introduction temperature [114, 115].

2.1.3 Extraction from the cell

After the target species is cooled to the temperature of the buffer gas bath, it needs

to be efficiently moved towards the output aperture and entrained in the formed
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molecular or atomic beam. There are two competing processes that must be consid-

ered for in-cell dynamics, the diffusion of the target species to the walls of the cell

that ends with the target species frozen to the cell walls, and the extraction of the

target species from the cell. I define a dimensionless parameter to characterize the

competition between these two processes

γ ≡ τdiff
τextract

(2.44)

where τdiff is the timescale for diffusion to the walls, and τextract is the timescale

for extraction from the cell. Using a Brownian motion model, I can calculate the

diffusion constant as

D =
3

16n0,bσab

(
2πkBT0
mb

)1/2

=
3π

32

v̄0,b
n0,bσab

. (2.45)

In order to determine the timescale for diffusion to the walls, I simply need to

equate the mean-squared displacement of the target particle to the internal surface

area of the cell

〈
∆x2

〉
(t) = 6Dt = d2cell ≈ Acell (2.46)

where dcell is the diameter of the cell interior, and Acell is the surface area of the cell

interior. This allows me to calculate the timescale for diffusion to the walls as

τdiff =
16

9π

Acelln0,bσab
v̄0.b

. (2.47)

The diffusion time is typically 1-10 ms. The extraction time is determined pri-

marily by the conductance of the cell aperture

Ṅb =
Nbv̄0,bAaperture

4Vcell
(2.48)

where Vcell is the interior volume of the cell, Nb is the total number of buffer gas

particles in the cell, and Ṅb is the rate at which the buffer gas particles are flowing

out of the cell. The solution to this differential equation is a single exponential decay
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with a characteristic time

τextract =
4Vcell

v̄0,bAaperture
. (2.49)

The extraction time is also typically around 1-10 ms. The extraction time also

sets the total duration of the target of interest in the beam expansion, in the case of

pulsed loading.

Both diffusion to the walls and extraction into the beam occur at the same time,

and their relative importance is given by

γ =
4

9π

n0,bσabAaperture
Lcell

≈ σabf0,b
Lcellvexitb

(2.50)

where Lcell is the characteristic length of the cell.

For γ . 1, diffusion to the walls is faster than extraction into the beam, thus

most of the species of interest will be lost. In order to combat this effect, the main

experimental parameters that I adjust are the flow rate of the buffer gas and the

overall size of the buffer gas cell. For γ & 1, molecules are mostly extracted from the

cell before diffusing to the walls, in what is known as “hydrodynamic enhancement.”

Diffusion alone extracts a fraction of molecules on the order of Aaperture/Acell < 0.1%,

whereas when γ & 1, the maximum efficiency plateaus and can be as large as 40%.

Typical experiments operate with an extraction efficiency of around 10%. In order to

form a cold beam as well, the thermalization time given above must also be smaller

than either τextract or τdiff .

The fluid dynamics of the buffer gas inside the cell are mostly described by laminar

flow. An investigation of the precise dynamics inside the cell was performed by the

Hinds group and confirms that this description is generally correct [116]. One feature

that was revealed by this calculation is that there are significant eddies located in the

corners of the cell, and it is these eddies that account for the plateau in extraction

efficiency - the eddies get larger and trap more target molecules as the flow rate is

increased, counteracting the decrease in flyout time.
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2.1.4 Beam loading

The primary method that I use to introduce the target species to the cell is laser

ablation. The experiments in this thesis focus on atomic calcium and barium. Ab-

lation of metals is typically much easier than the ablation of inorganic salts, which

is covered in detail in Yan Zhou’s thesis, Sect. 2.4. While it is possible to achieve

satisfactory yields of calcium and barium with minimal optimization, there are two

important optimizations that allow for the largest, longest-lived signal. First, unlike

the inorganic case where the high power density requirements necessitate the use of

a nearly diffraction-limited laser spot, the laser can be defocused to a & 1mm2 spot

in order to ablate a larger overall area and create a denser beam. Second, the direc-

tion of the plasma generated in an ablation process is normal to the surface being

ablated. Because of this, after the target has been ablated at relatively low power

(∼ 5 mJ/pulse), the surface of the target becomes craggy, and any individual ablation

shot can lead to the ablation plume expanding at a large angle relative to the normal

to the surface of the target. This both effectively reduces the dimensions of the cell

and causes some of the ablatant to be caught in eddies in the corners of the cell,

unavailable for extraction into the beam.

The use of higher laser intensity does not lead to higher ablation efficiency, but

it does allow for localized melting of the metal targets, thus effectively smoothing

the surface of the target, which minimizes this effect in the ablation plume. In this

thesis project, the ablation was performed with an Nd:YAG laser (Spectra-Physics

Quanta-Ray GCR-130). This laser produces up to 25 mJ/pulse of 532 nm light and

50 mJ/pulse of 1064 nm light. I use the full output of the 532 nm light to ablate

calcium, and the full output of the 1064 nm light to ablate barium.

2.1.5 Details of the buffer gas cell and vacuum chamber

Considerations of beam expansion properties, thermalization times, and extraction

efficiencies all must be taken into account when designing the buffer gas cell, as all

three depend on the physical dimensions of the buffer gas cell. A photo of the cell
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Figure 2-4: A photograph of the buffer gas cell.

that Yan Zhou and I designed is shown in Fig. 2-4. The internal dimensions of the

cell are 1.20 inches in diameter and 1.50 inches long, with an exit aperture 3.0 mm in

diameter. The distance between the ablation spot and the exit aperture is ∼ 3 cm,

which is both long enough to ensure thermalization of the ablatant to the buffer gas

temperature, but also to extract more than 10% of the target species into the beam.

A second buffer gas cell is attached to the backside of the main cell that is

preloaded with buffer gas in a ring, which then flows into the main cell through

an annulus. The back of the cell is left open, so approximately half of the buffer gas

flows backward out of the cell. However, due to the annular flow, all of the buffer

gas that enters the main buffer gas cell continues forward and contributes to forward

laminar flow out of the cell. The reason for doing this is that it allows a permanent

gas (or high vapor pressure species) to be directly loaded into the cell from the rear.

Some of this inserted gas will be deflected out of the cell by the backward flowing

buffer gas, but any that survives to enter the cell will be drawn out into the hydrody-

namic expansion. This allows for the possibility of creating molecular targets (such

as CaF and BaF) through ablation of calcium and barium metal while flowing fluo-
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Figure 2-5: A schematic representation of the buffer gas cell.

rinating agents (such as SF6) into the cell in a method analogous what is commonly

done in standard Smalley-type supersonic expansions. It also allows for immediate

investigation of permanent gases, such as NO. A schematic of the annular flow is

shown in Fig. 2-5.

The vacuum chamber that houses the buffer gas cell was designed jointly by myself

and Yan Zhou, and was thoroughly described in his thesis, Sect. 2.3.3. I provide here

a brief review of the primary features of the vacuum chamber, and note all significant

changes to the overall operation of the system. A photo of the complete system is

shown in Fig. 2-6.

The buffer gas cooled beam chamber is fundamentally built around a 2-stage

closed cycle pulse tube refrigerator (Cryomech PT410-RM) with a remote reservoir.

This refrigerator has a cooling capacitance of ∼ 1 W at 4 K, easily cooling the system

to the required 20 K (for neon buffer gas) and allowing for potential experiments

at 4 K (for helium buffer gas). The vacuum shields consist of two chambers: a

cryostat/beam formation chamber and a detection chamber. The cryostat chamber

contains the pulse tube refrigerator head, with eight vacuum ports allowing access for

temperature monitoring and control, neon gas feedthroughs, pressure monitoring, and

vacuum connections and gauges. A radiation shield is connected to the first stage of
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Figure 2-6: A photograph of the vacuum chamber.

the refrigerator (∼ 40 K) and serves to reduce the blackbody heat load on the second

stage (∼ 4 K) and the buffer gas cell (∼ 20 K). The buffer gas cell is offset from the

cold plate of the second stage and held at 20 K with a series of resistive heaters and

a Labview PID control program. Rectangular windows on either side of the vacuum

shield and radiation shield allow optical access to the cell for ablation and diagnostics.

A 4 K cold plate directly in front of the cold cell acts as a cold skimmer, collimator,

and additional cryopumping for the cryostat chamber.

Room temperature neon gas (99.999% purity) flows into the cell through a series of

1/8 inch stainless steel and copper tubes. It is thermalized first to the radiation shield

temperature, and then the buffer gas cell temperature through wrapping around a

pair of copper cylinders. The second stage of thermalization is also controlled by the

Labview PID control program. High purity neon must be used, because any impurities

other than helium (the most common impurity) will freeze in the tube, while helium

will degrade the vacuum in front of the cell. Excessive helium in the beam reflects

backwards towards the cell off the cold skimmer and prevents the hydrodynamic beam

expansion from occurring as described above.
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Figure 2-7: A schematic representation of the buffer gas cooled molecular beam cham-
ber.

The buffer gas beam expands into vacuum, is skimmed and loosely collimated by

the aforementioned 4K cold plate, and proceeds into the detection chamber. There

it is transversely crossed by lasers and millimeter waves for both diagnostic and ex-

perimental purposes. A schematic diagram of the entire vacuum system and relevant

radiation sources is shown in Fig. 2-7.

To minimize the Earth’s magnetic field, the entire vacuum apparatus is surrounded

by three orthogonal pairs of rectangular Helmholtz coils. The strength of each pair is

controlled by varying the voltage of a current-limited power supply. Rough calibration

of these voltages is performed with a Honeywell HMC5883L 3-axis magnetometer chip

to eliminate the stray magnetic field in each direction. Any residual field, detectable

as splittings in the mm-wave spectrum, is removed by fine adjustment using the
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mm-wave spectrum as a guide.

2.2 Pulsed laser system

Rydberg states, existing at high excitation energies near (or above) the first ioniza-

tion potential, require a large amount of energy to populate. We choose to use pulsed

tunable laser excitation to balance state selectivity and resolution with total number

of Rydberg states created. There are several details associated with the laser excita-

tion process that are important for both cooperative effects (such as superradiance)

and coherent population transfer experiments (such as STIRAP). I describe first the

details of how the lasers are used in the experiment, then the details of the longitudi-

nal cavity modes of each laser and how they affect the experiments at hand, and then

fine details that are important for planning future experiments on Rydberg-Rydberg

transitions.

We use one or two pulsed dye lasers to selectively populate individual Rydberg

states in all of the following experiments. A sample two-photon scheme for populating

ns or nd states of calcium atoms for mmwave interrogation is shown in Figure 2-8.

Both lasers are pumped by the same 20 Hz injection-seeded Spectra-Physics GCR-

290 with either ∼200 mJ/pulse, 7.5 ns duration 532 nm light or ∼100 mJ/pulse, 6 ns

duration 355 nm light.

For the sample two-photon scheme, the first transition, from the 4s2 1S0 ground

state to the 4s5p 1P1 state, is driven with 544.4 nm radiation, doubled in a β-BBO

crystal to 272.2 nm, generated in a Sirah Cobra-Stretch pulsed dye laser pumped

by the third harmonic of the Nd:YAG. The second transition, from the 4s5p 1P1

state to a 4sns 1S0 or a 4snd 1D2 Rydberg state is driven with ∼800 nm radiation

generated in an intracavity etalon-narrowed Scanmate pulsed dye laser pumped by

the second harmonic of the Nd:YAG. Both lasers are vertically polarized so all of the

optical transitions follow the selection rule ∆m = 0. In certain experiments, only a

single UV photon is required, and in those cases it is generated with the intracavity

etalon-narrowed Scanmate pumped by the third harmonic of the Nd:YAG.
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Figure 2-8: A sample two-photon excitation scheme to Rydberg states.

In order to perform high-resolution spectroscopy with a high signal to noise ratio,

I aim to generate a large population of Rydberg states, while maintaining a low

enough density to avoid solely observing collective effects. To this end, I allow the

laser beams to be diverging upon entrance into the chamber in order to create a

large active volume for the experiment. In practice, I combine the radiation from

both lasers (if using two) using a Semrock 325 nm BrightLine dichroic beamsplitter

(average reflectance > 90% λ < 300 nm, average transmittance > 90% λ > 336 nm)

and send both beams through a short focal length (f = 50 mm) convex lens. The

focused light passes through a small hole in the center of a gold coated copper off-

axis parabolic mirror in order to co-propagate the mm-waves with the superimposed

laser beams. The mm-wave radiation is allowed to diverge after passing through

the mirror. The laser beams have typically expanded to an area of ∼ 1.5 cm2 at the

beginning of the interaction with the atomic beam and continue to expand throughout

the sample. When using two colors, the focal length is slightly different for the two,

but the primary goal is large sample volume. Slight differences in beam diameter are

acceptable.
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Calibrating the wavelengths of the lasers, when necessary, is done in two ways.

First, the laser can be scanned to compare the wavelength at any given step to a

known spectral source, typically a heated sample of tellurium for λ < 550 nm, and

iodine, potentially heated, for λ > 550 nm. This allows precise determination of the

absolute wavelength of the laser. For less stringent applications, the laser radiation

is fed via optical fiber to an Angstrom WS-7 Fizeau wavemeter to determine the

wavelength interferometrically. The original purpose of the wavemeter, and primary

advantage in this manner of measurement, is nearly instant feedback as to the wave-

length without having to record and calibrate a spectrum. The absolute accuracy

of the wavemeter is, when calibrated, 50 MHz and, in principle, sufficient to use as

the sole calibration source for an experiment, although it is wise to use a secondary

source for confirmation. The second advantage of the wavemeter is that it displays

the interferogram directly in its associated software, which can aid in determining

the longitudinal mode structure of a laser beam, which had previously only been

accessible at low resolution by measurement of etalon fringes.

The longitudinal modes of the intracavity etalon-narrowed Scanmate behave in

a qualitatively different manner than those of the double grating-narrowed Sirah

Cobra-Stretch, or any other solely grating-narrowed dye laser that we have tested.

When properly aligned, the intracavity etalon-narrowed Scanmate lases primarily on

a single longitudinal mode on any given shot, shown in Fig. 2-9a, while grating-

narrowed lasers lase on multiple longitudinal modes on any given shot, shown in Fig.

2-9b. The multimode character is evident in the double peak structure observed on

the wavemeter, circled in red in Fig. 2-9b. This is an essential distinction when

attempting to perform coherent population transfer experiments such as STIRAP.

In principle, single longitudinal mode lasing should be possible in both the Scan-

mate and the Sirah. The cavities of the Scanmate and Sirah are similar in longitudinal

mode spacing and bandwidth. The mode spacing in each is∼500 MHz (∼0.015 cm−1),

while the FWHM of each mode is ∼250 MHz. Thus three modes can be supported in

the nominal bandwidth of each, 0.03 cm−1. In both cases, the first mode to begin las-

ing reduces the gain available in the dye to the other two modes in the process known
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Figure 2-9: Examples of detected mode structure in the pulsed laser systems.

as mode-competition. Different longitudinal modes can acquire gain from spatially

separate portions of the gain medium, and so improper pump laser alignment (specif-

ically an improperly placed cylindrical focusing lens) can lead to multimode behavior.

Similarly, increasing pump power past the point of saturation for a single longitudinal

mode can lead to multimode behavior. However, I have never been able to achieve sin-

gle longitudinal mode lasing in the Sirah, while it has been a routine accomplishment

with the Scanmate. This may be a consequence of an unexamined small difference in

the cavity structures, alignment procedures, or manufacturing quality. Even though

I do not understand the fundamental reason behind this difference in lasers, it makes

the Scanmate the natural choice for performing any coherent experiments (such as

STIRAP).

Unfortunately, the cavity mode FWHM of the Scanmate, 250 MHz, is still much

larger than the Fourier-transform limited 59 MHz bandwidth for a 7.5 ns pulse, by

a factor of ∼4, creating a remaining obstacle to coherent interactions, as examined
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in detail in Section 6.2. Therefore, an attempt to narrow this cavity mode width is

highly desirable for coherent experimentation. While there have been some demon-

strated successes at narrowing dye laser outputs by, for example, introducing an

additional frequency discriminator into the cavity, a simpler path forward is to use

pulse-amplified radiation from a single-mode stabilized CW laser.

The power density required to pump sufficient population to Rydberg states is

on the order of GW/cm2, which is out of the reach of almost all CW tunable laser

systems. On the other hand, pulse amplification of a CW laser can provide the

power density required, albeit often at the cost of degrading the resolution of the

seed laser. Pulse amplified systems, with proper alignment, can provide Fourier-

transform limited pulses of radiation, which is a significant step toward using coherent

interactions in future experiments. Timothy Barnum is currently implementing pulse

amplified systems for use in future coherent population transfer experiments.

One large complication with Nd:YAG pumped dye laser systems is the large in-

tensity fluctuations in their output. Both the Scanmate and the Sirah have been

measured to have a Standard Deviation of 0.025 when compared to the mean power.

These variations in intensity cause fluctuations in the shot-by-shot Rydberg state

population densities, which is important both to determine the signal level of each

shot, but also in any collective effects of each shot.

Additionally, care must be taken when determining the paths of the laser beams

interacting with the atomic beam inside the chamber. We have copropagated the

lasers with the mm-waves in all of the experiments covered in this thesis, primarily

for ease of alignment (the details associated with aligning the mm-waves are cov-

ered in Sec. 2.3). However, for certain experiments, primarily those associated with

cooperative effects, the exact geometry of the interaction volume is important, and

introducing the lasers from another direction could be extremely useful in precisely

designing the active volume (through the use of laser pulse spatial shaping). It is pos-

sible to propagate the lasers and mm-waves perpendicular to each other and obtain

signals roughly as strong as copropagation, but there are details beyond difficulties

concerning alignment, such as termination and polarization of the laser beams that
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must be considered before doing so.

First, the laser beams must be terminated on a material with a larger work func-

tion than the highest photon energy in order to prevent the generated photoelectrons

from creating an inhomogeneous electric field that would artificially broaden the spec-

trum. This had been a problem, for example, when the experiment was set up in a

double pass retroreflected scheme [10]. In the copropagation setup used in this thesis,

the laser-beams terminate on a Teflon window, which minimizes the production of

photo-electrons. If the laser beams must be terminated on a conductor (such as the

walls of the chamber), it is ideal for this termination to be located as far from the

active volume as possible.

Second, the polarizations of the laser beams must be carefully considered. In the

copropagating experiments described above, both lasers are vertically polarized so

that that can only drive ∆m = 0 transitions. Other polarization combinations can

be useful in molecular spectroscopy to determine the rotational state of the popu-

lated Rydberg state, as demonstrated initially by Vladimir Petrović and expanded

on by Tim Barnum [110]. If the lasers are not copropagating with the mm-waves the

possibilities for relative polarizations are more complicated, primarily due to the fact

that (in the case of perpendicular relative propagation), one potential polarization

state of the laser beams corresponds to the wavevector of the mm-waves, and vice

versa. In these cases one may not be able to drive solely the desired ∆m for a given

experiment.

Finally, the transverse mode structure of the beam spot of both laser beams must

be taken into account. Neither laser produces a beam with a TEM00 transverse mode,

and once the beams have been expanded the asymmetries and dead spots of the beams

can make uniform overlap of the beams difficult. Example beam spots for the UV

and IR lasers are shown in Figs. 2-10 and 2-11. Spatial filtering can be performed,

but presents significant difficulties. The power required to pump to Rydberg states,

especially in a coherent population transfer scheme, can be quite large due to the

unavoidably large interaction volume. Spatial filtering can reduce the power output

of a dye laser by as much as 50%, and the high dye laser pulse energy required can burn

70



Figure 2-10: Example of the IR beam spot generated by the Scanmate pulsed dye
laser.

and destroy the pinholes used for filtering. Pulse amplified cw dye lasers generally

have far better spatial properties and do not require additional spatial filtering.

2.3 Chirped-pulse millimeter-wave spectrometers

While laser spectroscopy continues to be the primary technique used in the study of

Rydberg states, we choose to use millimeter wave spectroscopy for three related rea-

sons. First, the frequency resolution and accuracy of millimeter wave spectrometers is

much higher than those provided by our pulsed dye lasers and the coherence properties

of the millimeter wave source is vastly superior to that of pulsed dye lasers. Second,

the recent invention of the Chirped-Pulse Fourier-Transform Microwave (CP-FTMW)

spectroscopy by Pate and co-workers, and expansion to the millimeter wave regime

by our group, provides the ability to scan rapidly broad swathes of frequency space

[38, 39, 34, 8, 40]. Third, the exceptionally large electric dipole transition moments

for Rydberg-Rydberg transitions allow for a variety of novel experiments that exploit

mm-wave radiation, including those described later in this thesis, such as coherent
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Figure 2-11: Example of the UV beam spot generated by the Sirah pulsed dye laser.

population transfer and investigations of cooperative radiation.

I employed two separate mm-wave spectrometers in the course of this work: a

W-band (70 - 100 GHz) system and a THz (260 - 300 GHz) system. Contrary to

the common belief that the specific frequency regime does not matter in the Rydberg

manifold due to the well-known Rydberg scaling laws, each of these spectrometers

has unique strengths and weaknesses when for Rydberg-Rydberg spectroscopy. In this

section I first describe the construction of the two spectrometers, then I briefly outline

the procedure for careful alignment of the mm-waves through free space. Finally, I

discuss the relative advantages and disadvantages of each frequency range.

2.3.1 W-band spectrometer

A schematic of the W-band spectrometer is given in Figure 2-12. The core of the

spectrometer is a 4.2 GS/s arbitrary waveform generator (AWG) (vi), clocked by a

4.2 GHz phase-locked oscillator (ii). This AWG generates a user-defined RF pulse

with frequency components in the range of 0.2-2.0 GHz. This RF is mixed (vii)

with the output of a 6.2 GHz phase-locked oscillator (iii), and band-pass filtered to

72



select the upper sideband (ix), in order to create a user-defined microwave pulse with

frequency components in the range of 6.4-8.2 GHz. This pulse is sent through a

variety of microwave filters, isolators, amplifiers, and frequency multipliers (viii, x

âĂŞ xviii) described in the next section, with the end result being the same user-

defined pulse now at the mm-wave frequencies of 76.8-98.4 GHz. The two active

frequency multipliers in the circuit (xiv, xviii) multiply the frequency of the pulse, the

bandwidth of the pulse, and the phase of the pulse, providing a 12x larger bandwidth

in the mm-wave regime than generated originally in the RF region. This mm-wave

pulse is coupled into free space by a 24 dBi (decibel increase over isotropic broadcast)

standard rectangular gain horn (xx), collimated, and directed to the molecular beam

chamber by either a set of Teflon lenses (xxi) or an off-axis parabolic mirror (not

displayed). The remaining input pulse, along with any resultant FID, is refocused

through a similar set of Teflon lenses or an identical off-axis parabolic mirror into a

standard rectangular gain receiving horn, and mixed with the sextupled (xxvii) output

of a microwave frequency synthesizer (iv). The down-converted signal is amplified

by a low-noise amplifier (xxix) and directly digitized and averaged on a 12.5 GHz

oscilloscope (xxx). All frequency sources used in this spectrometer are locked to the

same 10 MHz Rb frequency standard (i). The part list for this spectrometer is given

in Yan Zhou’s thesis, Sect. 2.3.2, and the specifications in Sect. 2.3.4.

This spectrometer required several optimizations in order to improve its phase

stability and decrease its frequency noise. The majority of the isolators and filters in

the source arm of the spectrometer (v-xviii) were included to maintain frequency pu-

rity before entering the two active multipliers (xiv, xviii). Active multipliers function

fundamentally as amplified mixers, so if even a weak sideband is present (10-20 dB

below the main frequency in power), it will be amplified and mixed with the funda-

mental frequency at each step, leading to numerous unwanted side bands in the final

output.

In order to avoid this, the output of the AWG was first filtered with a 2.2 GHz

low pass filter (v) in order to remove the Nyquist frequency (fsamplerate − fRF ) and

higher harmonics. Spurious frequencies could be introduced in the triple-balanced
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Figure 2-12: Schematic diagram of the W-band millimeter-wave spectrometer.

mixer (vii) as the result of leakage of either non-mixed LO or IF frequencies. As the

IF was broadband and difficult to filter effectively, while the LO was a single known

frequency, we opted to oversaturate the LO power input to the mixer so that the

spurious transmitted frequency was almost entirely 6.2 GHz, and then used a custom

6.2 GHz notch filter (x) to remove the excess LO frequency.

RF and mm-wave reflections at coaxial connections can be formed by impedance

mismatches caused by improperly tightened SMA connectors, or improperly driven

active components. Similarly, large angle bends of coaxial cable can stress the internal

conductor and cause frequency dependent attenuation and reflection in the cable itself.

These reflections can remix with the original RF and microwave frequencies in the

mixer (vii) and active multipliers (xiv, xviii), resulting in a complex noise spectrum.

Two steps are taken to reduce this noise spectrum. First, significant care is taken

when constructing and placing the low frequency components of the spectrometer to

prevent excessive torque in either the tightening of the SMA connectors and in the

coaxial cables connecting distant components of the experiment. In order to reduce

coaxial noise and attenuation, the majority of the RF and microwave components
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Figure 2-13: Photograph of the low-frequency components of the W-band spectrom-
eter.

(ii, iii, v, vii-xvii) are placed in the same area and connected by small solid state

SMA male-male connectors, as all of the components are connectorized with SMA

female inputs and outputs. Second, numerous isolators (viii, xi, xiii, xv, xxii, xxviii)

are installed before and after any active components, to prevent reflections due to

impedance mismatching caused by power supply fluctuations.

The relative stability of the phase locked oscillators with respect to each other

is strongly dependent on pressure and temperature, and the efficiency of all active

components, such as amplifiers and multipliers (xii, xiv, xvi, xviii, xxvii, xxiii, xxix)

depends strongly on temperature. Without active cooling, these components are all

subject to the varying ambient temperature and pressure. In order to reduce these

effects, we actively cool each component to 12 ◦C with a chilled water circulator.

Additionally, the majority of the RF and microwave components (ii, iii, v, vii-xvii)

are housed in an unsealed plastic case in order to minimize pressure fluctuations, as

seen in Fig. 2-13.
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2.3.2 High-frequency spectrometer

The high frequency spectrometer operates on principles to very similar to those of

the W-band spectrometer. A schematic of the high frequency spectrometer is given

in Figure 2-14. The core of this spectrometer is a 12 GS/s AWG (ii) clocked directly

by the 10 MHz Rb frequency standard (i). This AWG produces a user-defined RF

pulse with frequency components ranging from 2.0 - 3.5 GHz, as well as a single

frequency LO signal in the same frequency range. The RF pulse is mixed (iii) with

the output of an 8.8 GHz phase-locked oscillator (vii) and bandpass filtered (v) to

select the upper sideband, thus producing a user-defined 10.8 - 12.3 GHz microwave

pulse. This microwave pulse is filtered (viii), amplified (ix), and isolated (x) before

being fed into an x24 active multiplier chain (xi) to produce a user-defined 260-300

GHz pulse. This high frequency pulse is again coupled into free space using a 24 dBi

standard rectangular gain horn, and collimated into the detection chamber using an

off-axis parabolic mirror. After interacting with the sample, the remaining radiation

and any resultant FID is focused with a series of Teflon lenses into a receiving standard

rectangular gain horn. The LO signal from the AWG is mixed (iv) with the output

of the same 8.8 GHz phase-locked oscillator, similarly filtered (xiii), amplified (xiv),

and isolated (xv), before being fed into an x12 active multiplier (xvi) and used as the

LO in a subharmonic mixer (xvii) to down-convert the captured signal and the FID.

The RF output of this subharmonic mixer is then sent through a low-noise amplifier

(xix) before being read out directly on a 50 GS/s, 20 GHz oscilloscope. The part list

for this spectrometer is as follows:

(i) 10 MHz Rubidium frequency standard (Stanford Research Systems FS725)

(ii) 12 GS/s arbitrary waveform generator (Agilent M8190A)

(iii) Triple-balanced mixer (MITEQ M/N-DM0416LW2)

(iv) Triple-balanced mixer (MITEQ M/N-DM0416LW2)

(v) Band-pass filter (Lorch 7CF7-8800/A150-S)
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Figure 2-14: Schematic diagram of the high-frequency millimeter-wave spectrometer.

(vi) Isolator (Unknown)

(vii) 8.8 GHz phase-locked dielectric resonator oscillator (Microwave Dynamics PLO-

4000-08.80)

(viii) Band-pass filter (Lorch 13EZ5-11450/A1500-S)

(ix) Power amplifier (WT ASG-183020)

(x) Isolator (Ditom DM16018)

(xi) Active multiplier chain x24 (Virginia Diodes AMC291)

(xii) 24 dBi, W-band standard rectangular gain horn (Millitech)

(xiii) Band-pass filter (Lorch 13EZ5-11450/A1500-S)

(xiv) Power amplifier (WT ASG-183020)

(xv) Isolator (Ditom DM16018)

(xvi) Active multiplier chain x12 (Virginia Diodes MixAMC156)
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(xvii) Subharmonic mixer (Virginia Diodes MixAMC156)

(xviii) DC Block (Pasternack PE8250)

(xix) Low-noise amplifier (MITEQ AMF-70-00101800-24-10P)

(xx) 50 GS/s, 20 GHz high-speed oscilloscope (Tektronix DPO72004)

(xxi) Power divider (SERNO-0176 292481P1)

This spectrometer required a different set of optimizations than the W-band spec-

trometer, although the fundamental philosophy and goals (minimize phase and fre-

quency noise) were the same. The frequency purity requirements for the x24 and x12

active multiplier chains were much more stringent than those of the x2 and x6 ac-

tive multiplier chains used in the W-band experiment. As such, the frequency purity

achieved through a combination of filters and isolators as in the W-band spectrometer

was insufficient. The Agilent (now rebranded as Keysight Technologies) AWG (ii),

at the time of purchase, had the best specifications for frequency purity (-60 dBc

[decibels relative to the carrier frequency]) and was therefore chosen to be used as

the central AWG. Further, the Agilent AWG was supplied with two output channels,

allowing both the chirp and the LO to be generated by the same instrument, which

eliminates the need for a separate synthesizer.

Since the AWG provided an RF pulse with superb frequency purity characteristics

in the range of 2.0 - 3.5 GHz (far from DC), we were able to perform the same trick

of overdriving the triple-balanced mixer (iii) with the output of the 8.8 GHz phase-

locked oscillator (vii), and filter to isolate both the lower sideband and the residual

LO frequency with the same band-pass filter (viii). The remaining frequency noise

was dealt with by installing an isolator between the power amplifier (ix) and the x24

active multiplier chain (xi).

The high-frequency spectrometer requires the same physical constraints as the W-

band spectrometer, therefore all of the RF and microwave components (iii-x, xiii-xv)

are kept in the same location, connected with SMA male-male connectors and coupled

to the active multiplier chains (xi, xvi) with highly shielded, kink-free coaxial cables.
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All active components (vii, ix, xiv, xix) are actively cooled to 12 ◦C with a chilled

water circulator, aside from the active multipliers which are supplied with their own

built-in forced air cooling systems.

The use of a single AWG to generate the signal and LO, and a single 8.8 GHz

phase-locked oscillator to mix with both the signal and the LO eliminates a large por-

tion of the phase noise in the experiment. In the W-band spectrometer, the majority

of the phase noise comes from uncorrelated phase fluctuations between the three fre-

quency sources (6.2 GHz phase-locked oscillator, 4.2 GHz phase-locked oscillator, and

2-18 GHz frequency synthesizer) despite synchronization by the common fundamental

10 MHz clock. In the high-frequency spectrometer, all fluctuations in the signal chan-

nel are exactly reproduced in the LO channel, because they are both generated from

the same AWG, and mixed with the same 8.8 GHz phase-locked oscillator. To prove

this, the system can be run unlocked from the 10 MHz Rb standard and observed to

still possess satisfactory (although not as great) phase stability, whereas the W-band

system becomes completely unlocked. Hence, we cool the 8.8 GHz phase-locked os-

cillator to prevent damage to the oscillator, not to maintain phase coherence, and do

not use a plastic case to minimize pressure fluctuations, as that has been found to be

unnecessary.

The two active multiplier chains require at least 10 dBm each of input power to

generate the necessary high harmonics. The currently used power amplifiers in the

system are the minimum required to supply this level of power to the active multiplier

chains, and limit the addition of more components to the circuit. If higher levels of

frequency purity or phase stability are required, in addition to components to stabilize

the frequency and phase, it will be necessary to replace the power amplifiers by more

powerful models.

The specifications of the high-frequency spectrometer are similar those of the W-

band spectrometer. The output power of the spectrometer can be measured by a

calibrated Virginia Diodes thermal power detector. The maximum output power of

the spectrometer is 30 mW, with minor variations over the output bandwidth; the

output power as a function of frequency is given in Fig. 2-15. Despite the manu-
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Figure 2-15: Nominal power output of high-frequency spectrometer as a function of
frequency.

facturer provided specifications, the spectrometer will produce power at frequencies

greater than 290 GHz, although with a slow decrease in power that becomes more

pronounced at frequencies above 300 GHz. Figure 2-16 displays the detected power

in a full bandwidth 1 µs 260-300 GHz chirp averaged 1000 times. The apparent gap

at the center of the chirp is where the chirp passes through the LO frequency, and the

detected frequency passes through DC. Note that the low-noise amplifier has an 18

GHz bandwidth, so the frequencies on the edges of the chirp (260-262 GHz, 298-300

GHz) are additionally attenuated. The typical detection sensitivity of the spectrom-

eter (S:N > 3 in 5000 averages) is ∼10 nW, although sensitivity for signals near the

edges of the band (∼260-265 GHz, 292-300 GHz) is poorer, typically ∼50-100 nW.

While most of the fluctuations observed in Fig. 2-16 are due to the frequency

dependent output and detection sensitivity of the spectrometer, there are additional

variations caused by standing waves and unintentional etalons formed between focus-

ing and collimating elements in the system. In order to reduce the effects of these,

the Teflon focusing lenses are rotated slightly away from perpendicular to the prop-

agation direction of the mm-waves. The remaining sources of unintentional cavities

come from the windows on the chamber (one UV-quartz, one Teflon) and the broad-
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Figure 2-16: Example of a full bandwidth chirp produced in the high-frequency spec-
trometer.
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Figure 2-17: Example of a single frequency pulse produced in the high-frequency
spectrometer.

cast horns themselves. The effects of these two sources of cavities can be separated

by slightly shifting the position of the receiving or broadcast horn and noting how the

cavity fluctuations in the spectrum change. In the current setup, the primary source

of standing waves is the broadcast horns themselves, and these horns produce broad

modulations typically on the order of no more than ∼ 30%. This corresponds to a

cavity of length 90 cm, free spectral range of ∼150 MHz, and a quality factor Q < 1.

To evaluate the frequency purity and phase noise associated with the spectrometer,

Fig. 2-17a shows the time domain trace of a 1 µs pulse at 280 GHz, and Fig. 2-17b

shows the frequency-domain power spectrum of the same pulse. The FWHM of

the frequency is ∼ 20 kHz, consistent with a Fourier-transform-limited pulse of 50

µs. Figure 2-17c shows the overall phase shift of the output power that occurs in

observations over one hour, which defines the achieved long-term phase stability, and

shows that over the course of half an hour, the phase does not shift by more than

∼ 0.2π in either direction.

While the W-band spectrometer can be outfitted with a voltage controlled attenu-

ator (VCA) to produce user-selected amplitude modulations with a rise time of 10 ns,

broadband VCAs in the 260-300 GHz region are not currently commercially available.

Therefore, in order to perform high-speed attenuation, either to smooth a pulse shape

over 10s of ns, or to attenuate one pulse of a pulse sequence with respect to another,
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Figure 2-18: Variation of high-frequency spectrometer output power as a function of
AWG input power.

we must modulate the output amplitude of the AWG. This is made complicated by

the numerous stages of amplification and multiplication that make up the spectrom-

eter. Fig. 2-18 shows the output power of the spectrometer at 282 GHz as a function

of AWG generated power. This curve is, in general, extremely frequency dependent

and must be measured at the exact frequency that is to be amplitude-modulated.

However, the broad features of the curve, no signal until a requisite input power is

met followed by a sharp turn on with a long tail to full power, are the same across

all frequencies.

The complete laser-CPmmW setup is shown in Fig. 2-7. The millimeter wave

radiation from the source arm is both collimated by and reflected from a 30 cm off-

axis parabolic mirror through the chamber before being collimated by a 10 cm Teflon

lens and input into the receiving arm. The active volume is determined by the overlap

of the laser and mm-wave radiation and the atomic beam. The mm-wave radiation

determines two dimensions of the overlap region, as it is collimated to a ∼1.5 cm

beam diameter through the detection chamber. The divergence of an atomic beam

of barium is calculated using the relationship given in Hutzler et al [52]:
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∆θ ≈ 2

√
mb

ma

= 43.6 deg (2.51)

Using the width of the cold skimmer as a reference point, we calculate that the

atomic beam has diverged to ∼15 cm diameter in the detection region, leading to an

active volume of 1.5× 1.5× 15 ≈ 30 cm3.

The alignment of the millimeter waves both through the chamber and to overlap

with the laser beams is a nontrivial process, and proper alignment is essential to obtain

high quality spectra. In order to align the millimeter waves through the chamber with

as high transmission as possible, the following procedure should be followed.

1. The components should be set up in roughly their correct positions. Any col-

limation or reflection optics should take into account that given the relatively

long wavelength of millimeter waves as compared to lasers, millimeter waves are

better described as propagating following Gaussian optics instead of ray optics.

As such, the horns should be 2
∑
f apart from each other, where the fs are the

focal lengths of all collimating optics in the system. For example, the current

system has a 30 cm off-axis parabolic mirror and a 10 cm lens, thus the horns

should be placed 80 cm apart. Due to geometric constraints of the chamber,

it is currently impossible to perfectly match the horn distance to the optics

included, and they are instead 90 cm apart.

2. The source horn should broadcast a full power CW signal, and the receiving horn

should be attached to a calibrated power detector in the same location where the

down-conversion arm will eventually be located. Carefully adjust the position

of the source horn and all collimating optics to maximize power transmission

through the system. This can end up being as high as 90% transmitted power.

If using an off-axis parabolic mirror with a hole for laser propagation, the modal

structure of the millimeter waves may be disrupted, leading to an apparent loss

due to poor impedance matching to the detection waveguide. As such, the

measured value may be as much as an order of magnitude smaller than the

actual value. To compare, replace the mirror with a smooth, hole-less mirror
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for alignment before inserting the actual mirror for experiments.

3. In order to locate the active volume in the chamber, and ensure intersection

with the atomic beam, one can image the beam by using a large iris and the

same power detector setup as in Step 2. The large iris should be placed in the

path of the millimeter-wave radiation with a small aperture (∼1 cm diameter).

The location of the millimeter-wave radiation can be determined by finding the

iris position where the transmission is maximized, while the beam waist of the

millimeter-wave radiation can be determined by adjusting the aperture of the

iris. The vertical position of the millimeter wave radiation should be aligned

with the axis of the atomic beam expansion in order to ensure signal.

4. All lasers should be aligned through the chamber at this stage to ensure over-

lap with the millimeter waves. A standard alignment procedure can be used,

using the hole in the center of the off-axis parabolic mirror and the iris from

Step 3 to determine of the propagation axis of the millimeter waves. It is also

recommended to choose the focal length of the laser focusing lens to match the

diameter of the millimeter waves near the entrance to the chamber.

5. If you can now observe FID, fine adjustment of the alignment should be per-

formed iteratively and empirically using the FID signal strength as a guide. Note

that as the alignment becomes better, collective effects may begin to come into

play, leading to unexpected frequency modifications. Hence, these adjustments

should be performed at relatively low laser powers to avoid creating coopera-

tively interacting samples.

2.3.3 Comparison of W-band and high-frequency spectrome-

ters

Despite the strict quantum number scaling laws of Rydberg states and the similarities

that Rydberg states have to each other over their energy range, there are distinct

advantages and disadvantages to choosing to use the W-band spectrometer over the
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Advantages Disadvantages
W-Band

Spectrometer • Larger accessible elec-
tric transition dipole
moments

• Chirp covers entire n∗

to n∗ + 1 region

• Access to more of the
common stroboscopic
resonances in molecules

• Requires advanced
lasers to routinely
access Rydberg states
involved

• Higher sensitivity to
collective effects

High-
Frequency

Spectrometer
• Larger accessible laser
transition dipole mo-
ments

• Shorter wavelength
leads to weaker col-
lective effects for high
resolution spectroscopy

• Lack of high speed
hardware (e.g. VCA)

• Higher sensitivity to
blackbody radiation

Table 2.2: Comparisons of the W-band and high-frequency spectrometers.

high-frequency spectrometer, and vice versa. These advantages and disadvantages

are laid out briefly in Table 2.3.3, and discussed below.

The W-band spectrometer drives transitions with ∆n∗ ≈ 1 when n∗ ≈ 44, and

can drive specific transitions with ∆n∗ < 1 down to n∗ ≈ 30, depending on the

details of the quantum defects of a given system. The high-frequency spectrometer

drives transitions with ∆n∗ ≈ 1 when n∗ ≈ 28, and can drive specific transitions with

∆n∗ < 1 down to n∗ ≈ 25. Both spectrometers can drive transitions with ∆n∗ > 1

at a variety of principal quantum numbers, although the transition dipole moments

for those transitions decrease rapidly as ∆n∗ increases.

The electric dipole transition moment for a ∆n∗ = 1 transitions scales like n∗2

for Rydberg states, which means that the millimeter-wave electric dipole transition

moments accessible to the W-band spectrometer are much larger than those to the
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high-frequency spectrometer. In general, the 30 mW of power available in both bands

is sufficient to easily polarize these transitions and perform most experiments. How-

ever, ∆n∗ ≥ 2 transitions have significantly smaller transition dipole moments, scaling

roughly as (∆n∗)−2. The available power in the W-band allows easy polarization of

up to ∆n∗ ∼ 3, while the power available in the high-frequency band only reaches

∆n∗ ∼ 2.

Larger transition moments allow for larger absolute signal strengths and greater

coherent control, but also a greater susceptibility to collective and cooperative effects

(which is itself a bonus if those effects are the goal of the experiment). The density of

Rydberg states therefore requires significantly more control in W-band experiments

than in high-frequency experiments.

Blackbody radiation becomes a less important factor at large n∗ values due to the

n∗−3 scaling of the frequency for ∆n∗ = 1 transitions. In the high temperature limit,

blackbody radiation can directly dephase a transition at a rate

γbb,1 =
4πkBT

3ε0c3

(µν
~

)2
(2.52)

where µ is the electric dipole transition moment for the transition and ν is the tran-

sition frequency. Blackbody radiation can also drain population away from either the

group or excited state of a transition at a rate

γbb,2 =
4α3kBT

3~n∗2
(2.53)

where α is the fine structure constant. To avoid double counting, we can estimate

the total blackbody dephasing as

γbb = 2γbb,2 − γbb,1 (2.54)

Both terms scale as n∗−2, and rapidly become smaller as n∗ increases. If the

experiment were to take place inside a cooled vacuum shield at liquid He temperatures

(4K), however, then the high-frequency spectrometer would become competitive as

the peak of the blackbody spectrum scales like νmax = 58.8/T GHz/K, thus the
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blackbody radiation would be at too low frequency to interact with the 300 GHz

transitions associated with the high-frequency spectrometer.

The optical electric dipole transition moment for transferring population from a

low-lying or ground state to a Rydberg state scales as n∗−2, so populating the lower

n∗ states required for the high-frequency spectrometer requires less laser power. Ad-

ditionally, the Doppler width of these laser transitions in our buffer gas cooled atomic

beam is generally ∼100 MHz, narrower than the spacing between longitudinal cavity

modes in our pulsed dye lasers. This means that it is possible to jump accidentally

over a transition because the cavity modes lase only on opposite sides of the transition,

with no fluence at the actual transition wavelength. The easiest way to avoid this is to

power broaden the transitions to Rydberg states to a width of several hundred MHz.

This requires less power when exciting to levels at lower n∗. As a point of reference,

it requires ∼1 mJ of pulse energy to broaden the 4s5p-4s30d transition in Ca to an

acceptable level. Pulse amplified dye lasers are both narrower and more precise in

their continuously scannable frequencies, thus can avoid this problem entirely.

The transition wavelength between two adjacent-n∗ Rydberg states scales as n∗−3,

thus at higher values of n∗ the same bandwidth covers a larger relative fraction of

the spectrum. For example, a 40 GHz bandwidth chirp (260 - 300 GHz) allows

interrogation of all transitions with ∆n∗ = 0.91 − 1.05 at n∗ = 30, while a smaller

bandwidth chirp (70 - 100 GHz) allows interrogation of all transitions with ∆n∗ =

0.93 − 1.35 at n∗ = 44. Table 2.3.3 shows the allowable transitions in a 30 GHz

bandwidth centered at 285 GHz and 85 GHz. A transition with ∆n∗ = 1 can only be

observed from the n∗ = 28 state when using the high frequency spectrometer, while

it can be observed from any state with 40 ≤ n∗ ≤ 44 with the W-Band spectrometer.

As such, reliably being able to observe transitions even from two adjacent n∗ states

with the high frequency spectrometer is not possible. This is shown schematically in

Fig. 2-19.

The ability to observe transitions with similar ∆n∗ at adjacent principle quantum

number is important for two reasons. First, assignment of molecular spectra relies

on observing the same transitions from different n∗ in order to obtain high-precision
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n∗ (High-Freq) Range of ∆n∗ n∗ (W-band) Range of ∆n∗

26 0.72 - 0.84 40 0.70 - 1.01
27 0.81 - 0.94 41 0.75 - 1.08
28 0.91 - 1.05 42 0.81 - 1.17
29 1.01 - 1.18 43 0.87 - 1.26
30 1.13 - 1.31 44 0.93 - 1.35

Table 2.3: Ranges of ∆n∗ accessible by the W-band and high-frequency spectrometers
at different n∗

Figure 2-19: Schematic diagram of the dependence of ∆n∗ coverage of the W-band
and high-frequency spectrometers.
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values of the state energies. Transitions observed from a single initial n∗ are limited

by the uncertainty in the laser energy, while those observed from several initial n∗

can be related to each other in order to determine their relative energies with mm-

wave precision. Second, the determination the core electric multipolar moments and

polarizabilities of molecules as laid out by Jeff Kay is greatly simplified by observing

transitions with similar ∆n∗ at adjacent principle quantum numbers [82]. In partic-

ular, due to the scaling of effective Hamiltonian parameters with n∗ and `, one must

either observe transitions with several different ` at a single n∗, or transitions at a

single ` at several different n∗.

One disadvantage to the high-frequency spectrometer that may be solved simply

as a matter of time is the lack of high speed, broadband hardware for controlling

the millimeter-wave radiation. In particular, the lack of a high speed VCA across

the band makes certain pulse sequence experiments far more complicated with the

high-frequency spectrometer than with the W-band spectrometer.
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Chapter 3

Superradiance Theory

In this chapter I discuss the theory of cooperative radiative effects, in particular the

phenomena of superradiance and subradiance. In Section 3.1 I provide a brief intro-

duction to the concepts essential to superradiance, a proof that much of superradiance

is described by classical electrodynamics, and a review of Dicke superradiance, which

is the simplest quantum mechanical model of superradiance. In Section 3.2 I de-

rive a semi-classical model of superradiance using the Bloch-Maxwell equations and

a Bloch-angle representation. In Section 3.3 I describe a fully quantum model of su-

perradiance, as formulated in both the Schrödinger and Heisenberg representations,

as well as in a master equation model.

3.1 An introduction to superradiance

Superradiance is fundamentally the modification of the emission properties of a parti-

cle by neighboring particles [117, 118, 119, 1, 120]. Intuitively, one particle emitting a

photon (either through spontaneous or stimulated emission) is seen in a phase coher-

ent manner by a neighbor, which then releases a photon through stimulated emission.

This coherence is created first in a small volume and propagates through the en-

tire system by radiative coupling. Coherence that is built up in this way is called

“cooperative”.

In contrast to the familiar monotonic exponential decay with lifetime τ associated
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Figure 3-1: The left plot displays the typical emission behavior of a dilute ensemble
of emitters. The right plot displays the typical superradiant emission behavior of a
dense ensemble of emitters.

with fluorescent emission of incoherent radiation from dilute samples, the superradiant

emission from dense samples is manifest as a short, intense burst of coherent radiation.

This distinction is shown schematically in Figure 3-1. This coherent burst of radiation,

which scales in intensity as N2 and in lifetime as N−1, where N is the number of

emitters, is a characteristic feature of superradiance [1].

The phenomenon of superradiance is often described as a mirror-less laser, and

many of the approaches describing superradiance are grounded in laser physics [121,

122, 123, 124, 118, 119, 125, 126, 127, 128, 1]. In some respects, superradiance

is a simpler phenomenon to analyze than lasing, because the only parameters that

need to be considered are the evolution of the superradiant medium and its own

generated electric field. However, a detailed analysis of superradiance requires a

complex blend of concepts from quantum electrodynamics, non-linear optics, and

many-body problems[1].

An additional collective effect is subradiance. Whereas, in superradiance emitters

constructively interfere with each other to produce a coherent burst of radiation, in

subradiance emitters destructively interfere with each other and emit on timescales

much longer than the fluorescence lifetime of dilute particles [129, 130, 131, 132,

133, 93, 134, 135]. Subradiance is theoretically derived in a similar manner to su-

perradiance, although it is much more difficult to provably observe experimentally

[136, 137, 138, 139].

In order to develop the theory needed to describe the experiments presented in
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Chapter 4, I first demonstrate how much of the superradiant phenomenon occurs in a

classical two-particle system in Section 3.1.1. In Section 3.1.2, I introduce Dicke su-

perradiance for a many-particle system and use a two-particle system to demonstrate

the points of equivalence with the classical results. In Section 3.1.3, I briefly introduce

the concepts of non-fully symmetric quantum mechanical states and subradiance.

3.1.1 Superradiance in classical electrodynamics

The importance of collective decay in classical electrodynamics has not been widely

appreciated. In approaching the calculations, I follow the general outline presented by

Berman [140]. To illustrate the fundamental phenomenon, I consider a pair of dipole

oscillators with the same radiative lifetime and resonance frequency and separated by

a distance R12, as shown in Figure 3-2. At time t = 0, both oscillators are impulsively

excited, with potentially different initial speeds. The phase of each excitation impulse

may also be different, but for simplicity, I assume the phases to be identical. The

behavior of each dipole can be described as a damped oscillator

z̈i + 2γżi + ω2zi = 0 (3.1)

zi(0) = 0, żi(0) = vi, (3.2)

where i = 1, 2 denotes each individual oscillator, zi(t) is the displacement of the ith

oscillator, γ is the radiative decay rate of an isolated oscillator, ω is the resonant

frequency of both oscillators, ω � γ, and vi is the initial speed of the ith oscillator.

For a single oscillator, γ can be determined classically to be

γ =
1

3

q2ω2

4πε0mc3
. (3.3)

where q is the effective charge of both oscillators and m is the effective mass of

both oscillators, and both q and m are only important as they provide a means of

calculating γ. The solution for zi can be written as the product of an oscillating field
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Figure 3-2: Schematic diagram of a pair of classical dipoles, 1 and 2, separated by a
distance R21.
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and an envelope function Ai:

zi = Ai(t)e
−iωt (3.4)

Ȧi = −γAi → Ai(t) =
ivi
2ω
e−γt. (3.5)

The initial total energy of these two individual oscillators is the kinetic energy

W0 = 1/2 m (v21 + v22). The final emitted energy of the two individual oscillators can

be obtained by integrating the radiated power over solid angle and time

Wf =

∫
dt

∫
R2dΩ〈~S〉 · R̂ ≈ W0

(
1 +

3β sin ξ

2ξ

)
(3.6)

where 〈~S〉 is the time-averaged Poynting vector, R is the distance between the center of

coordinate system and an observation point in a direction R̂ and is defined graphically

in Figure 3-2, ξ = kR21 (with k the wavevector of the radiation ω/c and R21 the

dsitance between the two dipoles) is the dimensionless distance between the two

oscillators and the result is expressed to first order in ξ−1, and β = 2v1v2
v21+v

2
2
.

In general, 3β sin ξ
2ξ
6= 0, so the radiated energy is not equal to the initial energy,

which leads to a violation of energy conservation. In order to satisfy energy conserva-

tion, I introduce a cooperative decay term γ12(ξ) that accounts for the modification

of the decay of each oscillator produced by the field of the other oscillator. This

coupling modifies Equation 3.5 to yield the coupled differential equations

Ȧ1 = −γA1 − γ12(ξ)A2 (3.7)

Ȧ2 = −γA2 − γ12(ξ)A1 (3.8)

γ12(ξ) = γ
3eiξ

2iξ

(
1 +

i

ξ
− 1

ξ2

)
, (3.9)

where γ12(ξ) can be derived analytically from classical electrodynamics for the two-
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particle case. This derivation is beyond the scope of this thesis. The solution to these

differential equations is

A1(t) = e−γt
[
iv1
2ω
− iv2γ12(ξ)t

2ω

]
(3.10)

A2(t) = e−γt
[
iv2
2ω
− iv1γ12(ξ)t

2ω

]
. (3.11)

The modification of the emitted radiation arises entirely from the second term in the

brackets, and is time-dependent. When the two oscillators are close to each other

(ξ < 1), this additional decay rate can be of the same order of magnitude as the

natural decay rate. As the distance between the oscillators increases, the value of

γ12(ξ) oscillates about zero, where positive coupling increases the decay rate and

negative coupling decreases the decay rate. This oscillation is due to competing

constructive and destructive interference between the two dipoles. The increase in

decay rate corresponds to superradiance, while the decrease in decay rate corresponds

to subradiance. Thus, both superradiance and subradiance can be reproduced in

classical electrodynamics.

When I include these envelope functions in the calculation of the total radiated

power, I obtain

Wf =

∫
dt

∫
R2dΩ〈~S〉 · R̂ = W0 (3.12)

as desired. The decay rate of the radiation when the two oscillators are placed at the

same position (ξ = 0) and orientation can be evaluated as

∂Wf

∂t
= 2γe−2γt(1− 2γt) (3.13)

The effective decay rate of the power for the two oscillators with ξ = 0 is approx-

imately 4γ instead of 2γ, matching the expectation of scaling with N , the number of

particles, from before.
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3.1.2 Dicke superradiance

Both superradiant and subradiant decay are present in classical electrodynamic sys-

tems, but the details of the field evolution require quantum mechanics to accurately

describe the microscopic behavior of the quantized emitters. I first introduce a general

formulation and then I specialize to the two-particle case to demonstrate equivalence

to the classical result, loosely following Gross and Haroche [1].

I consider an ensemble of N two-level particles all located at the same position,

with an energy separation between the ground, |g〉, and excited, |e〉, states of ~ω0. The

only interaction between the atoms that I will consider is the electric dipole coupling

between them via their own generated electric field. The raising and lowering off-

diagonal operators D±i are defined as

D+
i = |e〉 〈g| (3.14)

D−i = |g〉 〈e| (3.15)

and the diagonal operator Di,3 describing the population inversion is defined as

Di,3 =
1

2
[|e〉 〈e| − |g〉 〈g|] (3.16)

where all three operators follow angular momentum commutation rules:

[
Di,3, D

±
j

]
= ±δijD±i (3.17)

[
D+
i , D

−
j

]
= 2δijDi,3. (3.18)

where δij is the standard Kroenecker delta function.

The raising and lowering operators can be used to define the electric dipole oper-

ator
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Di =
(
D+
i +D−i

)
d (3.19)

where d = 〈e| − µE|g〉 is the electric dipole matrix element of the transition (µ is the

electric dipole transition moment, E is the electric field magnitude, and the phases of

the eigenstates have been chosen such that d is real). Collective operators can also

be defined as the sum over individual atomic operators

D± =
∑
i

D±i (3.20)

D3 =
∑
i

Di,3 (3.21)

D2 =
1

2

(
D+D− +D−D+

)
+D2

3 (3.22)

I assume that at time t = 0, all of the atoms are instantaneously prepared in the

excited state,

|ψ(t = 0)〉 = |e, e, e . . . e〉 , (3.23)

and that the atoms are motionless. Since the atoms are assumed to all be located

at the same position, I note that the radiation coupling is symmetric with respect to

the exchange of any two atoms in the system. This assumption follows from the fact

that there is no way of discerning from which atom any given photon originated. As

such, I can treat the system as identical to a symmetric superposition of N spin-1/2

states. There are (N + 1) such states that can be formed by applying the collective

lowering operator to the initial state

|JM〉 =

√
(J +M)!

N !(J −M)!
(D−)(J−M) |e, e, e . . . e〉 , (3.24)

where J = N/2, and −J ≤ M ≤ J are analogous to standard angular momentum

and projection quantum numbers. This state represents the fully symmetric state
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Figure 3-3: Schematic diagram of the fully symmetric levels in N -atom Dicke super-
radiance. The |J, J〉 state is initially populated and the population cascades through
electric dipole transitions to |J,−J〉. The energies of the M = J, 0, and −J states
are indicated.

that contains (J +M) atoms in the upper level and (J−M) atoms in the lower level.

The energy of this state is M~ω0, with the energy of the M = 0 state taken as zero.

The system therefore is a ladder-type system of evenly separated levels, as shown in

Figure 3-3. There are 2N possible combinations of N two-level systems, and I deal

with the non-fully symmetric combinations in the next section.

The rate of photon emission for this N -atom system in any given |J,M〉 state can

be written as

WN = Γ
〈
D+D−

〉
= Γ(J +M)(J −M + 1), (3.25)

where Γ is the natural linewidth of an individual atom. The initial decay rate, there-
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Figure 3-4: Schematic diagram of the fully symmetric levels in 2-atom Dicke super-
radiance. The |1, 1〉 state is initially populated and the population cascades through
electric dipole transitions to |1,−1〉. The energies and wavefunctions of theM = 1, 0,
and −1 states are indicated.

fore, is 2JΓ = NΓ as expected for an N -atom system. As the system loses excitation,

however, the rate of emission increases to a maximum of J(J + 1)Γ for M = 0 before

decreasing to zero when M = −J . At M = 0, the decay rate scales as N times that

of the non-interacting case, as expected.

In the case N = 2, it is simple to compare to the classical results. In this case,

J = 1, M = −1, 0, 1, as shown in Figure 3-4. Using Equation 3.25, it is easy to see

that the rate of photon emission from |1, 1〉 and |1, 0〉 are both 2Γ, while the emission

from |1,−1〉 = 0. The rate of photon emission at time t is therefore

W2(t) = 2Γ [Π1(t) + Π0(t)] , (3.26)

where ΠM(t) is the probability at time t that the system is in state |1,M〉. At time

t = 0, Π1 = 1 and Π0 = Π−1 = 0. We can use this along with the rate of decay from

|1, 1〉 to write

dΠ1

dt
= −2ΓΠ1 → Π1(t) = e−2Γt. (3.27)

In order to determine the rate of decay from Π0, I invoke energy conservation.

The average number of excited atoms intuitively is 2Π1 + Π0. Energy conservation

mandates than any decrease in the atomic excitation should be accompanied by an

increase in radiation, such that

2
dΠ1

dt
+
dΠ0

dt
= −2Γ [Π1(t) + Π0(t)] . (3.28)
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Combining this with Equation 3.27, Π0(t) I arrive at

Π0(t) = 2Γte−2Γt. (3.29)

and the probability of the system residing in the ground state can be written as

Π−1(t) = 1− Π0(t)− Π1(t) = 1− e−2Γt(1 + 2Γt). (3.30)

The rate of photon emission at time t from Equation 3.26 is then

W2(t) = 2Γe−2Γt(1 + 2Γt) (3.31)

which is nearly identical to the classical result derived in Section 3.1.1.

3.1.3 The importance of non-fully symmetric states

I have so far only considered the (N+1) fully symmetric Dicke states. However, there

are (2N −N − 1) additional non-fully symmetric states that contribute to subradiant

effects [117]. In the two-atom system, the remaining singlet antisymmetric state,

|−〉 =
1√
2

(|e〉 |g〉 − |g〉 |e〉) , (3.32)

does not emit at all. For larger atom numbers, N , there can be multiple manifolds

of these non-fully symmetric states. Each state can be assigned to a given level of

symmetry, and for even N , the lowest symmetry states will similarly not emit at all.

A schematic diagram of the complete state-space for an N -atom system is shown in

Figure 3-5.

Each manifold contains a ladder of states of effective angular momentum J ’, sep-

arated by ~ω0 in energy, and connected by electric dipole transitions. However, the

total rates of emission are slower than for the fully symmetric case. The rate of

photon emission of each state is given again by Equation 3.25, with J ’ replacing J .

Each manifold only has electric dipole transitions to states within the same manifold.

Under the assumptions made above, only the fully-symmetric, highest-spin manifold
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Figure 3-5: Schematic diagram of all states in N -atom superradiance. Each lower-
symmetry manifold only has electric dipole transitions to other states within the
same manifold at lower rates than the full symmetry manifold. The rates of decay
are displayed next to the indicated electric dipole transitions (solid arrows).

can ever be populated.

However, actual experiments suffer from sources of decoherence that can popu-

late and de-populate the non-fully symmetric manifolds. In particular, the break-

down of the exchange symmetry assumed at the beginning of Section 3.1.2 leads to

dipole-dipole dephasing between the various particles which results in population of

all subradiant manifolds [136]. Similarly, state-changing collisions can destroy the

coherence that is required for superradiant states to remain in the fully symmetric

manifold. Finally, in analogy to the classical example above becoming subradiant

at certain emitter separations, extended samples of particles (ensembles with volume

greater than λ3) can emit both super- and subradiantly from different spatial regions.

Extended samples and the importance of sample geometry are treated in Section

3.2.3.

3.2 Semi-classical approach to superradiance

The Dicke superradiance model is very useful as an intuitive starting point for de-

scribing superradiance. However, the number of approximations involved makes it
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not useful for anything beyond a qualitative description of the process. In particular,

the approximations of all emitters being located at the same spatial location and the

symmetry with respect to exchange of any two atoms are significant departures from

experimental reality. One way to proceed in the absence of these approximations is to

treat the field classically while continuing to treat the atoms in a quantum mechan-

ical manner. This semi-classical method ignores the effect of dipole-dipole exchange

symmetry, and is based on the Bloch-Maxwell equations, which I introduce in Sec-

tion 3.2.1. It is convenient to approach the system in the Bloch-angle representation,

which I describe in Section 3.2.2. With these ideas established, it is straightforward

to calculate the time-evolution of the emission intensity of a superradiant sample.

Finally, I discuss the ramifications of an extended sample and the sample geometry

in Section 3.2.3. I deal with fully quantum mechanical methods in Section 3.3.

3.2.1 Introduction to the Bloch-Maxwell equations

The Bloch-Maxwell equations are a system of coupled differential equations that

describe the evolution of an electric field and the population difference and the polar-

ization of an atomic sample. I again consider a collection of N two-level atoms now

located in a volume of any size. I assume that the sample size is significantly larger in

one direction than the other two, which leads to the approximation that the system

can be approximated as a one-dimensional system. I discuss the ramifications of this

approximation in Section 3.2.3. The density matrix associated with the ith atom is

given by

ρi =
∣∣ψi〉 〈ψi∣∣ (3.33)

where ρ is the density matrix. This is a 2 × 2 matrix where the diagonal terms (ρgg

and ρee) describe the population in the ground and excited state, respectively, and

the off-diagonal terms (ρeg and ρge) describe the coherences between the ground and

excited state. The population difference and the polarization of the system are given

by
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N (z, t) =
1

∆z

∑
i∈[z,z+Δz]

[
ρiee − ρigg

]
(3.34)

P±(z, t) =
d

∆z

∑
i∈[z,z+Δz]

ρiege
±ω0t (3.35)

where ω0 is the resonant angular frequency for the transition between the |g〉 and |e〉

states, and I have divided the sample along the z-axis into small slabs of thickness

∆z (∆z � λ) where the z-axis is defined as the direction in which the sample has

the longest spatial extent. The radiated electric field is given by

E±(z, t) = E±0 (z, t)e±i(ω0t−kz) (3.36)

where k is the wavevector of the radiation, and E±0 (z, t) is the slowly-varying envelope

function of the electric field. The Bloch-Maxwell equations are then

∂N
∂t

=
i

~
[
P+E+ − P−E−

]
(3.37)

∂P+

∂t
=

2id2

~
E−N (3.38)

∂E+

∂z
=

iω0

2ε0c
P− (3.39)

where I have made the approximation,

L

c
<

1

NΓm
, (3.40)

where L is the characteristic length of the system, and m = 3Ω0

8π
(where Ω0 is the

solid angle of emission that will be discussed in Section 3.2.3) is a geometric factor

that describes the overall shape of the system. This approximation is known as the

Arrechi-Courtens condition, which states that the envelope of the electric field varies

more slowly than the time it takes for light to propagate from one end of the sample to
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the other. The Arrechi-Courtens condition applies to all superradiance experiments

discussed in this thesis.

The initial conditions of the Bloch-Maxwell equations are

E±0 (z, 0) = 0 (3.41)

P±(z, 0) = 0 (3.42)

N (z, 0) =
N

∆z
, (3.43)

which describes the system in which all the atoms are in the excited state. This is an

unstable equilibrium state, and the system will not evolve unless either an outside field

acts on it (either a blackbody photon or a tipping pulse) or a spontaneous emission

event occurs. The time evolution of these equations is discussed in Section 3.2.2.

The Bloch-Maxwell equations can be further simplified by making the approxi-

mation that all atoms play an identical role in the superradiance process, essentially

disregarding all propagation effects. This is equivalent to assuming the same average

field, polarization, and population (Ē±, P̄±, and N̄ ) at every point in the system.

The Bloch-Maxwell equations then become the mean-field equations

∂N̄
∂t

=
i

~
[
P̄+Ē+ − P̄−Ē−

]
(3.44)

∂P̄+

∂t
=

2id2

~
Ē−N̄ (3.45)

Ē+ =
iω0

4ε0c
LP̄− (3.46)
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3.2.2 Conversion to the Bloch angle representation

While the mean-field Bloch-Maxwell equations can be solved directly, physical insight

can be gained by making a transformation to the Bloch angle representation. As

earlier, when considering Dicke superradiance, I can represent the N two-level atom

system as a single spin-N/2 system. This system can be described by the Bloch vector,

a vector of norm N , the direction of which describes the population inversion and the

polarization of the system. The axis system is set up such that the z-axis corresponds

to the population of the atomic system, and the x- and y-axes correspond to the phase

of the polarization of the system. The population inversion and the polarization can

therefore be expressed as functions of two characteristic angles θ and φ

N̄ (t) =
N

2
cos θ(t) (3.47)

P̄±(t) =
N

2
sin θ(t)e±iφ. (3.48)

The axis system and these angles are displayed schematically in Figure 3-6. The

mean-field Bloch-Maxwell equations can then be written as

dθ

dt
=

1

2NΓm
sin θ (3.49)

dφ

dt
= 0, (3.50)

with the initial condition

θ(0) = θi, (3.51)

where the angle θi is an initial tip value as caused either by spontaneous emission,

blackbody radiation, or an external resonant electromagnetic field [1, 128, 141, 142,

143]. As φ does not change and merely provides a phase shift of the overall polariza-

tion, I ignore it in the following.

106



Figure 3-6: Schematic representation of the Bloch angle representation of mean-field
superradiance. The solid red arrow is the Bloch vector after the initial tipping pulse,
and the dashed red arrow is the Bloch vector after a time t. The Bloch angles θ and
φ are displayed with the thin solid arcs.

107



The evolution of this system is formally analogous to the evolution of a damped

pendulum in a viscous fluid. If θ(0) = 0, this system would not evolve away from the

unstable equilibrium point. With a small initial tip angle, the Bloch vector evolves

irreversibly from pointing in the positive z-direction to pointing in the negative z-

direction. This evolution occurs over a time scale of NΓm ≡ TR, the characteristic

superradiance time.

It is straightforward to calculate the radiated intensity,

I(t) = −~ω0
∂N̄
∂t

=
~ω0N

2TR
sech2

[
1

2TR

(
t− TD(θi)

)]
, (3.52)

where TD = −2TR ln (θi/2) is the characteristic delay time of the superradiant pulse.

The superradiant pulse displayed in Figure 3-1 is an example of a hyperbolic-secant

pulse.

In the absence of an external electric field, TD is determined by the blackbody

temperature of the surroundings and spontaneous emission rate of the atomic system.

When both are considered, the average delay is

〈TD〉 = TR ln

[
N

1 + n̄

]
(3.53)

where n̄ is the average photon number of blackbody photons at the resonant frequency,

and the variance of the delay is

∆TD =
√
〈T 2

D〉 − 〈TD〉2 = 1.3TR. (3.54)

However, the delay can be made much shorter and have much smaller variance by

introducing an external resonant field to tip the Bloch vector by a known amount.

3.2.3 Sample size and geometry dependence

I made several approximations in my derivation of the mean-field Bloch-Maxwell

equations (Equations 3.44 - 3.46) all of which fundamentally relate to the size and

geometry of the sample. The approximation of one dimension of the sample being
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larger than the others turns out to be a very minor approximation. This geometry

is the natural geometry of any laser pumped atomic beam experiment. A collimated

laser typically intersects an atomic beam that has a width larger than the beam waist

of the laser, leading to this “pencil-shaped” geometry. The formal definition of this

geometry states that it is a cylinder satisfying L� w � λ, where w is the radius of

the cylinder.

However, as the exact values of L, w, and λ are varied, the behavior of the

superradiant emission undergoes several qualitative changes. The Fresnel number

F of the emitting cylinder is the critical determinant of the qualitative regime of

emission,

F =
w2

Lλ
. (3.55)

The qualitative change in behavior occurs as the Fresnel number becomes larger

or smaller than unity. For F > 1, the geometric angle of emission of the sample,

determined by θG = w/L, is larger than the diffraction angle, determined by θD =

λ/w. This means that the sample supports multiple diffraction-limited modes within

the geometric angle of emission, each evolving separately. On the other hand, for F <

1, the emission occurs in a single diffraction limited mode that has a much broader

spatial extent than the geometric angle of emission. In the discussion in Section 3.2.2,

I have taken the sample size to satisfy F = 1 in order to compromise between excess

off-axis emission and excess diffraction. Figure 3-7 displays the effects of Fresnel

number larger or smaller than 1. The solid angle of the emission used in m (from

Equation 3.40) is determined entirely from the diffraction angle, Ω0 ∼ θ2D = λ2/w2.

Fresnel numbers far from 1, however, begin to cause the assumption of one-

dimensional emission to fail. This includes the case of w ≈ L when the sample

is relatively spherical. The primary difference is that the treatment of the electric

field must include its behavior in the transverse directions, and so Equation 3.39 must

be replaced by
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Figure 3-7: Schematic representation of the transverse directions of the superradiant
field given by a sample with a) Fresnel number F > 1 and b) Fresnel number F < 1.
Figure from Ref [1].
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∂E+

∂z
− i

2k0

(
∂2

∂x2
+

∂2

∂y2

)
E+ =

iω0

2ε0c
P−, (3.56)

while the expressions for the number of excited atoms and polarization remain

identical. The meaning of the transverse terms here depends on whether F � 1 or

F � 1. For F � 1, typical of geometric optics, this term describes the potential off-

axis diffraction limited modes supported in the geometric angle of emission θG. For

F � 1, typical of Frauenhofer diffraction, this term describes the off-axis emission

that is diffracted through the angle θD.

While these extreme cases seem like a relatively small change to the Bloch-Maxwell

equations, it is impossible to derive an analytical solution and the equations must be

solved numerically. The experiments described in this thesis operate with F ≈ 1,

typical of Fresnel diffraction, therefore numerical solutions to these three-dimensional

equations are beyond the scope of this thesis.

Another approximation made in Section 3.2.2 is the mean-field approximation,

which is to ignore all propagation effects. The full ramifications of discarding this

approximation require a full quantum treatment of the system, discussed in Section

3.3. However, one qualitative change is that distinct spatial segments of the sample

can destructively interfere with the emission originating from other spatial segments.

This has the effect of replacing Equation 3.49 by

dθ

dt
=

1

2TR
J1(θ) (3.57)

where J1 is the first-order Bessel function of the first kind. The radiated emission as

a function of time is then

I(t) =
~ωN
2TR

sech2

[
1

4TR

(
t− TD(θi)

)]
. (3.58)

The final approximation that I made in Section 3.2.2 is that the radiation only

propagates in a single direction. When an external electric field triggers the superra-

diance, it travels in the exact direction of the triggering field. When the superradiance

is triggered by spontaneous emission or a blackbody photon, any given superradiant
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event can propagate in either the positive or negative z-direction. The equations

listed above work equally well for either direction in this untriggered case.

In an extended sample, however, emission can be triggered in different directions

at different locations in the extended sample, leading to complicated emission modes

in both the positive and negative z-direction that interfere with each other. This can

be accounted for by including additional electric field and polarization terms in the

Bloch-Maxwell equations and numerically solving, as shown in Reference [1]. All of

the experiments described in this thesis use an external electric field to trigger the

superradiance. Thus, they always have a single direction of emission.

3.3 Full quantum mechanical approach to superra-

diance

The approximations made in the semiclassical approach above, while minor, still fail

to describe some fundamental effects of superradiance. In particular, propagation

effects and variations in the dipole-dipole interaction throughout the sample are ne-

glected in the mean-field approximation. These effects lead to important frequency

domain effects that cannot be accurately represented by the semi-classical method.

First I introduce two conventional fully quantum mechanical calculation methods in

Sections 3.3.1 and 3.3.2, using the Schrödinger and Heisenberg representations as

described by Gross and Haroche [1]. While both operate formally in the interac-

tion representation, the Schrödinger representation method focuses on the collective

wavefunction of the sample and the Heisenberg representation method focuses on the

collective observables of the sample. In Section 3.3.3, I present a master-equation

model developed by Susanne Yelin that maintains the full richness of the quantum

mechanical picture while retaining ease of calculation [120].
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3.3.1 Schrödinger representation

In both the Schrödinger and Heisenberg representation approaches, the Hamiltonian

is the same

H = Hat +Hrad + V (3.59)

where Hat is the Hamiltonian of the N -atom system, Hrad is the Hamiltonian of

the electromagnetic field, and V is the term that describes the light-matter dipole

interactions

Hat = ~ω0

∑
i

Di,3 (3.60)

Hrad =
∑
k,ε

~ωk
(
a†k,εak,ε +

1

2

)
(3.61)

V = −
∑
i

(
E+(ri) + E−(ri)

)
· Di,ε, (3.62)

where i labels the atoms, k and ε label the mode and the polarization of the electric

field, a† and a are the creation and annihilation operators of the electric field, and

E+ and E− are the positive and negative frequency portions of the electric field

E+(t) = −i
∑
k,ε

Ek,εak,εeik·r (3.63)

E−(t) = i
∑
k,ε

Ek,εa†k,εe
−ik·r (3.64)

Ek,ε =

√
~ck
2ε0V

ε. (3.65)

V is an arbitrarily chosen quantization volume that is much larger than the atomic

ensemble.

The entire atom-field system is described by its total density matrix Φ(t), which
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evolves according to the Liouville-von Neumann equation

i~
dΦ

dt
= [H,Φ]. (3.66)

It is simpler to solve this equation in the Interaction representation, such that

Φ̃(t) = ei(Hat+Hrad)t/~Φe−i(Hat+Hrad)t/~ (3.67)

Ṽ (t) = ei(Hat+Hrad)t/~V e−i(Hat+Hrad)t/~ (3.68)

i~
dΦ̃

dt
= [Ṽ , Φ̃]. (3.69)

Similarly, the observables that I am interested in are generally the atomic observables,

and so I take the partial trace of the density matrix over the field variables

ρ̃(t) = TrradΦ̃. (3.70)

This makes it possible to express the time evolution of the atomic system by

dρ̃

dt
= − 1

~2
Trrad

∫ t

0

dτ
[
Ṽ (t),

[
Ṽ (t− τ), Φ̃(t− τ)

]]
(3.71)

where the initial condition, Φ̃(0), is the field in its vacuum state with all the atoms in

their upper level. This expression, however, is not particularly useful, as it requires

knowledge of the entire previous history of the atom-field system, as represented by

Φ̃(t−τ). The Born-Markov approximation, which neglects the build-up of correlation

between the atoms and the field, however, reduces this equation to a more tractable

form. The evolution of the atomic variables can then be expressed as

[
dρ̃

dt

]
BM

= − 1

~2
Trrad

∫ ∞
0

dτ
[
Ṽ (t),

[
Ṽ (t− τ), ρ̃⊗ |0〉 〈0|

]]
, (3.72)

where |0〉 〈0| is the vacuum state of the field. This expression can be transformed back

to the Schrodinger representation, which results in a superradiance master equation,
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dρ

dt
=

1

i~

[∑
j

Hj, ρ

]
− cd2

16ε0π3~

∫ ∞
0

dτ

∫ ∞
0

k3dk

∫
dΩε2

∑
i,j

eik·(ri−rj)−ickτ

×
[
D+
i e
−
iHjτ

~ D−j e
iHjτ

~ ρ− e−
iHjτ

~ D+
j e

iHjτ

~ ρD+
i

]
+ h.c. (3.73)

In order to solve this equation, I need to know the exact distribution of the atoms in

space, which in general I cannot know. However, there are two useful limiting cases

that reveal some of the details that the fully quantum approach provides. In the

first case, if I assume that the atoms are distributed as in Dicke superradiance, all at

a single point, the dephasing factor eik·(ri−rj) can be replaced by 1, and the master

equation becomes solvable. The solution is involved and beyond the scope of this

thesis, but the results are instructive. The evolution is in general complex, and the

real part describes the decay of the system

(
dρ

dt

)
real

= −Γ

2
[D+D−, ρ] + ΓD−ρD+. (3.74)

When starting at t = 0 in the fully excited state of the ensemble, this describes evo-

lution downwards in the symmetric manifold as in Dicke superradiance. To evaluate

the matrix elements, I project the operators onto the Dicke states, and obtain the

evolution

dρM
dt

= −Γ(J +M)(J −M + 1)ρM + Γ(J +M + 1)(J −M)ρM+1, (3.75)

where ρM is the probability of finding the system in the state |JM〉. The imagi-

nary part of the evolution describes the effect of off-resonant photon processes, and

corresponds to a frequency shift of the emission

(
dρ

dt

)
imag

= − 1

i~

[∑
i

D−i D
+
i , ρ

]
. (3.76)

This frequency shift is generally called the “collective Lamb shift,” because in the
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Figure 3-8: Schematic representation of dipoles aligned and equally spaced on a ring,
one of the few cases where the dipole-dipole interaction is symmetric with respect to
exchange.

limit of N = 1 atoms, this shift converges to the ordinary Lamb shift.

When the atoms are not all located at the same position, then even if the sample

ensemble size is smaller than a wavelength, then in general the system will not be

symmetric with respect to exchange. There are a few special geometries where the

atoms are symmetric to exchange that are described by solvable master equations,

and one of them is the case of regularly spaced atoms on a ring, as shown in Figure

3-8. The real part of the evolution is still given by Equation 3.74. The imaginary

part, on the other hand, varies as the system emits, leading to a chirped emission.

The energy of a given |JM〉 state is given by

〈JM |~Ω|JM〉 =
d2

4πε0r3
J2 −M2

J − 1
2

. (3.77)

Therefore, the frequency shift can be obtained by differentiating, to obtain

~δωs = − d2

4πε0r3

[
1− 2s

N

]
(3.78)

where s = J −M is the sth photon in the cascade. Therefore, the system chirps from

the red to the blue of the expected emission frequency. A level diagram for this is

shown in Figure 3-9.
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Figure 3-9: Energy diagram of the Dicke states from an ensemble of an evenly spaced
ring of atoms. The left side represents the evenly spaced energy levels of single-point
Dicke superradiance, while the right side shows those levels shifted by the varying
dipole-dipole interaction. Figure from Ref [1].
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3.3.2 Heisenberg representation

The Schrödinger representation is very convenient for relatively small sample sizes,

in particular when the ensemble is restricted to a fully symmetric manifold of Dicke

states. When the sample size is larger than a wavelength, however, the Dicke de-

scription of the system fails. In this case the Schrödinger representation, while still

accurate, is much less convenient. In such cases, the Heisenberg representation, which

naturally allows for extensions to large volumes, is far more convenient. The overall

structure of the approach in the Heisenberg representation is nearly identical to that

of the semi-classical treatment in Section 3.2, but with no approximations.

For a sample of any size and dimension, the population difference N and polar-

ization P± are defined as

N(r) =
∑
i

δζ(r − ri)Di,3 (3.79)

P±(r) = dε
∑
i

δζ(r − ri)D±i (3.80)

where the δζ functions are three-dimensional analogues of Heaviside step functions

with value 1 over a volume ζ3, and value 0 outside of that volume, where ζ is large

compared to an atomic radius, but small compared to λ. The evolution for N , P±,

and the positive and negative frequency components of the electric field E are given

by the Heisenberg equations

∂X

∂t
=

1

i~
[X,H] (3.81)

where X is any of the three operators above, and H is the Hamiltonian of the

system. The following exact Bloch-Maxwell equations are obtained

∂N

∂t
=
i

~
e− · (P+ − P−) +

i

~
(P+ − P−) · E+ (3.82)
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∂P+

∂t
= iω0P

+ + 2iε
d2

~
(E−N +NE+) (3.83)

∂2E+

∂t2
− c2∇×∇E+ =

1

ε0

∂2P−

∂t2
. (3.84)

These equations can be simplified, in the manner shown in Section 3.2, to obtain

a semi-classical formalism to describe superradiance. The quantum effects of field

quantization are the non-commutation of N and P with E. In the case where super-

radiance is initialized by spontaneous emission, these exact equations are necessary.

If a blackbody photon or external field generates the initial coherence, then the field

quantization is not necessary and the semi-classical approach from Section 3.2 is

appropriate.

These exact Bloch-Maxwell equations are useful to obtain numerical solutions for

large volume or large atom-number superradiance, but extracting information from

them about the emission rate and frequency shift is non-intuitive.

3.3.3 Second-order master equation method

Recently, a fully quantum mechanical method has been developed that combines the

ability to investigate large and extended samples of atoms with an intuitive approach

to determine, for example, collective rates of emission and frequency shifts. In this

case, the Hamiltonian specifies two atoms, labeled “1” and “2” such that the entire

Hamiltonian can be written as

H = Hfield +
∑
i

H i
atom +Hint + V (3.85)

where Hfield is the Hamiltonian of the quantized electric field, Hatom is the free Hamil-

tonian of the ith atom at location ri, Hint is the Hamiltonian of the interactions of

all atoms other than the two specified atoms, while V is the Hamiltonian of the

interactions of the two specified atoms,
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Hint = −
∑
i 6=1,2

pi · (Ei + Ei) (3.86)

V = −
∑
j=1,2

pj · (Ej + Ej) (3.87)

pi is the dipole operator of the ith atom, Ei is the quantized field at the position of

the ith atom, and Ei is an external classical driving field at the position of the ith

atom. The effective two-atom density matrix equation can be written as

ρ̇(1,2)(t) =
∑
i=1,2

[
σiΩ

†
Li + σ+

i ΩLi, ρ
(1,2)
]

− i
∑
i=1,2

∆ii

[
ρ(1,2),

[
σ+
i , σi

]]
− i

∑
i,j=1,2

δij
[
ρ(1,2),

[
σ+
j , σi

]]
−
∑
i,j=1,2

(
Γij
2

([
ρ(1,2)σi, σ

+
j

]
+
[
σi, σ

+
j ρ

(1,2)
])

+
Γij + γij

2

([
ρ(1,2)σ+

j , σi
]

+
[
σ+
j , σiρ

(1,2)
]))

,

(3.88)

where ΩLi is the driving field at the location of atom i and σi is the lowering operator

for atom i, σi = |gi〉 〈ei|. Importantly, γij/Γij and δij/∆ij denote the collective

spontaneous/induced decay and frequency shift parameters. The spontaneous terms

are analogous to the real and imaginary parts of the superradiance master equation

from Section 3.3.1. For a single atom in vacuum, the spontaneous decay tends toward

the vacuum decay rate γ0 for |e〉 → |g〉, and the spontaneous frequency shift tends

toward the Lamb shift. The induced terms are analogous to AC Stark effects on the

atomic ensemble. All of these parameters result from second-order correlation of the

atomic sample

Γij
2
− i∆ij =

d2

~2

∫ ∞
0

dτ
〈〈
E−i (t)E+

j (t− τ)
〉〉
e−iωt (3.89)

γij
2
− iδij =

d2

~2

∫ ∞
0

dτ
〈[
E+
i (t− τ)E−j (t)

]〉
e−iωt (3.90)
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where 〈〈. . .〉〉 denotes the second-order cumulant as in many-body theory. The full

derivation of these equations is well beyond the scope of this thesis, and can be found

in Reference [120]. It is important to note that the decay and frequency broadening

(the time-dependence of the frequency shift) are not related by the standard Fourier

transform relationship, but by a Kramers-Kronig relationship

∆ij =
1

π
P

∫ ∞
−∞

d∆′ij
Γij(∆

′
ij)

∆ij −∆′ij
(3.91)

and similarly for γij/δij, where P denotes the Cauchy principal part of the integral.

The only assumptions needed to derive these equations are that the atomic sample

is a three-dimensional homogeneous atomic gas in free space (i.e. no cavity modes

to the radiation). These quantities and the density matrix can then be numerically

solved in a self-consistent manner. In general, the two spontaneous parameters (γ

and δ) are orders of magnitude smaller than the induced parameters (Γ and ∆), and

so only the induced parameters are allowed to vary, while the spontaneous parameters

are approximated by their vacuum values.

The key results from this theoretical approach are that it naturally produces a

time-dependent frequency shift and shows that all parameters (Γ, average excited

state population, etc) except for ∆ depend on the optical depth (OD = ρλ2L). ∆

depends nearly exclusively on the relative density (RD = ρλ3). This method of

calculating superradiant effects contains all correlations up to second order. This

describes most of the physics in the context of cooperative effects. As such, these cal-

culations make what is currently the most effective tradeoff between approximations

and accuracy.

The time-dependent frequency shift has not been studied much outside of specific

geometries for large excitations and the single-photon collective Lamb shift for general

geometries [11, 144, 145, 146, 3, 147, 148, 96, 149, 135, 139, 150]. The single excitation

regime is easily approached by any of the three methods provided here, and the specific

geometries approachable with the Schödinger and Heisenberg representations are not

easily achieved in experiments. However, in the large excitation regime with a pencil-
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shaped geometry, as in my experiments, only this master equation methods provides

a handle on the induced collective frequency shifts and chirps [2].
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Chapter 4

Single-shot observation and

characterization of superradiant

emission

In this chapter I discuss the single-shot experimental observation of superradiant

emission. In Section 4.1, I outline the benefits of the use of Rydberg states for ob-

servation of superradiant emission and describe the importance of using an extended

sample. In Sec. 4.2, I demonstrate an initial observation of spontaneous superradi-

ance in a dense ensemble of Rydberg states. In Sec. 4.3, I report single-shot detection

of superradiance, present a time-domain filtering method for noise removal, and make

connections to the semi-classical theory of superradiance. Finally, in Sec. 4.4, I de-

scribe the failure of the semi-classical theory to account for the frequency shifts and

broadenings I observe in superradiance and make connections to a fully quantum

theory that naturally accounts for these frequency effects. The discussion in Sections

4.3 and 4.4 is derived from my publication in [151].
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4.1 Advantages of Rydberg states for the observa-

tion of superradiance

Rydberg states of atoms appear at first to be well suited to studies of superradi-

ance. Rydberg states have exceptionally large transition dipole moments and long

wavelengths for ∆n∗ ≤ 1 transitions (transition dipole moments scale as n∗2 and

wavelengths scale as n∗3). These properties lead to strong interactions at long range

and cooperativity over large volumes. This strong cooperativity results in ∆n∗ ≤ 1

transitions between Rydberg states achieving greater spontaneous emission rates than

transitions to the ground state, despite the Einstein A coefficient scaling as ω3 [98].

Furthermore, when Rydberg states are prepared with pulsed laser excitation, as

in my experiments, the initial state is a perfectly symmetric inverted system. In

a zeroth-order approximation, an inverted two-level system is formed between the

populated single Rydberg state and the next energetically-lowest optically-accessible

Rydberg state. For example, a laser populated 30s state in hydrogen would form an

inverted two-level system with the 30s state as the excited state and the 29p state

as the lower state. The influence of the 28p state (and all other lower lying states)

becomes less significant as Rydberg number density increases.

However, observing unambiguous superradiant emission requires that the super-

radiant emission time, TR, is shorter than any forms of dephasing present in the

experiment, where

TR =
8π

A21OD
(4.1)

OD = ρλ2L (4.2)

A21 =
8π2µ2

3ε0~λ3
(4.3)

and ρ is the density of Rydberg states, λ is the wavelength of radiation for the
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transition between the two states, L is the length of the sample, µ is the electric

dipole transition moment between the two states, OD is the optical depth of the

sample, and A21 is the Einstein A coefficient for the transition. As the transition

dipole moment scales as n∗2 and the wavelength scales as n∗3, A21 scales as n∗−5.

However, this is balanced out by the λ2 factor in the optical depth, which scales as

n∗6, so the superradiant emission time scales as n∗−1.

Dephasing times have a wide variety of dependences on n∗. Geometric dephasing

effects, such as flyout broadening, are insensitive to n∗. The Doppler dephasing time

depends on the wavelength of the transition, and so the Doppler dephasing time scales

as n∗3, and quickly becomes much longer than the superradiant emission time.. In

my experiment, the Doppler broadening rate is ∼ 250 kHz and flyout broadening rate

is ∼ 10 kHz. The blackbody dephasing time, as discussed in Section 2.3.3, scales as

n∗2 due to the longer wavelength of the transitions, and also becomes longer than the

superradiant emission time.

Dephasing effects that arise from interactions with external electric fields generally

become the fastest effects at very large n∗ (n∗ > 100). While the electric polarizability

of Rydberg states scales like n∗7, neither dephasing due to homogeneous fields nor

dephasing due to inhomogeneous fields have a generally applicable dependence on

n∗. This is because the exact value of the quantum defect of a given level modifies

the nature of the Stark effect. States with small quantum defects very quickly mix

with the manifold of high-` states at low external fields and broaden in lineshape

rapidly in homogeneous fields. On the other hand, states with large quantum defects

(s, p, and occasionally d states) require much larger fields before they merge into the

manifold of high-` states; thus, at typical values of stray fields, homogeneous fields

induce little broadening, only Stark shifts. This behavior is shown schematically in

Figure 4-1, and can be used as a diagnostic for determining the quantum defect (and

therefore the `-character) of a state. The 28h state in Fig. 4-1 has a large broadening

at Stark fields of > 10 V/cm, the 28f state has a large broadening at Stark fields of

> 50 V/cm, and the 29p state has negligible broadenings until a very large external

electric field. The calculations in Fig. 4-1 were performed using the quantum defects
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Figure 4-1: Calculated energy dependence of n = 28 Rydberg states of barium on the
strength of an external electric field. The 28f state (red) has a strong Stark shift,
but does not mix with the high-` manifold until > 50 V/cm. The 28h state (blue)
has a stronger Stark shift and mixes with the high-` manifold at ∼ 10 V/cm. The
27p state (black, top) has essentially no Stark shift and does not interact with the
n = 28 high-` manifold. As such, of these three states, the 28h state is most sensitive
to electric fields, while the 27p state is least sensitive to electric fields. These 3 states
illustrate the universal range of behaviors of Rydberg states in an external electric
field.

of atomic barium.

Inhomogeneous electric fields, however, will induce line broadening in both states

with large and small quantum defects although again it does not have a characteristic

scaling with n∗. In general, due to the nearby high-` states, the inhomogeneous

broadening in states with small quantum defects will again be larger than in states

with small quantum defects. States with large quantum defects do broaden because

each spatial portion of the sample experiences a different electric field and therefore

a different Stark shift. In my experiments the entire chamber is grounded, so the

primary source of electric field is generated by stray electrons and ions. These charged

particles may come from multiphoton ionization by the lasers that excite to Rydberg

states, photoelectrons produced by laser beams terminating on conductive surfaces,

or from the ablation process and subsequent entrainment of the charged species in

the atomic beam. Multiphoton ionization is minimized by carefully reducing the
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amplified spontaneous emission from the pulsed dye laser (below 1% of the total

output power). The laser spots are also terminated on a Teflon surface to prevent the

generation of photoelectrons. Ions formed in the ablation process are unavoidable,

but can be reduced through careful tuning of the ablation pulse energy and focal spot

size. I monitored the density of Ba+ ions in the detection chamber using flourescence

detection of the 6s − 6p transition and measured a density of < 106 cm−3. This

density of ions corresponds to a broadening of 10 kHz due to an inhomogeneous field

for the transition I discuss below.

Magnetic fields generally have much smaller effects than electric fields. Homoge-

neous magnetic fields (assuming an arbitrary alignment) split each Rydberg transition

into a triplet with values of ∆m of ±1 and 0. A field of 1 Gauss corresponds to a

∼ 1.5 MHz splitting between the ∆m = 0 and ∆m = ±1 lines. An inhomogeneous

field therefore broadens each of these lines, typically only smearing the three out

into a single peak if the magnetic field passes through zero in the experimental vol-

ume. In practice, it is simple to maintain the magnetic field < 0.1 Gauss during the

experiment, so all three ∆m transitions fall within the Doppler envelope.

Collisional effects scale rapidly with n∗ and form the most important source of

competing dephasing in typical Rydberg experiments. Long range dipole-dipole me-

diated Rydberg-Rydberg collisions homogeneously dephase individual emitters at a

rate of [152]

γdd =
πµ2ρ

4ε0~
(4.4)

compared to a superradant decay rate of

γSR =
1

TR
=
πµ2ρ

3ε0~
L

λ
. (4.5)

The two rates are essentially equivalent to within a geometric factor of L/λ. For

extended sample geometries, as in my experiments, L � λ, thus the superradiant

decay rate can be orders of magnitude faster than the rate of homogeneous dipole-

dipole dephasing. Rydberg superradiance experiments that take place in, for example,
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magneto-optical traps may sample larger absolute densities, but do not routinely ex-

hibit superradiance due to this competing dephasing rate [102]. Collisions of Rydberg

states with neutral buffer gas atoms from the buffer gas expansion do not scale with

n∗. This is because at high enough n∗ (& 20), the elastic collisional cross section

(which determines the magnitude of the dephasing) is governed entirely by the colli-

sional cross section between the buffer gas atom and the ion-core [4].

Taking the above shift and broadening mechanisms into account, the optimal

experimental parameters to observe superradiance are to use as high n∗ as possible

without compromising the value of L/λ or suffering too large an effect from electric

fields. In the following experiment, L ≈ 15 cm and n∗ ≈ 30, so λ ≈ 1 mm and

L/λ ≈ 150, which means that dipole-dipole mediated collisions are not relevant to

these experiments.

In the fully quantum theory developed by Yelin [120, 2], the induced cooperative

line shift scales as the relative density

RD = ρλ3. (4.6)

This term scales as n∗9, significantly faster than the optical depth (n∗6), which is

the value on which all other observables depend. Therefore, Rydberg states are ideal

for observing induced cooperative line shifts, as they will be larger relative to other

superradiant effects than in other systems where L ≤ λ.

The energy level diagram relevant for the experiments discussed below is shown

in Figure 4-2. A single UV laser pulse (from the Scanmate laser and doubled in

a β-BBO crystal) populates the 6s30p 1P1 state of Ba. This creates two separate

inverted two-level systems. The primary focus of this chapter is on the two-level

system formed between the 6s30p state and the 6s28d 1D2 state. However, a second

two-level system, formed between the 6s30p state and the 6s30s 1S0 state, is more

strongly cooperative than the first and can spontaneously decay by superradiance.

Unfortunately, the frequency of this transition is outside of the bandwidth of both of

the millimeter wave spectrometers I had available. I was, however, able to monitor
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Figure 4-2: Energy level diagram of the relevant states of barium involved in my
superradiance experiments. The purple arrow indicates the 238.812 nm laser pump
pulse. The two red arrows indicate the two observable transitions corresponding to the
30p→ 28d and 30s→ 29p transitions. The blue dashed line indicates the untriggered
superradiant transition 30p→ 30s that was unobservable in my experimental setup.

this spontaneous process by probing the transition between the 6s30s and 6s29p 1P1

states. Often, enough population was superradiantly transferred to the 6s30s state

that I could observe cascade superradiance between the 6s30s and 6s29p states.

4.2 Initial observation of untriggered superradiant

decay

While previous experiments had observed superradiance as the leading source of ho-

mogeneous broadening in FID experiments [8, 9], and had even directly observed the

superradiant burst of emitted radiation in averaged experiments [10], superradiance

had not been observed in either a single shot or to occur without an external trig-

ger. Initial experiments observing FID between Ba Rydberg states were made more

difficult by the failure to consistently reproduce signal levels and the appearance of

several initially unexplained strong transitions. Both of these anomalies are explained
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Figure 4-3: Sample spectrum displaying the relative intensities of the 30p→ 28d and
30s → 29p transitions. The features marked with asterisks (*) are artifacts of the
detection system. The frequency axis is the heterodyne-detected frequency, not the
actual atomic transition frequencies. This spectrum was performed with a 100 ns
delay between the optical preparation and mm-wave probe.

by spontaneous superradiant emission.

A sample spectrum of 100 averages obtained from the Ba system described in

Section 4.1 is displayed in Figure 4-3. In these experiments, barium atoms were

optically pumped to the 6s30p state with a single UV laser, as in Figure 4-2. The

mm-wave transitions were then probed by a 100 ns duration 35 GHz chirp (260-295

GHz) after a selected delay (between 10 ns and 1 µs). All resonant transitions in

this frequency range then decayed via FID at their resonant frequency with relative

intensities related to their absolute populations in the laser populated sample and

sample polarizations.

Transitions between the 6s30p and 6s28d states and the 6s30s and 6s29p states are

both marked in the spectrum. However, the 30s → 29p transition was not observed

in every laser shot. The intensity of the 30s → 29p transition as a function of time

is shown in Figure 4-4 where each point on the x-axis represents a single shot. The

fluctuations in the strength of the 30s→ 29p transition indicate that the superradiant

decay to the 30s state does not always occur at a delay shorter than 100 ns.
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Figure 4-4: Shot to shot variation in the intensity of the 30s → 29p transitions as a
function of time. Each point on the x-axis represents a single shot of the experiment.

The relative intensity of the two transitions can be used as a probe of the extent

of the superradiant process. As the delay between laser excitation and mm-wave

probe is increased, the intensity of the 30s → 29p transition becomes larger relative

to the intensity of the 30p → 28d transition, as shown in Figure 4-5. This is due

to population in the 6s30p state consistently superradiantly decaying into the 6s30s

state as the delay between the pump and probe pulses increases. The opposite can

be observed when increasing the pump laser intensity, as shown in Fig. 4-6. As the

energy of the pump laser pulse decreases, the strength of the 30p → 28d transition

decreases, but the strength of the 30s→ 29p transition decreases significantly faster,

and becomes essentially unobservable below a pump laser pulse energy of 150 µJ. This

is caused by a change in the initial Rydberg density in the 6s30p state. The signal

intensity of the transition from the 6s30p state scales as ρ, but the cooperativity of

the transition to the 6s30s state (and hence the signal intensity from the 6s30s state)

scales as ρ2.

However, investigation of novel cooperative effects (such as cooperative frequency

shifts and broadenings) requires direct observation of the emitted superradiant electric

field, and not simply indirect observation of states acquiring population as a secondary
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Figure 4-5: Ratio of the intensity of the 30p → 28d transition to the intensity of
the 30s → 29p as a function of the time delay between the laser pump pulse and
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Figure 4-6: Ratio of the intensity of the 30p→ 28d transition to the intensity of the
30s→ 29p as a function of the energy of the pump laser pulse.
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Figure 4-7: Averaged time-domain and frequency domain observation of superradiant
emission in dense samples of barium atoms. The time-domain data display a clear
initial increase in intensity as opposed to the monotonic decrease typical of a standard
FID signal. The frequency-domain data displays an asymmetric line shape with a long
tail to the low frequency side.

effect of superradiant decay. As such, I investigated the 30p → 28d transition to see

whether there was sufficient cooperativity to observe superradiant decay. Averaged

results from this investigation are displayed in Figure 4-7. Superradiant decay on a

time scale (� 1 µs) faster than any other dephasing process (∼ 5 µs) can be clearly

seen as an initial increase in the emitted electric field, unlike the typical monotonic

decrease of FID radiation in less cooperative systems. However, each averaged shot

has a different Rydberg number density due to fluctuations in both the atomic beam

loading process and the excitation dye laser intensity. In order to perform a more

systematic investigation of cooperative effects, I found it necessary to observe the

data on a shot-by-shot basis.

4.3 Single-shot superradiance

An example of the detected emitted electric field from a highly cooperative sample

observed in a single shot is displayed in Figure 4-8, along with a zoom-in of the
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Figure 4-8: a) Raw single-shot data trace recorded in the time-domain in my su-
perradiance experiments. The early dashed-boxed feature is the tipping pulse that
initiates the superradiance, and the large feature is the superradiant emission. b) A
zoom-in of the later solid-boxed portion of the raw data trace from part a. displaying
that the signal is visable without filtering, but at a weak S:N ratio.

strongest portion of the signal. While some of the signal is clearly visible, the signal-

to-noise (S:N) ratio is not large enough to perform any meaningful analysis. This

signal was obtained by using a small ‘tipping’ mm-wave pulse to initiate the superra-

diant emission at a well-defined time and phase, and is observable in the boxed region

of Fig. 4-8. This tipping pulse induced a π/40 polarization of the sample, too small to

be observable in a single-shot without cooperative enhancement. The characteristic

increase of emitted electric field is clearly visible even with the low S:N ratio.

Upon Fourier transformation, however, the S:N ratio is on order of 100:1, as shown

in Figure 4-9. The Fourier transform was time-gated to exclude the tipping pulse. The

broad peak is due to the superradiant emission, while the narrow peak is caused by

other processes, which are discussed in Section 4.4. Due to the ∼ 40 GHz detection

bandwidth of the mm-wave spectrometer, most of the noise observed in the time-

domain occurs at frequencies far from the resonance frequency. In order to combat
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Figure 4-9: The Fourier transform of the raw data from Figure 4-8a. The data from
the frequency-domain shows a narrow peak at the low-density resonance frequency
and a broad peak shifted to lower frequency.

this effect, I performed post-detection digital filtering of the time-domain data.

In order to filter the data, I first obtained the resonance frequency of the 6s30p→

6s28d transition from low density samples (276.893 GHz). I then multiplied the super-

radiant time-domain signals by a sine (cosine) wave at this frequency and employed

a 25 MHz classic type I finite impulse response (FIR) zero-phase low-pass filter in

order to acquire the in-phase (quadrature) component of the emitted electric field. I

then calculated the time-dependent radiated electric field amplitude and phase with

I(t) = s2 + c2 and φ(t) = tan−1(s/c), where s and c are the in-phase and quadrature

components of the signal. The phase is calculated using a four quadrant arctangent

function. An example of the filtered electric field amplitude is shown in Figure 4-10.

This filtered amplitude is taken from the same shot as the unfiltered time-domain data

of Fig. 4-8. The phase evolution associated with the filtered electric field amplitude

from Fig. 4-10 is displayed in Fig. 4-11.

The time-domain signal can be fit to the hyperbolic secant lineshape function

predicted by the semi-classical theory discussed in Section 3.2.2, fitting both the

superradiance emission time (TR) and the superradiance delay time (TD) simultane-
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Figure 4-10: The digitally filtered electric field intensity profile from the raw data in
Figure 4-8a is shown in blue, and the fit to the mean-field emission functional form is
shown in red. The boxed feature is the tipping pulse that triggers the superradiance.
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Figure 4-11: The recorded phase as a function of time from the raw data from Figure
4-8a, obtained by demodulation at the low-density resonance frequency. The green
dashed lines indicate the time FWHM of the superradiant field amplitude. A positive
slope indicates a frequency that is shifted below the resonance frequency, while a
negative slope indicates a shift above the resonance frequency.

136



0 20 40 60 80 100 120 140
0

100

200

300

400

500

600

700

800

T
R
 (ns)

T
D
 (

ns
)

 

 

Data
Best Fit Line

R2 = 0.91

Figure 4-12: Relationship between the separate fitting parameters, TR (characteristic
superradiance emission time) and TD (superradiance delay time). Blue points are
the data and the green line is the best fit to the data. The error bars represent 95%
confidence intervals.

ously. An example of this fit is shown as the red curve in Figure 4-10. In order to

confirm that the model used to interpret the data is appropriate, I plot TR vs. TD

in Fig. 4-12. Since TD = 2TR log(θi/2) [1], I expect a linear correlation with a slope

that is directly related to the initial tipping angle of the triggering pulse. The linear

correlation between TR and TD is clear, and the tipping angle extracted from the rela-

tionship between TR and TD matches the directly measured value of θi = π/40. This

agreement with the semi-classical expectations for the emitted signal implies that I

can in principle use the semi-classical theory to determine the optical depth of the

sample on each single shot. Optical depth is related to the superradiance emission

time TR through Equation 4.1.

Unfortunately, due to the presence of an uncontrolled and unobserved decay path-
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way, I cannot connect optical depth to either absolute or relative density. The un-

controlled decay to the 6s30s state occurs at both an unknown time and unknown

location in the sample, leading to shot-to-shot fluctuations in the length, L, of the

sample. I can detect whether this uncontrolled decay has occurred by probing the

6s30s→ 6s29p transition, which becomes superradiant when significant population is

transferred to the 6s30s state. I can use the filtering process above in order to deter-

mine the electric field amplitude of this second superradiant transition. An example

of a pre- and post-filtered shot, where both transitions are superradiant, is displayed

in Figure 4-13. The Fourier transform of this shot, with zoom-ins on both transition

frequencies, is shown in Fig. 4-14.

Despite knowing whether an uncontrolled superradiant decay has occurred, I still

lack the information required to determine where in the active region such a transi-

tion occurred, and how much of the original sample decayed. I have attempted to

determine the relative populations involved in each superradiant transition from the

relative amplitudes of the emitted fields. In principle such a measurement is possible,

but simply knowing the number of emitters (obtained from the amplitudes of the

emitted fields) does not allow me to separately determine density and optical depth

(obtained from comparisons to semi-classical theory).

For future experiments, two changes would be required to separate optical depth

from (relative) density. First, a state that only has one superradiant mode should be

excited. This can easily be done by exciting to an ns state that can only decay to

an n′p state. Second, atomic absorption spectroscopy should be performed simulta-

neously with the mm-wave experiments in order to determine an accurate absolute

number density of Rydberg states.

4.4 Superradiance induced frequency shifts

Despite the good agreement of the envelope of the time-domain data with the semi-

classical theory, a detailed investigation of the data in the frequency domain reveals

several significant departures that can only be explained by a fully quantum calcu-
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Figure 4-13: The top plot displays the raw single-shot data of a sample that super-
radiantly emits on two separate transitions. The bottom plot displays the digitally
filtered electric field intensity profile of the top plot.
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Figure 4-14: The top plot displays the Fourier transform of the single-shot data from
Figure 4-13. The bottom plots display the lineshapes of the 30p → 28d (left, green)
and 30s → 29p (right, red) transitions. The FWHM of the 30p → 28d transition is
∼ 1 GHz and the FWHM of the 30s→ 29p transition is ∼ 400 MHz.
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Figure 4-15: The fit (red curve) of the Fourier transform of the data (blue points)
from Figure 4-8a. This fit is to a sum of two lineshape functions, a narrow Gaussian
centered at the low-density resonance, and a broad hyperbolic secant centered at
lower frequency than the low-density resonance.

lation. The Fourier transform of Figure 4-8a, gated to exclude the tipping pulse,

shown along with a fitted lineshape, is shown in Fig. 4-15. The fitted lineshape is

a sum of a narrow Gaussian peak, centered at the low-density resonance frequency,

and a hyperbolic secant peak, the center frequency of which was a fittable parameter.

The broad feature is associated with the superradiant emission, has a FWHM of ∼ 6

MHz, and is red-shifted ∼ 2 MHz below the low-density transition frequency. The

narrow feature has a FWHM consistent with Doppler broadening (∼ 250 kHz) and

no observable shift from the low-density transition frequency. When performing a

Fourier transform with a longer time gate that excludes both the initial tipping pulse

and the superradiant pulse, only the narrow feature remains.

The integrated area under the broad and narrow lineshapes vary with the same

dependence on optical depth. This implies that both signals are fully cooperative in

nature. If the narrow feature were generated exclusively in low density regions of the

sample, I would expect the area associated with superradiant signal to decrease faster

than that associated with the narrow signal, as emitters that were not in a sufficiently

dense volume of the sample would contribute to the narrow signal instead of the su-
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Figure 4-16: The calculated excited state population of a highly cooperative system
as a function of time. The calculations were performed by Susanne Yelin and provided
for this thesis, following the second-order master equation method described in Section
3.3.3. The x-axis is on a log scale and measured in units of natural lifetimes, γ, for
isolated atom emission. The large decrease in excited state population is indicative
of superradiance, with the long-plateau following being indicative of subradiance.
Radiation trapping occurs at times much longer than a natural lifetime. Note that
the final measurable excited state population is still > 45%, even after 10 natural
lifetimes.

perradiant signal. This narrow signal is likely due to subradiance. This interpretation

is supported by theoretical predictions from the Yelin group [120]. As displayed in

Figure 4-16, fully quantum simulations predict a transition from superradiant to sub-

radiant behavior with a long time evolution to radiation trapping behavior (incoherent

absorption and re-emission of photons). As my heterodyne detection system only de-

tects coherent radiation, I tentatively assign this narrow feature as subradiance, but

given that I cannot measure a linewidth narrower than the radiative lifetime (and

in practice, I cannot measure a linewidth narrower than the Doppler broadening, or

blackbody broadening in the case of a photon-echo experiment), I cannot state with

certainty that this signal is due to subradiance.

142



0 1 2 3 4 5 6

x 10
6

0

1

2

3

4

5

6

7

8

Optical Depth (x 106)

Li
ne

w
id

th
 (

M
H

z)

 

 

Data
Best Fit Line
FT−Limited Line

R2 = 0.87

Figure 4-17: The relationship between the optical depth of a superradiant sample and
the linewidth of the emitted radiation. Blue points are the data, the green line is the
best fit to the data, and the red dashed line is the linewidth expected if the emission
were Fourier transform limited. The error bars represent 95% confidence intervals.

There are two important features of the frequency of the superradiant emission:

the broadening and the shift. I focus first on the broadening. The relationship be-

tween the width of the superradiant emission peak and the optical depth of the sample

determined from TR is shown in Figure 4-17. The green line shows the least-squares

linear fit to the data, while the red dashed line shows the value of the Fourier trans-

form limited linewidth associated with a time domain hyperbolic secant signal with

characteristic width TR. The superradiant emission is consistently broader than the

Fourier transform limit, and is well correlated with the optical depth. In principle,

the observed excess frequency width could be due to either a frequency chirp during

the emission process, or a dephasing process (e.g. inhomogeneous dipole-dipole de-

phasing). Since I directly detect the emitted electric field in the time domain, any

dephasing process would be immediately apparent as destructive interference, which

shortens the emitted superradiant pulse. Therefore, the excess width implies that the

frequency chirps across the linewidth of the emission feature.

This frequency chirp is most directly measured by observing the accumulated

phase of the emitted radiation, because the instantaneous frequency is determined
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Figure 4-18: The fitted frequency evolution associated with the phase evolution from
Figure 4-11 using a Gaussian as a fitting function. The green dashed lines indicate
the time FWHM of the superradiant emission amplitude. The frequency is taken
relative to the low-density resonance.

by the time derivative of the phase. The accumulated phase is directly sampled by

our methods of detection and filtering. The blue solid trace in Figure 4-11 displays

the phase evolution of the single-shot data trace in Fig. 4-10. In the absence of a

model for the frequency and hence the phase evolution of the sample, I fit the phase

evolution to a series of lineshape functions (Gaussian, Lorentzian, hyperbolic secant)

and computed the derivative of each in order to determine the frequency as a function

of time. Qualitatively, each lineshape fit model produced the same result. The

frequency evolution determined from the Gaussian fit is shown in Fig. 4-18, plotted

relative to the low-density emission frequency. The previously discussed frequency

chirp that is implied by the excess frequency-domain width is clearly present.

Additionally, the time at which the maximum in the phase evolution occurs (and

frequency crosses through the low-density resonance frequency) does not coincide with

the envelope of the field amplitude in the time domain. The time FWHM of the su-

perradiant emission amplitude is displayed by the vertical green dashed lines in Figs.

4-11 and 4-18 to demonstrate this offset. This mismatch between the phase evolution

and the electric field envelope is the cause of the observed frequency shift. I base
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this claim on the observation that the emission is most intense while the frequency is

shifted away from the low-density value, despite the fact that the frequency chirp is

symmetric around the low-density frequency. In a fully quantum mechanical many-

body treatment, both a chirp and an overall shift to lower frequencies are predicted

during the maximum amplitude of the superradiant emission. These calculations pre-

dict a large red shift during the maximum amplitude of the superradiant emission [2].

After the time at which the maximum amplitude occurs, the frequency chirps towards

a long-lived blue shift at long times, in qualitative agreement with our observations.

The apparent blue chirp in our experiments occurs after the superradiant emission

has concluded and is likely an artifact of the filtering method (as the phase of zero

signal must be zero). Comparisons can presently be made only at a qualitative level,

due to the vastly larger optical depth in our experiment than is currently tractable

in simulations. Qualitative results are displayed in Fig. 4-19.

The relationship between the frequency shift of the superradiant emission and

the optical depth determined from TR is shown in Figure 4-20. There is only a

weak correlation between the optical depth and frequency shift, showing that some

other terms must contribute to the frequency shift. Quantum many-body calculations

indicate that the relative density, not the optical depth, has the largest effect on the

induced lineshift of the superradiance. The calculated effect of holding the relative

density constant while increasing the length (and therefore optical depth) of the

sample is shown in Fig. 4-21 [2]. Unfortunately, as discussed in Section 4.3, it was

not possible in my experiments to determine either the absolute or relative density of

emitters, due to the presence of an uncontrolled decay pathway.

145



Figure 4-19: The calculated frequency shift of a strongly cooperative system as a
function of time. The calculations were performed by Susanne Yelin and provided for
this thesis, following the second-order master equation method described in Section
3.3.3. The x-axis is on a log scale and measured in units of natural lifetimes for
isolated atom emission. The y-axis is measured in arbitrary units. There is a large
red shift during the superradiant emission (at ∼ 10−3 γt, compare to Fig. 4-16), and
a small blue shift during subradiant emission (at ∼ 100 γt).
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Figure 4-20: Relationship between the optical depth of a superradiant sample and
the frequency shift. Blue points are the data and the green line is the best fit to the
data. The error bars represent 95% confidence intervals.
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Figure 4-21: The top plot displays the calculated frequency shift as a function of Op-
tical Depth (displayed here as C). The bottom plot displays the calculated frequency
shift at a constant density and a varying length. The calculations were performed by
Susanne Yelin and provided for this thesis, following the second-order master equa-
tion method described in Section 3.3.3. The x-axis of the top plot is on a log scale
and measured in units of natural lifetimes for isolated atom emission. The y-axis
of the top plot is the frequency shift measured in multiples of the natural linewidth.
The y-axis of the bottom plot is the maximum extent of the frequency shift evolution.
Note that, in the bottom plot, although the optical depth increases linearly with `,
the frequency shift exhibits only a small sinusoidal oscillation. Figure reproduced
from Ref. [2]
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Chapter 5

STIRAP Theory

In this chapter I discuss the theory behind STImulated Raman Adiabatic Passage

(STIRAP) and methods for performing simulations based on the parameters for real-

istic systems. In Section 5.1 I provide a motivation for robust, high-fidelity methods

of population transfer and provide an introduction to one- and two-photon methods

of population transfer. In Sec. 5.2 I carefully derive the equations that describe the

STIRAP process, explore some instructive analytical results, and outline the basics

of the calculations used in simulating STIRAP. In Sec. 5.3 I apply these calculations

to realistic systems, adding complexity stepwise until all essential aspects of the real

system are accounted for.

5.1 An introduction to population transfer methods

Rydberg states of molecules can be divided into two categories: core-penetrating (CP)

and core-nonpenetrating (CNP) states. CP states are those in which the wavefunc-

tion of the Rydberg electron has significant amplitude within the ion-core because it

possesses a relatively low orbital angular momentum, `. However, owing to multipo-

lar mixing that occurs when the Rydberg electron is near the ion-core, ` is typically

not a good quantum number in molecules. These CP states are usually easy to ac-

cess from low-lying electronic states (usually the ground state) because of optical

transition selection rules, and have been widely studied. CNP states are those with
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relatively large orbital angular momentum (` > 4, in general) and small quantum

defects (δ` < 0.05), and have received considerably less attention, largely due to the

difficulty in accessing them via standard optical transitions from low-lying valence

states. Owing to the `(` + 1)/r2 centrifugal barrier in the effective radial potential

of the Rydberg electron, predissociation lifetimes of CNP states are generally on the

order of 10−7 to 10−4 s, amenable to FID detection (requiring 1-10 µs), compared

with 10−11 to 10−9 s for CP states [16, 17].

Traditional incoherent multiple resonance techniques, by which a system’s pop-

ulation is transferred one step at a time, are generally incapable of transferring a

detectable population into CNP states by transit through a CP state with a nanosec-

ond or shorter lifetime. Coherent population transfer methods, such as STIRAP,

on the other hand, are well suited for efficient transfer of population to CNP states

while avoiding the large decay rates associated with the easily accessible CP states.

STIRAP has been demonstrated in a variety of systems to be capable of robust 100%

population transfer through a short lifetime state (and even roughly 20% population

transfer through a continuum).

In order to describe this method of transfer, I briefly describe one- and two-photon

methods for population transfer in Sections 5.1.1 and 5.1.2, respectively.

5.1.1 Two-state, one-photon methods

Even for the relatively simple case of a two-state interaction, there are still many ways

in which one could transfer population from an initially populated ground state, |1〉,

to a final state, |2〉. The most obvious method is interaction with a photon the energy

of which matches the energy difference between the quantum states. The fidelity and

robustness of this process depend on the coherence characteristics of the oscillating

electric field of the electromagnetic radiation. Here I use the phrase ‘fidelity’ to

describe how efficiently a process transfers population from state |1〉 to state |2〉, and

the phrase ‘robustness’ to describe how strongly a process depends on experimental

parameters (e.g. electric field magnitude of the light source) to achieve its maximum

fidelity.
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Excitation involving incoherent light may be described using differential equations

for excitation probabilities with Einstein coefficients as rate constants for absorp-

tion and stimulated emission [153]. For the purposes of this introduction, I ignore

spontaneous emission from both states. The differential equations that describe this

situation are

dN1

dt
= −Bω

12F (t)N1 +Bω
21F (t)N2 (5.1)

dN2

dt
= −Bω

21F (t)N2 +Bω
12F (t)N1 (5.2)

where N1 and N2 are the fraction of particles in the initial and final states, Bω
12 and

Bω
21 are the Einstein coefficients for absorption and stimulated emission, and F (t) is

the energy density per unit angular frequency (measured in radians/sec) as a function

of time, and is assumed to be constant over the frequency range of the transition.

The Einstein coefficients can be written as

Bω
21 =

π2c3A21

~ω3
21

=
3ε0~2

π
µ2 (5.3)

Bω
12 =

g2
g1
Bω

21 (5.4)

where g1 and g2 are the degeneracy factors of the two levels, ω21 is the transition

frequency in radians/sec, and A21 is the Einstein coefficient for the spontaneous decay

rate. Note that, if I had defined F (t) in terms of regular frequency (measured in

cycles/sec or Hz) instead, there would be an extra factor of 2π in these definitions,

such that Bf
21 = Bω

21/2π. Attention to the difference between angular frequency and

regular frequency is essential to performing accurate calculations.

Assuming that all of the particles are in the initial state at t = 0, these differential

equations have a simple solution that gives the fraction of population in the final

state as
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N2(t) =
g2

g1 + g2

(
1− e−

g1
g1+g2

Bω21G(t)
)
, (5.5)

where G(t) is the integral of the time-varying energy density per unit angular fre-

quency

G(t) =

∫ t

−∞
F (t′)dt′. (5.6)

Equation 5.5 shows that N2 increases monotonically as excitation duration and

excitation energy density increase, eventually saturating at a value of g2/g1+g2. This

form of excitation can be said to lack fidelity (being limited by the ratio of degeneracies

of the two states), but is exceptionally robust with respect to experimental changes

once the saturated regime has been reached.

The discussion of the interaction of coherent light with a two-level system is fun-

damentally different, and must begin with the time-dependent Schrödinger equation

[154]. I describe the electric field as being monochromatic with constant frequency ω

and a slowly-varying envelope E(t). In the interaction representation and following

the Rotating Wave Approximation (RWA), the Hamiltonian used in this case is

ĤI(t) =
~
2

 0 Ω(t)

Ω(t) 2∆

 (5.7)

Ω(t) =
µE(t)

~
(5.8)

where Ω is the Rabi frequency, and ∆ is the detuning from resonance, ω − ω21.

The level structure associated with the Hamiltonian is displayed in Figure 5-1. This

Hamiltonian can be solved exactly, and it provides the fraction of particles in the final

state as

N2(t) =
A(t)2

A(t)2 + ∆2
sin2

(√
A(t)2 + ∆2

t

2

)
(5.9)

where A(t) is the pulse area up to time t,
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Figure 5-1: Schematic diagram of a two-state, one-photon system, where Ω(t) is the
Rabi frequency and ∆ is the detuning from resonance.

A(t) =

∫ t

−∞
Ω(t′)dt′. (5.10)

Equation 5.9 predicts that population will oscillate sinusoidally and can achieve

100% population transfer in the resonant case (∆ = 0). The excitation reaches a

maximum whenever the generalized pulse area,
√
A(t)2 + ∆2, is equal to an odd

multiple of π, such that
√
A(t)2 + ∆2 = (2n + 1)π. When n = 0, this is known as a

π-pulse, and in the case of resonant excitation, 100% of the population is transferred

to the final state, leading to a very high fidelity. However, any variations from ideal

parameters (fluctuations in either the pulse area or detuning of the pulse) will cause

unavoidable losses in transfer efficiency.

If there are spatial inhomogeneities in pulse area (e.g. caused by spatial inhomo-

geneities of the slowly-varying envelope E(t)), different portions of an ensemble will

undergo varying amounts of transfer, leading to only 50% transfer on average in the

case of large inhomogeneities. Further, µ depends on the quantum numbers of the

states involved, so excitation of multiple degenerate states with different values of
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m, for example, will lead to differing Rabi frequencies (and hence pulse areas) for

each state and departure from the ideal of 100% population transfer. Therefore, the

lack of robustness in performing a π-pulse drastically reduces its utility, despite its

potentially very high fidelity.

Thankfully, methods exist that provide both a very high fidelity and strong robust-

ness. The example I give here is that of Adiabatic Rapid Passage (ARP). Adiabatic

sweeps are a well-established technique in nuclear magnetic resonance (NMR) spec-

troscopy and are routinely used to robustly invert population in two-level systems

[155, 156, 157, 158, 159, 160, 161]. The fundamental idea behind the technique is

that the frequency of a pulse is swept through resonance slowly while maintaining

strong coupling between the two levels with a magnetic field. This strong interac-

tion leads to an avoided crossing between the eigenstates of the full Hamiltonian. If

this avoided crossing is traversed slowly, or adiabatically, this procedure results in a

complete transfer of population from the initial to final state. In general, the Landau-

Zener formula predicts the probability of traversing the avoided crossing adiabatically

[162].

In order to account for the frequency sweep, the detuning in the Hamiltonian in

Eq. 5.7 is replaced with

∆(t) = ω(t)− ω21 (5.11)

ω(t) = ωi − αt (5.12)

ω(t) is the time-varying angular frequency of the electric field, ωi is the initial fre-

quency of the sweep, and α is the frequency sweep rate in radians/second2. For the

purposes of clarity in this example, the electric field envelope E(t), and hence the

Rabi frequency Ω(t), will be assumed to be constant. With these adjustments, the

Hamiltonian in Eq. 5.7 can be diagonalized to yield eigenstates

|+〉 = sin Θ |1〉+ cos Θ |2〉 (5.13)
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|−〉 = cos Θ |1〉 − sin Θ |2〉 , (5.14)

where the mixing angle Θ is given by

tan 2Θ =
Ω

∆(t)
. (5.15)

A two-level system that starts with all of its population in the initial state with a

large (compared to Ω), positive detuning, therefore, begins completely in eigenstate

|−〉. As the radiation is brought toward resonance, ∆(t) decreases and the mixing

angle Θ increases. Passing through resonance the sign of ∆(t) changes and the mag-

nitude once again begins to increase. Once the detuning is again large (compared

to Ω) and now negative, the entire system, still in eigenstate |−〉, is now composed

completely of state |2〉. In order for this population transfer to be complete, the sweep

rate must follow the adiabaticity criterion of

α� (Ω2 + ∆(t)2)
3
2

Ω
, (5.16)

and in order for the population to begin and end entirely in eigenstate |−〉, the initial

and final detunings must be much larger than the Rabi frequency

|∆i|, |∆f | � Ω, (5.17)

where ∆i and ∆f are the initial and final detunings.

ARP can have both a very high fidelity and be robust with respect to variations

in experimental parameters. As long as the adiabaticity criterion is satisfied and one

starts and ends far from resonance, in general, due to having a large Rabi frequency

and a slow sweep rate, near unity population transfer is achievable [156]. This is possi-

ble even in the case of differences in spatial radiation intensity or multiple degenerate

states. Figure 5-2 displays an example of the total population transfer achievable

with each of these methods.
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Figure 5-2: Schematic representation of various one-photon population transfer meth-
ods as a function of time. The solid blue curve displays coherent transfer, the dashed
yellow curve displays adiabatic rapid passage, and the dash-dotted green curve dis-
plays incoherent transfer.
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5.1.2 Three-state, two-photon methods

In many experiments, single-photon transfer of population is infeasible. This could

be due to angular momentum selection rules, as is the case in transferring popula-

tion to CNP Rydberg states, or due to small Franck-Condon factors in molecular

electronic spectroscopy. In both cases the general solution is to transfer population

through a third state that has either the correct angular momentum character or vi-

brational wavefunction overlap with both the initial and final states. In the following

discussion, the initial state will continue to be denoted |1〉, the final state will now

be denoted |3〉, and the intermediate state will be denoted |2〉. In the spectroscopy

of both CNP Rydberg states and highly excited molecular vibronic states, the initial

and final states are generally stable on the timescale of the experiment, while the

intermediate state may have a short lifetime due to predissociation, autoionization,

spontaneous emission, intersystem crossing, internal conversion, or intramolecular

vibrational redistribution (IVR).

Stimulated Emission Pumping (SEP) is a well-known method for populating

highly-excited vibronic states of molecules [163, 164]. It is fundamentally a straight-

forward extension of the incoherent two-state scheme described above to a three-state

system. Population is first transferred from |1〉 to |2〉, and then separately from |2〉

to |3〉. Both transfers are incoherent and so have a maximum transfer efficiency of

50%, leading to a 25% total transfer efficiency. 50% of the population remains in

the initial state, while the remaining 25% typically decays out of the intermediate

state to a variety of final states. If both fields are present at the same time, the

population equilibrates between all three states, leading to 33% population transfer.

However, when the lifetime of the intermediate state is very short, even this 33%

efficiency is difficult or impossible to achieve. Thus, while SEP and incoherent meth-

ods in general are quite robust against experimental conditions, their lack of fidelity

and potential population of a wide variety of unwanted states makes these incoherent

methods undesirable in many situations.

Coherent population transfer can be extended from the two-state discussion above
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Figure 5-3: Schematic diagram of a Λ-type three-state, two-photon system, where
Ωij(t) are the Rabi frequencies and ∆ij are the detunings from resonance.

to a three-state model. The interaction Hamiltonian under the RWA is now

ĤI(t) =
~
2


0 Ω12(t) 0

Ω12(t) 2∆12 Ω23(t)

0 Ω23(t) 2(∆12 −∆23)

 (5.18)

where Ωij and ∆ij are the Rabi frequency and detuning associated with the transition

between states i and j. A Λ-type level structure associated with this Hamiltonian is

displayed in Fig. 5-3. Note that state |3〉 could in principle lie higher in energy than

state |2〉 in a ladder-type level structure.

The simplest case to first consider, drawing parallels to the two-state case, is when

both Rabi frequencies have the same slowly varying electric-field envelope. This can

be the case if, for example, both transitions are driven by the same light source, or

if they are driven by two different temporally overlapped pulses of the same dura-

tion. If ∆12 is large (compared to either Rabi frequency), then the system can be

approximated as a two-state system transferring population directly between states

|1〉 and |3〉. In such a case, the effective two-photon Rabi frequency for the system is

[165, 166]

Ω13 =
Ω12Ω23

4∆12

(5.19)
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and the population of state |3〉 after an interaction time t is

N3(t) =
A13(t)

2

A13(t)2 + δω2
sin2

(√
A13(t)2 + δω2

t

2

)
, (5.20)

where A13(t) is the pulse area up to time t

A13(t) =

∫ t

−∞
Ω13(t

′)dt′, (5.21)

and δω is the two photon detuning (∆12 − ∆23). If the intermediate state detuning

is large, then effectively no population accumulates in state |2〉, and the entire pop-

ulation oscillates between states |1〉 and |3〉. Under ideal conditions, it is possible to

achieve 100% population transfer to the final state with a π-pulse (or (2n+1)π-pulse)

despite the possibility of fast decay from the intermediate state. However, this scheme

encounters the same difficulties as the two-state coherent π-pulse scheme in terms of

spatial inhomogeneities of the pulse area and degenerate states with different tran-

sition moments. Two-photon π-pulses, in analogy to the one-photon versions, have

potentially very high fidelity for populating the final state, but lack the robustness

required for many experiments. The requirements for two-photon π-pulses are even

more stringent due to the requirement that ∆12 be large compared to both Ω12 and

Ω23, which typically means that Ω13 will be relatively small.

Fortunately, there exist three-state, two-photon schemes that, in analogy to ARP,

allow for robust, high fidelity transfer of population through a lossy state to a pre-

selected final state. STIRAP is one such scheme [20, 21, 167, 168, 169, 170, 171,

172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 160, 183, 184, 185, 186]. The

fundamental concept of STIRAP is that of a three-state, two-photon Raman process,

where the maxima of the Rabi frequencies occur at separate times. I will now switch

to the traditional STIRAP notation referencing the Raman nature of the process, by

referring to the transition between states |1〉 and |2〉 as the “Pump” transition, and the

transition between states |2〉 and |3〉 as the “Stokes” transition. When the Pump and

Stokes pulses are applied in what is known as the “counter-intuitive” pulse sequence,

where the Stokes pulse is applied before the Pump pulse, 100% population transfer is
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robustly possible, regardless of the lifetime of the intermediate state. I present proof

of this and a detailed analysis of the STIRAP process in the next section.

5.2 Detailed theory of STIRAP

In order to provide a more complete description of the STIRAP process, I fully derive

the three-state two-photon Hamiltonian, solve for the eigenstates and eigenenergies,

and determine the conditions for adiabatic following in Sec. 5.2.1. In Section 5.2.2 I

expand upon the basic framework to include non-idealities in the experimental system,

including phase fluctuations and intermediate state decay, and then I present and

discuss the coupled differential equations that can be numerically solved to provide

insight.

5.2.1 Derivation of STIRAP and the adiabatic following con-

dition

The Hamiltonian for a general three-state system soupled by two radiation fields is

given by

Ĥ(t) =


E1 −µ21EP (t) cos(ωPT ) 0

−µ21EP (t) cos(ωPT ) E2 −µ32ES(t) cos(ωST )

0 −µ32ES(t) cos(ωST ) E3

 (5.22)

where Ei is the absolute energy of the ith state, µij is the electric dipole transition

moment between states i and j, EP/S(t) are the slowly-varying electric field envelopes

of the Pump and Stokes fields, and ωP/S are the frequencies of the Pump and Stokes

fields. As before, it is more convenient to work in the interaction representation and

make the RWA, which yields the following Hamiltonian
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ĤI(t) =
~
2


0 ΩP (t) 0

ΩP (t) 2∆P ΩS(t)

0 ΩS(t) 2(∆P −∆S)

 (5.23)

ΩP (t) =
µ21EP (t)

~
(5.24)

ΩS(t) =
µ32ES(t)

~
(5.25)

~∆P = (E2 − E1)− ~ωP (5.26)

~∆S = (E3 − E2)− ~ωS (5.27)

where ΩP/S are the Rabi frequencies of the Pump and Stokes laser pulses, and ∆P/S

are the detunings of the Pump and Stokes laser pulses. This Hamiltonian is identical

to that of Eq. 5.18, expressed with different notation. Making the assumption of

two-photon resonance, this Hamiltonian has eigenstates

∣∣a+〉 = sin(Θ) sin(Φ) |1〉+ cos(Φ) |2〉+ cos(Θ) sin(Φ) |3〉 (5.28)

∣∣a0〉 = cos(Θ) |1〉 − sin(Θ) |3〉 (5.29)

∣∣a−〉 = sin(Θ) cos(Φ) |1〉 − cos(Φ) |2〉+ cos(Θ) cos(Φ) |3〉 (5.30)

where Θ and Φ are mixing angles defined in terms of Rabi frequencies and detun-

ings

tan(Θ) =
ΩP (t)

ΩS(t)
(5.31)
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tan(Φ) =

√
Ω2
P + Ω2

S√
Ω2
P + Ω2

S + ∆2
P + ∆P

. (5.32)

Of these two mixing angles, only Θ will be important in the following discussion. The

eigenenergies associated with these eigenstates are

ω0 = 0 (5.33)

ω± = ∆P ±
√

∆2
P + Ω2

P + Ω2
S. (5.34)

The goal of the STIRAP process is to transfer population from bare state |1〉

to bare state |3〉 without placing population even transiently into bare state |2〉.

Therefore, preventing any population from entering eigenstates |a±〉 becomes the

goal, as each of those states are linear combinations of all three bare states, including

bare state |2〉. Analogous to ARP, where the goal became to stay entirely in eigenstate

|−〉, the goal of STIRAP is to begin and end in eigenstate |a0〉, which is free at all

times of contributions from bare state |2〉.

If the only radiation field present is the Stokes field, then Θ = 0. If the initial

population is entirely in the bare state |1〉, then the system must be entirely in

eigenstate |a0〉. In order to keep the population in this eigenstate while transferring

population, the mixing angle Θ should be changed adiabatically from 0 to π/2. This

is accomplished by slowly turning on the Pump radiation field while slowly turning

off the Stokes radiation field. In practice, this is done by delaying (either temporally

or spatially) the Pump laser pulse so that it arrives after the Stokes laser pulse. A

schematic diagram that displays the temporal evolution of both electric fields, the

mixing angle Θ, and the population, is shown in Figure 5-4.

In order for this process to transfer 100% of the population from the initial to

the final bare state, the process must be performed adiabatically. In general, for this

to be achieved, the nonadiabatic interaction between eigenstate |a0〉 and eigenstates

|a±〉 must be smaller than the field-induced splitting of the eigenstates [20]. The
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163



nonadiabatic interaction matrix element is 〈a±|ȧ0〉, thus the adiabaticity criterion

can be expressed as

〈
a±|ȧ0

〉
�
∣∣ω± − ω0

∣∣ . (5.35)

These matrix elements can be written as

〈
a+|ȧ0

〉
= −Θ̇ sin Φ (5.36)

〈
a−|ȧ0

〉
= −Θ̇ cos Φ (5.37)

The maximum magnitude of both of these matrix elements is Θ̇. Therefore, a local

adiabaticity criterion can be written as

Θ̇ =

∣∣∣∣∣Ω̇PΩS − ΩP Ω̇S

Ω2
P + Ω2

S

∣∣∣∣∣� ∣∣ω± − ω0
∣∣ . (5.38)

This adiabaticity condition can be evaluated at any time t, but doing so does not

provide global insight. If the slowly-varying electric field envelopes are smooth, then

a convenient global adiabaticity condition can be derived by taking the time average

of Θ̇,

〈
Θ̇av

〉
=

π

2∆τ
, (5.39)

where ∆τ is the period during which the pulses overlap. Adiabaticity is most impor-

tant when each radiation field is on resonance (∆P = ∆S = 0), and so I can write

that in general,

∣∣ω± − ω0
∣∣ ≥√Ω2

P + Ω2
S ≡ Ωeff , (5.40)

where Ωeff is the effective Rabi frequency. Combining these expressions, I arrive at

a numerical condition to ensure global adiabaticity, which matches well with both

experimental experience and numerical simulations
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Ωeff∆τ > 10 (5.41)

However, this inequality is only accurate for Fourier-transform limited radiation.

As discussed in Sec. 2.2, the Nd:YAG-pumped pulsed dye lasers used in my experi-

ments suffer from phase fluctuations during each pulse and are significantly broader

than what the Fourier-transform limit of their duration would imply. These phase

fluctuations lead to a time-dependent detuning from the two-photon resonance and

sudden changes in the values of both mixing angles, which result inevitably in losses

due to nonadiabatic coupling to the bare state |2〉. In general, these phase fluctuations

may only be compensated for by a larger effective Rabi frequency,

Ωeff∆τ & 10N2
Fourier (5.42)

NFourier =
∆ωphase

∆ωFourier
, (5.43)

where ∆ωphase is the bandwidth of the pulsed laser, and ∆ωFourier is the Fourier-

transform limited bandwidth for a given pulse duration, and NFourier is the ratio

between the two.

5.2.2 Numerical calculations including experimental imperfec-

tions

In order to accurately simulate the behavior of the STIRAP pulse sequence as per-

formed in my experiments, I explicitly include several experimental imperfections in

my calculations: phase and intensity fluctuations in the pulsed dye laser pumped

Pump pulse, nonadiabatic losses that are the result of the square-wave nature of the

mm-wave pumped Stokes pulse, and the possibility of rapid decay from the interme-

diate state.

In order to account for the poor phase coherence properties and intensity fluc-

tuations of the pulsed dye laser Pump pulse, I include these fluctuations as pseudo-
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random functions modifying the Rabi frequency of the Pump pulse. I then average the

simulation results in an attempt to replicate the experimental results. For the phase

fluctuations, I include exponentially-correlated colored phase noise (the Ornstein-

Uhlenbeck process), equivalent to a phase diffusion model with a non-Lorentzian

lineshape, as described in reference [170]. This takes the form of a pseudo-random

phase function α(t) modulating the Pump pulse Rabi frequency:

ΩP =
µPEP (t)eiα(t)

~
(5.44)

This phase function α(t) depends on two parameters, the spectral density of the

noise, D, and the correlation time of the fluctuations, Γ, defined by

〈εP (t)〉 = 0 (5.45)

〈εP (t)εP (s)〉 = DΓe−Γ|t−s| (5.46)

where t and s are two arbitrary times, and εP is the dynamic detuning of the Pump

pulse (a factor in addition to the static detuning ∆P ). These parameters also include

the effect of the ratio of the laser bandwidth to the Fourier-transform limited pulse,

NFourier by the relationship,

NFourier =
∆ωphase

∆ωFourier
= ∆tlaser

√
DΓ

2
, (5.47)

∆tlaser is the full width half maximum (FWHM) of the duration of the laser pulse.

In order to simulate a non-transform limited pulse that matches any mode of our

intracavity etalon-narrowed pulsed dye laser (bandwidth ∼ 250 MHz, NFourier ∼ 4),

I set D = Γ = 0.75 GHz.

In general, different values of D and Γ that maintain a constant value of (DΓ/2)1/2

are more efficient at population transfer when D > Γ. This is because nonadiabatic

losses from the sudden phase jumps of lifetime 1/Γ cause greater loss to bare state |2〉

than the decrease in effective Rabi frequency given by the spectral density of noise,
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D.

In order to generate α(t), I use the Box-Müller algorithm [170],

ε(0) = cos(2πb)
√

2DΓ ln a (5.48)

ε(t+ ∆t) = ε(t)E + h (5.49)

E = eΓΔt (5.50)

h = cos(2πb)
√

2DΓ(1− E2) ln a (5.51)

α(t) = ε(t)∆t, (5.52)

where a and b are evenly distributed random numbers in the interval 0 < a, b ≤ 1,

and ∆t is the time step for defining the function. In my calculations, ∆t = 10−12

s. A new a, b pair are generated at every time step, and I average over at least 100

different values of α(t) in order to get statistically meaningful results. An example

α(t) is displayed in Fig. 5-5.

I included intensity fluctuations by modifying the electric field envelope, and hence

the Rabi frequency of the Pump laser pulse. The nominal Pump laser field was

multiplied by a pseudo-random number chosen from a Gaussian distribution with a

variance of 0.025, chosen to match the intensity fluctuations observed in our laser (see

Sec. 2.2). The temporal profile of the dye laser pulse is modeled as a Gaussian pulse

with a 7.5 ns FWHM.

The mm-wave Stokes pulse has vastly better coherence properties and fewer in-

tensity fluctuations than the pulsed dye laser Pump pulse. The primary limitation

of the mm-wave source is that the electronics have response times on the order of

several nanoseconds, thus cannot be easily pulse-shaped on time scales shorter than

∼ 10 ns. The Stokes pulse, therefore, takes the form of a 10 ns Fourier-transform

167



0 0.5 1 1.5 2 2.5 3

x 10
−8

−4

−3

−2

−1

0

1

2

3

4

Time (s)

α 
(r

ad
)
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limited (Fourier transform limit of ∼ 120 MHz) square-wave pulse. In anticipation

of more advanced electronic control over the mm-wave pulse shape, I also perform

simulations with a Gaussian pulse and a triangular pulse, with identical pulse area

to the square-wave case.

Finally, in order to account for losses from the three-state system that originate

from the intermediate bare state |2〉, I introduce a complex term to the Hamiltonian,

responsible for draining population from the system. This term drains population

with a rate 1/T2, where T2 is typically ∼ 100 ps for predissociation. Therefore, the

final interaction Hamiltonian that I use for full calculations of STIRAP is

ĤI(t) =
~
2


0 ΩGauss

P (t)eiα(t) 0

ΩGauss
P (t)e−iα(t) 2∆P − i

T2
ΩSq
S (t)

0 ΩSq
S (t) 2(∆P −∆S)

 (5.53)

where ΩSq
S is the square-wave enveloped Stoke pulse Rabi frequency and ΩGauss

P is the

variable-intensity Gaussian-enveloped Pump pulse Rabi frequency. This Hamiltonian

cannot be solved analytically, but can be solved numerically in either of two ways:

the time-dependent Schrödinger equation,

i~
∂ψ

∂t
= ĤI(t)ψ, (5.54)

where ψ is the wavefunction for the three-state system, or the Liouville-von Neumann

equation,

i~
∂ρ

∂t
=
[
ĤI(t), ρ

]
, (5.55)

where ρ is the density matrix. For an n-level system, the density matrix is an n× n

matrix where the diagonal terms represent the populations of the individual levels,

and the off-diagonal terms represent the coherences between connected levels. The

density matrix and the wavefunction are related by the outer product

ρ = |ψ〉 〈ψ| . (5.56)
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For completeness, the explicit set of coupled differential equations from the time-

dependent Schrödinger equation are

iċ1 = −ΩP (t)c2 (5.57)

iċ2 = −ΩP (t)c1 − ΩS(t)− (2∆P −
i

T2
)c2 (5.58)

iċ3 = −ΩS(t)c2 − 2(∆P −∆S)c3 (5.59)

where ci = 〈i|ψ〉. The explicit set of coupled differential equations from the Liouville-

von Neumann equation are

iρ̇11 = ΩP (ρ21 − ρ12) (5.60)

iρ̇12 = ΩPρ22 − Ω∗Pρ11 − ΩSρ13 −
(

2∆P +
i

T2

)
ρ12 (5.61)

iρ̇13 = ΩPρ23 − ΩSρ12 − 2 (∆P −∆S) ρ13 (5.62)

iρ̇21 = Ω∗Pρ11 − ΩPρ22 + ΩSρ31 +

(
2∆P −

i

T2

)
ρ21 (5.63)

iρ̇22 = Ω∗P (ρ12 − ρ21) + ΩS (ρ32 − ρ23)−
2i

T2
ρ22 (5.64)

iρ̇23 = Ω∗Pρ13 − ΩS (ρ33 − ρ22) +

(
2∆S −

i

T2

)
ρ23 (5.65)

iρ̇31 = −ΩPρ32 + ΩSρ21 + 2 (∆P −∆S) ρ31 (5.66)
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iρ̇32 = −Ω∗Pρ31 − ΩS (ρ22 − ρ33)−
(

2∆S +
i

T2

)
ρ32 (5.67)

iρ̇33 = ΩS (ρ23 − ρ32) (5.68)

These two sets of differential equations provide numerically identical values for

the populations of the bare states, but the density matrix approach also facilitates

investigation of the coherence between two states. In the optical-mm-wave experi-

ments I describe in Chapter 6, the coherence between bare states |2〉 and |3〉, detected

as FID, is essential to determine whether I am performing STIRAP. Figure 5-6a dis-

plays the numerical results from the Schrödinger equation, Fig. 5-6b displays the

numerical results from the Liouville-von Neumann equation, and Fig. 5-6c displays

the difference in populations as a function of time. The STIRAP process in this case

was, for clarity, performed with the Pump and Stokes transitions each having a 1 D

transition dipole moment, 10 ps intermediate state lifetime, and being pumped by

a 10 mJ, 7.5 ns Gaussian-envelope radiation field. The relative timing of these two

pulses is displayed in Fig. 5-6d.

In order to determine whether I have successfully performed STIRAP in my ex-

periments, I sweep the relative timing of the Pump and Stokes pulses in order to

observe the “STIRAP signature” of increased population in the final state, decreased

population in the intermediate state, and no residual coherence between the interme-

diate and final states. This signature is displayed in Figs. 5-7(a-b) using the same

parameters as above except for the intermediate state lifetime, which is not included.

The solid curves in Figure 5-7a display the population in the intermediate and final

states as a function of τ , the variable delay between the Pump and Stokes pulses.

Positive values of τ correspond to the Pump pulse arriving after the Stokes pulse,

negative values correspond to the Pump pulse arriving before the Stokes pulse, and

τ = 0 corresponds to the Pump and Stokes pulses being temporally overlapped. The

STIRAP signature is the large peak in the population of the final state at small,

positive values of τ . This signature can also be seen in Fig. 5-7b as the coherence
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Figure 5-6: Comparison of numerical results from solutions of Schrödinger’s equa-
tion and the Liouville-von Neumann equation for the same system. Note that the
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107.
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decreases to zero at the same small, positive values of τ . The rapid oscillations seen

in Figs. 5-7(a-b) at small, negative delay are two-photon Rabi oscillations related

to my discussion of coherent two-photon effects in Sect. 5.1.2, but since ∆P = 0,

they involve transferring population between all three bare states. Figures 5-7(c-f)

display the same variation in timing with 10 µJ and 500 nJ pulse energies instead,

to display the characteristic signatures of near-STIRAP behavior and non-STIRAP

behavior. Note that both the maximum in population transfer and the coherence

dip move toward τ = 0 and narrow in time significantly. While it may seem that

population can still be transferred efficiently in these cases, in the case of a short

intermediate state lifetime, essentially no population is transferred, as seen in Fig.

5-8, which displays the population in the final state as a function of τ , with the same

parameters as above, but a 10 ps intermediate state lifetime.

5.3 Characteristic results

In this Section I show the effects of the various experimental imperfections on the

process of population transfer via STIRAP. Unless otherwise noted, the Pump pulse

is a 2 mJ, 7.5 ns Gaussian-enveloped pulse, the Stokes pulse will be a 10 ns square-

wave enveloped pulse of 8 dBm mm-wave power (pulse energy ∼ 60 pJ), the Pump

transition has a 0.5 D transition dipole moment, and the Stokes transition has a 1000

D transition dipole moment. These pulse energies are easily achievable in lab, and

the transition dipole moments are reasonable representations of realistic systems.

In order to determine the best results I can expect, I initially simulate an ideal

experimental system, with two Gaussian-enveloped pulses with no decay or fluctua-

tions. The results for this system are shown in Fig. 5-9. Figure 5-9a displays the

populations of the intermediate and final states as a function of the delay of the

pump pulse τ . Figure 5-9b displays the coherence between the intermediate and final

states as a function of τ . There is a clear increase in the population of the final state

and decrease both in the population of the intermediate state and the coherence be-

tween the intermediate and final states at small, positive values of τ , as expected of
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Figure 5-7: Depiction of the STIRAP signature of population transfer from bare state
|2〉 to bare state |3〉 and decrease in coherence between the two. The curves display
the final populations of states |2〉 and |3〉 and the coherence between the two as a
function of delay between the Pump and Stokes pulses and of pump laser power.
Subfigures a,b display 10 mJ Pump and Stokes pulse energies, subfigures c,d display
10 µJ pulse energies, and subfigures e,f display 500 nJ pulse energies.
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Figure 5-8: Comparison of final state population in the presence of intermediate state
decay T2 = 10 ps at three different pulse intensities. The blue trace displays 10 mJ
Pump and Stokes pulse energies, the green trace displays 10 µJ pulse energies, and
the red trace displays 500 nJ pulse energies.
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Figure 5-9: Depiction of the STIRAP process for an experimentally ideal system.
Subfigure a displays the variation of the population transfer from bare state |2〉 to
bare state |2〉 as a function of τ and shows a clear peak at the STIRAP timing.
Subfigure b displays the coherence between bare states |2〉 and |3〉 and shows a clear
dip at the STIRAP timing. Subfigure c displays the evolution of the bare state
populations at the STIRAP timing, and subfigure d displays the Rabi frequencies
of the Pump and Stokes pulse at the STIRAP timing. Again, in this and all future
figures, the population of bare state |1〉 and the Pump Rabi frequency will be shown
in blue, the population of bare state |2〉 and the Stokes Rabi frequency will be shown
in green, the population of bare state |3〉 will be shown in red, and the coherence
between the two states will be shown in blue in subfigure b and shown in black in
subfigure c.

a STIRAP-type transfer. Figure 5-9c displays the evolution of the population of each

bare state and the coherence as a function of time in the STIRAP pulse sequence, and

Fig. 5-9d displays the time-dependent Rabi frequencies associated with that pulse

sequence. Note that the Rabi frequency of the Pump pulse is much larger than that

of the Stokes pulse, in anticipation of the inclusion of phase fluctuations below.

Experimental non-idealities are added on step-by-step in Figs. 5-10 - 5-12 and

display the same quantities as Fig. 5-9. Figure 5-10 displays the effect of Pump pulse

intensity fluctuations on STIRAP efficiency. As I would hope, due to the robustness
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Figure 5-10: Depiction of the STIRAP process for a system with Pump pulse intensity
fluctuations. The only significant change induced by intensity fluctuations are that
the two-photon Rabi oscillations at small, negative τ are blurred out and average out
to 50% population transfer.

of the STIRAP population transfer method, minor fluctuations in the intensity of

the Pump pulse have essentially no effect on the population transferred. The well-

resolved two-photon Rabi oscillations from Fig. 5-9 at small, negative values of τ are

blurred out, providing further evidence of the lack of robustness of the direct π-pulse

method.

Figure 5-11 displays the effects of both Pump pulse intensity fluctuations and

a square-wave enveloped Stokes pulse on STIRAP efficiency. The total population

transferred at the STIRAP pulse sequence is still quite large, although it now exhibits

minor dependences on exact pulse timing due to the non-adiabatic turnoff of the

Stokes pulse. Additionally, the dip in the coherence is less visible. However, the total

population transferred to the final state remains quite high, > 90%.

Finally, Fig. 5-12 displays the effect of Pump pulse intensity and phase fluctua-
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Figure 5-11: Depiction of the STIRAP process for a system with Pump pulse intensity
fluctuations and a square-wave enveloped Stokes pulse. The primary effect of adding
a square-wave enveloped Stokes pulse is that the STIRAP signature in both the
populations and coherence become narrower and less pronounced, as the population
transfer is no longer near unity and the coherence no longer dips to exactly zero.
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Figure 5-12: Depiction of the STIRAP process for a system with Pump pulse intensity
and phase fluctuations and a square-wave enveloped Stokes pulse. The primary change
to adding phase fluctuations to the Pump pulse is a further blurring of the STIRAP
signature as the population transfer is even weaker than before and the coherence dip
is much narrower and even less pronounced. Note, however, that the total population
transfer is still quite strong, and the coherence dip is still clearly visible.

tions and a square-wave enveloped Stokes pulse on STIRAP efficiency. The effect of

phase fluctuations is primarily to further reduce the overall population transfer effi-

ciency and further reduce the visibility of the dip in the coherence. Total population

transferred is not as high as before, & 80%, but still more than acceptable for future

spectroscopy of CNP states

The effects of an intermediate state decay time of 100 ps is displayed in Fig. 5-13.

The curves show the total transfer to the final state as a function of the delay of

the Pump pulse τ , for the conditions of Figs. 5-10-5-12 in the solid, dashed, and

dash-dotted curves, respectively. The effects of the intensity fluctuations cannot be

distinguished from what results from a stable Pump pulse intensity, thus the ideal case

is not shown. Even in the case of intensity and phase fluctuations and a square-wave

enveloped Stokes pulse, the total transfer as a function of delay reaches 50%. This
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relative insensitivity to intermediate state lifetime confirms that STIRAP is indeed

possible in a realistic experimental system. Experimental confirmation of this is dealt

with in Chapter 6.
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case with only Pump pulse intensity fluctuations, the green dashed curve displays the
case with intensity fluctuations and a Square-wave enveloped Stokes pulse, and the
black dash-dotted curve displays the case with all experimental non-idealities.
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Chapter 6

Coherent coupling of optical and

millimeter-wave photons

In this chapter I discuss the proof-of-principle experiments that demonstrate coherent

coupling between an optical and a millimeter-wave photon, both in the low Rabi fre-

quency regime (coherently enhanced population transfer) and the high Rabi frequency

regime (STImulated Raman Adiabatic Passage [STIRAP]). In Section 6.1 I describe

the atomic systems in which each experiment takes place, and the requirements of an

atomic system for proof-of-principle demonstrations of coherent population transfer.

In Sec. 6.2 I discuss the low Rabi frequency regime explored in barium. In Sec.

6.3 I discuss the high Rabi frequency regime explored in calcium as an example of

full STIRAP. Sec. 6.2 compares experimental results to theoretical calculations while

Sec. 6.3 is purely based on calculations. Finally, in Sec. 6.4, I briefly describe the

application of these coherent population transfer methods to molecules with typical

predissociation lifetimes. I also discuss experimental improvements that facilitate

molecular optical-mm-wave STIRAP.
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6.1 Atomic systems as proof-of-principle demosntra-

tions of coherent population transfer

Atomic systems are useful as proof-of-principle systems for coherent population trans-

fer methods because population in the intermediate state does not decay, and hence

can be measured to ensure high efficiency population transfer. In practical terms this

requires a particular level structure of the Rydberg states as compared to the band-

width of the mm-wave spectrometer used in the experiment. For an optical-mm-wave

STIRAP process transferring population from a low-lying ground state through a

Rydberg core-penetrating (CP) intermediate state to a Rydberg core-nonpenetrating

(CNP) final state, both the intermediate and final state must satisfy several require-

ments. First and most importantly, the Stokes transition between the intermediate

and final state must be within the bandwidth of the spectrometer. Additionally, for

diagnostic purposes, both the intermediate and final state must have transitions to

secondary probe states that also lie within the bandwidth of the spectrometer.

These requirements for the existence of Stokes and probe transitions within the

bandwidth of the spectrometer are generally satisfied, although it may require going

to relatively large n∗ (and therefore relatively large ∆n∗ transitions). However, the

Stokes transition also requires a large enough electric dipole transition moment to

ensure that the Rabi frequency for the Stokes transition is large enough to permit

performance of STIRAP. For 10 ns Pump and Stokes pulses with an overlap of ∼ 5

ns, this means that the Rabi frequency must be & 2 GHz (to satisfy the general

adiabaticity criterion from Chapter 5). The maximum power output of both the W-

band and high frequency mm-wave spectrometers is 30 mW, and so the electric dipole

transition moment for the Stokes transition must be & 150 D in order to satisfy this

criterion (for a mm-wave beam waist of ∼ 1 cm). In general, this means that only a

transition with ∆n∗ . 3 is suitable for use as a Stokes transition. This typically also

restricts the potential number of probe transitions.

The level structure of the relevant states in barium is displayed in Figure 6-1.

Beginning in the 6s2 1S0 ground state of barium, the Pump pulse is a 238.269 nm
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Figure 6-1: Level diagram for STIRAP experiments in barium. The Pump (purple,
solid), Stokes, (red, solid) and probe (blue, dashed and green, dashed-dotted) tran-
sitions are shown along with the effective principal quantum numbers of each state
and the electric dipole transition moments for the Pump and Stokes transitions.

laser pulse that transfers population to the 6s45p (n∗ ≈ 40.9) 1P1 state and the Stokes

pulse is a 276.893 GHz mm-wave pulse that transfers population from the 6s45p state

to the 6s41d (n∗ ≈ 38.3) 1D2 state. Population in the intermediate state is monitored

by a mm-wave transition at 283.847 GHz to the 6s47d (n∗ ≈ 44.3) 1D2 state, while

population in the final state is monitored by a mm-wave transition at 282.507 GHz

to the 6s41f (n∗ ≈ 40.9) 1F3 state. The electric dipole transition moment for the

Pump transition is approximately 0.04 D and the electric dipole transition moment

for the Stokes transition is approximately 350 D.
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This level scheme was chosen in order to take advantage of the relatively low

ionization potential of barium that allows for single-photon excitation to Rydberg

states, because only a single dye laser was available during these experiments. Both

the Pump and Stokes transition dipole moments are smaller than they would be in

an ideal experiment, because of the large change in n∗ in each transition. A larger

Pump transition dipole moment is available in a two-step excitation scheme to access

Rydberg states, exciting from a low-lying excited state as the initial state to the

intermediate state. A larger Stokes transition dipole moment is available when one

chooses a set of Rydberg states that have smaller changes in n∗ between them. The

scheme in barium shown above has the smallest possible ∆n∗ for the Stokes transition

while retaining probe transitions inside the bandwidth of the high frequency mm-wave

system.

The laser wavelengths for two-step excitation in barium are very inconvenient, and

so I looked to other alkaline-earth atoms for a simple two-step excitation scheme to

Rydberg states. I focused on alkaline-earth atoms for two reasons: 1) the electronic

structure of expected initial molecular targets, alkaline-earth monohalides (such as

CaF) strongly resembles the electronic structure of the alkaline-earth constituent,

and 2) they are easily produced in large densities in the buffer gas cooled atomic

beam, unlike, e.g. alkali metals. The laser wavelengths for two-step excitation in

strontium are equally inconvenient, but the required wavelengths in calcium are well

suited to the available lasers. Additionally, with a two-step excitation scheme I can

take advantage of either the ns or nd series when searching for a set of STIRAP

intermediate, final, and probe states with small changes in n∗ between them.

The level structure of the relevant states in calcium is displayed in Figure 6-2.

The initial state of the STIRAP process is the 4s5p1P1 excited state, populated by a

272.245 nm laser pulse. The Pump pulse is a 803.719 nm laser pulse that transfers

population to the 4s30d (n∗ ≈ 28.8) 1D2 intermediate state, and the Stokes pulse is a

263.876 GHz mm-wave pulse that transfers population to the 4s28f (n∗ ≈ 27.9) 1F3

final state. Population in the intermediate state is monitored by a mm-wave transi-

tion at 282.406 GHz to the 4s30f (n∗ ≈ 29.9) 1F3 state, while population in the final
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state is monitored by a mm-wave transition at 298.011 GHz to the 4s27g (n∗ ≈ 27)
1G4 state. The electric dipole transition moment for the Pump transition is approx-

imately 0.4 D and the electric dipole transition moment for the Stokes transition is

approximately 1000 D.

Atomic systems in electronically autoionizing states can replicate the short life-

times of molecular states. These are Rydberg states built on an electronically excited

ion-core, as displayed schematically in Figure 6-3. Energy exchange between the ion-

core and Rydberg electron leads to dexcitation of the ion-core and ejection of the

Rydberg electron. As in molecules, CNP states in atoms have much longer lifetimes

than CP states due to the centrifugal radial barrier that prevents overlap between the

Rydberg electron and the ion-core. Unfortunately, the lifetime of electronically au-

toionizing states is ultimately limited by the radiative lifetime of the excited ion-core

state, which is often on the order of ∼ 10 ns for low-lying excited states in alkaline-

earth ions. Highly excited ion-core states are necessary if one wishes to detect FID

from electronically autoionizing atomic CNP Rydberg states.

6.2 Experimental evidence of two-photon coherent

coupling in barium

To determine the dependence of population transfer efficiency in barium on the rel-

ative delay of the Pump and Stokes pulses, I monitored the relative population of

the intermediate and final states as a function of the delay between the Pump and

Stokes pulse, τ . The leading edge of the Pump pulse is stepped in 500 ps increments

through that of the Stokes pulse in order to observe this dependence of transfer effi-

ciency on the Stokes/Pump time delay. The Stokes mm-wave pulse is centered 100

ns in advance of the two probe pulses. This delay between Stokes and probe pulses

allows sufficient time for damping of reflections inside the vacuum chamber. The

overall timing scheme is displayed in Figure 6-4. In order to obtain as large Rabi

frequencies as possible in both the Stokes and Pump pulses, I used the full output of
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Figure 6-2: Level diagram for STIRAP experiments in calcium. The Pump (yellow,
solid), Stokes, (red, solid) and probe (blue, dashed and green, dashed-dotted) tran-
sitions are shown along with the effective principal quantum numbers of each state
and the electric dipole transition moments for the Pump and Stokes transitions. The
initial population step into the 4s5p1P1 state is shown as the solid, purple arrow.
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Figure 6-3: A schematic representation of electronic autoionization in the Rydberg
states of calcium. The left-hand level diagram illustrates a Rydberg series converging
on the 4s ground state of the Ca+ ion, while the right-hand level diagram illustrates
a Rydberg series converging on the 4p excited state of the Ca+ ion. Rydberg states
excited to the right-hand manifold at energies above the ground state ionization
potential can couple to the ionization continuum, as indicated by the red double-
headed arrow.
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Figure 6-4: The timing sequence for the laser, mm-waves, and FID in experiments on
barium. The first, purple pulse is the Pump pulse stepped through a variable delay
τ with respect to the second, red, Stokes pulse. The two probe pulses occur 100 ns
after the Stokes pulse.

both the Scanmate dye laser (∼ 400 µJ/pulse at the chamber) and the high frequency

mm-wave spectrometer (∼ 13 dBm CW power in the interaction region).

Due to the large electric dipole transition moments for transitions between Ry-

dberg states, the probe transitions can be very easily power broadened. The probe

pulse used to monitor population in the 6s41d1D2 state is attenuated by reducing the

input power from the AWG to the AMC. Due to the highly nonlinear response of the

AMC, changes in the input power of less than 1% can result in significant changes in

the output power, as discussed in Chapter 2. I used the duration of the probe pulse

as an additional variable to adjust the degree of polarization of this probe transition.

The probe transition used to monitor the 6s45p1P1 state was sufficiently weak that

no attenuation was used. The two probe pulses consisted of one strongly attenu-

ated 50 ns single-frequency pulse centered at 282.507 GHz followed immediately by

an unattenuated 250 ns single-frequency pulse centered at 283.847 GHz. The first

pulse induced a polarization modulo-2π of π/2 while the second pulse induced one of

π/4. The ratio of these polarizations is used to normalize the two probe transition

intensities and to determine an accurate pair of relative populations.

The solid curve in Figure 6-5a shows the ratio of transition intensity of the

41f − 41d transition (probe of final level) to the transition intensity of the 47d− 45p
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transition (probe of intermediate level) as a function of the variable delay, τ , of the

laser Pump pulse. The observation of a maximum at a delay τ = 0, the time at which

the center of the Pump pulse is coincident with the center of the Stokes pulse, demon-

strates enhanced transfer when both radiation fields are present at the same time.

For negative values of τ , the center of the Pump pulse occurs before the center of the

Stokes pulse, while positive values of τ correspond to the center of the Pump pulse

occurring after the center of the Stokes pulse. For negative values of τ , the ratio of

transition intensity is determined primarily by the efficiency of the Pump and Stokes

pulses in transferring population via separate one-photon processes, while for large

positive values of τ , no population is expected to be transferred to the final state.

All coherent transfer processes are expected to occur when τ is small and positive, or

when τ is approximately zero.

Figures 6-5b-d show the intensity of the 41f − 41d, final state probe transition,

and Figs. 6-5e-g show the intensity of the 47d− 45p, intermediate state probe tran-

sition, at the delays indicated by the vertical dashed, solid, and dash-dotted lines,

respectively. At a delay consistent with the intuitive pulse sequence, both the inter-

mediate and final states retain population, thus probe transitions from both states

are observed. As the pulses begin to overlap, the intensity in the probe transition

that originates from the final state increases significantly, while that of the probe

transition out of the intermediate state disappears entirely. Finally, when the Pump

pulse is delayed to occur entirely after the Stokes pulse, the probe transition out of

the final state disappears, while the probe transition out of the intermediate state

increases significantly in intensity.

The dashed curve in Figure 6-5a shows the results of my theoretical calculations of

coherent effects including phase and intensity noise effects, as outlined in Chapter 5.

The dash-dotted curve in Fig. 6-5a shows the results of a calculation of an incoherent

transition sequence using Einstein rate coefficients. Qualitatively, the dependence on

τ of the experimental data is well reproduced in the coherent calculations, in contrast

to the qualitative disagreement between experimental observation and the incoherent

calculations.
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Figure 6-5: Plot (a) displays the experimental ratio of the population in the final state
to the population in the intermediate state as a function of Pump pulse delay, τ , as
a blue solid curve, the coherent theoretical results as a black dashed curve, and the
incoherent theoretical results as a red dash-dotted curve. Plots (b) - (d) display the
intensity of the 41f − 41d transition (probe of the final level) at Pump pulse delays
given by the red dashed line, the green solid line, and the black dash-dotted line in
plot (a), respectively. Plots (e) - (g) display the intensity of the 47d− 45p (probe of
the intermediate level) transition at the same pulse delays.
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Figure 6-6: Theoretical population of the final state as a function of Pump pulse
delay, τ , without (a) and with (b) intermediate state decay for barium. Note the
100% difference in scales between (a) and (b).

This agreement of the coherent theoretical calculations for the ratio of final to

intermediate populations supports the validity of my calculation of the population

transferred into the final state when the pulses are overlapped and I expect to find

good agreement with my experimental results. The model system shows a population

transfer to the final state of 50% during exact overlap, compared to a transfer of 20%

for both the intuitive and counter-intuitive pulse sequences. The calculated variation

of the final state population with delay time of the Pump pulse is shown as the solid

curve in Figure 6-6a.

The primary factor that limits the efficiency of the two-color two-photon process

is the phase fluctuations associated with the Pump pulse generated by the pulsed dye

laser. Previous theoretical and experimental studies of the use of pulsed dye lasers in

coherent population transfer techniques have shown that the Rabi frequency required

to drive these processes scales as N2
Fourier [170], wher NFourier is the ratio between

the bandwidth of the dye laser to the Fourier-transform limited bandwidth. In this

system, NFourier ≈ 4 for each longitudinal mode [36], leading to a ∼ 16× effective

reduction in the Rabi frequency for the Pump pulse. The absence of an improvement
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Figure 6-7: Coherence between the intermediate and final states as a function of
Pump pulse delay, τ , for barium. The blue solid line is the experimental value of the
coherence, and the red dashed line is the calculated value of the coherence.

in population transfer for the counter-intuitive pulse sequence as compared to what we

observe for completely overlapped pulses, as well as a maximum population transfer

efficiency of only 50% imply that STIRAP is not occurring in the barium system.

With the limited power available from the dye laser in the UV, I cannot reach the

regime of STIRAP because the effective Rabi frequency for the first transition is too

low. This conclusion is experimentally supported by the observation of the remaining

coherence between the intermediate and final states, in the form of FID radiation.

The solid curve in Figure 6-7 shows the FID associated with the 41d− 45p transition

as a function of the delay of the laser Pump pulse, while the dashed curve shows

the calculated coherence (as in Chapter 5) between the two states. The decrease in

coherence near small, positive delays characteristic of the STIRAP process is absent

in both of these curves.

The increase in amount of population transferred to the final state when the Pump

and Stokes pulses are overlapped can be understood with the same mathematics as

those described in Section 5.1.2. In this case, however, the detuning of the Pump

pulse, ∆12, is zero, and so population is transferred through the intermediate state on
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the way to the final state. With the appropriate Rabi frequencies, this method can

provide 100% population transfer to the final state in the atomic case, but is not a

useful method for molecular Rydberg states for two reasons. First any fluctuations in

either laser or mm-wave power will lead to deviations from 100% population transfer.

Second, since population travels through the intermediate state en route to the final

state, any decay from the intermediate state becomes important. In typical molecular

Rydberg states with predissociation lifetimes on order of T1 = 100 ps, essentially no

population survives to be transferred to the final state. This is shown as the dashed

curve in Figure 6-6b. Note the 100% difference in scale between Figs. 6-6a and 6-6b.

6.3 Optical-mm-wave STIRAP in calcium

In order to determine whether optical-mm-wave STIRAP is feasible using a pulsed

dye laser similar to the one available for my experiments, I calculated the results

of using the calcium level scheme presented in Section 6.1. This scheme provides

a much larger effective Rabi frequency due to the larger Pump laser electric dipole

transition moment. The effective Rabi frequency was the main limiting factor in the

experiments performed on barium.

When calculating the population transferred to the final state in the calcium

system, I observe a maximum associated with STIRAP that occurs at an optimum

Stokes/Pump delay of the counter-intuitive pulse sequence, as shown in Figure 6-8a.

Additionally, I observe a characteristic decrease to zero in the coherence at the same

pulse timing, as displayed by the dashed curve in Fig. 6-9. The solid curve in Fig. 6-9

shows the system discussed in Section 5.2.2 (and is the same curve as in Fig. 5-7d).

These clear decreases in coherence between the intermediate and final states at ∼ 5

ns delay in both curves are associated with the STIRAP mechanism of transferring

population directly from the initial to the final state without placing any population

in the intermediate state. The final test to ensure that STIRAP is occurring is to

introduce a rapid decay to the intermediate state, as in a molecular case. After set-

ting T1 = 100 ps again in order to replicate typical predissociation lifetimes in the
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Figure 6-8: Computed population of the final state as a function of Pump pulse delay,
τ , without (a) and with (b) intermediate state decay for calcium. Note the maximum
at small, positive values of ÏĎ in each plot.

intermediate state, I recalculate the population transferred to the final state with the

calcium experimental parameters. The population of the final state as a function of

Pump laser delay is shown in Fig. 6-8b, and shows a maximum of ∼ 60% population

transfer at the counter-intuitive pulse timing. These three calculations demonstrate

that the primary obstacle remaining to achieve optical-mm-wave STIRAP is to in-

crease the Rabi frequency for the Pump transition, either by increasing the laser

power, changing the excitation scheme to exploit a larger transition dipole moment

(as done here), or improving the coherence properties of the laser.

The failure to achieve near 100% transfer of population from the initial to the final

state in the calcium system is due to other experimental imperfections in our system,

such as non-adiabatic losses inherent in the sharp turn-off of the mm-wave pulse.

The transfer efficiency may be modeled as a function of the mm-wave pulse shape

(Square wave, Gaussian, triangle pulse) and the results are shown in Figure 6-10. As

expected, a Gaussian pulse provides the most efficient transfer, but a triangle pulse

provides nearly the same efficiency and is technically easier to implement. Shaping

the high frequency mm-wave pulses on a time scale shorter than ∼ 30 ns remains

196



−20 −15 −10 −5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Delay of Pump pulse (ns)

C
oh

er
en

ce
 o

f S
to

ke
s 

tr
an

si
tio

n

Figure 6-9: Coherence between the intermediate and final states as a function of Pump
pulse delay, τ . The red solid line is the calculated value for the calcium system, and
the black dashed line is the coherence expected for the system described in Chapter
5, Figure 5-6 (without an intermediate state decay). The absence of oscillations at
negative values of τ in the calcium system is due to the inclusion of phase and intensity
fluctuations in the Pump pulse, while the shift in the maximum at positive values of
τ are due to the square wave envelope of the Stokes pulse in the calcium system.
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technically difficult, and all of the experiments reported in my thesis use a square

wave Stokes pulse.

As the frequencies of the laser and mm-wave photons are different by a factor of

∼ 104, the Doppler shifts of the two transitions are quite different and result in a two-

photon detuning that cannot be compensated by choice of experimental geometry. For

a Λ-type transition, co-propagating beams of similar frequency cancel the majority

of the Doppler shift, while for a ladder-type transition, counter-propagating beams of

similar frequency have the same effect. In my case, the Doppler width associated with

the optical photon (∼ 800 MHz) is much larger than the Doppler width associated

with the mm-wave photon (∼ 250 kHz). These small Doppler widths are due to the

use of a buffer gas cooled beam source in our experiments. Typical Doppler widths

in a supersonic expansion are ∼ 5× larger. I calculate the efficiency of STIRAP

transfer in calcium (with a short lifetime intermediate state) for both a slow buffer

gas expansion and a fast supersonic expansion as a function of radial distance from

the center of the beam. The results of this calculation are shown in Figure 6-11. For

systems with a large frequency mismatch between Pump and Stokes pulses, it is clear

that a slow beam expansion, such as is obtained from buffer gas cooling, is essential

to achieve efficient population transfer across the entire molecular beam.

At the time of the writing of this thesis, experimental investigations of STIRAP

in calcium atoms are currently underway.

6.4 Applications of STIRAP to molecular systems

One of the primary obstacles to STIRAP in molecular systems is the reason for

performing STIRAP in the first place: the short lifetime of the intermediate state.

The lifetimes of predissociating states can range over several orders of magnitude,

depending on the details of the molecular potential energy surfaces and the coupling

of the Rydberg states with dissociative electronic states. In the sections above I

used 100 ps as a representative predissociation lifetime, but the lifetime can be much

shorter than 100 ps in certain cases. Autoionization typically is a much faster process
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Figure 6-10: Computed populations of the final state as a function of the Stokes
pulse envelope. The blue solid curve represents a square pulse envelope, the red
dashed curve represents a Gaussian pulse envelope, and the green dash-dotted curve
represents a triangular pulse envelope. All calculations were performed for the calcium
system.
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Figure 6-11: Computed population transfer efficiency as a function of transverse
distance from the center of the atomic beam. The blue solid curve represents a slow
buffer gas cooled expansion and the green dashed curve represents a fast supersonic
expansion. The arbitrary units in both cases cover the entire transverse extent of the
atomic beam. All calculations were performed on the calcium system.
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Figure 6-12: The population transfer efficiency of a generic STIRAP scheme with
10 ns pulse duration Pump and Stokes pulses for a variety of intermediate state
lifeteimes. Note that even at relatively long lifetimes the efficiency does not increase
to greater than 0.9 due to the square wave envelope of the Stokes pulse.

than predissociation. An intuitive reason for this is that instead of breaking a chemical

bond and moving heavy nuclei apart, autoionization ejects a light electron from the

molecule. In order to populate CNP states that autoionize into a single quantum

state of the molecular cation, autoionizing states must be traversed via STIRAP, a

more challenging requirement than for predissociating states. STIRAP efficiency for

typical values of transition dipole moments (0.5 D for the Pump pulse, 3000 D for

the Stokes pulse) and pulse energies (2 mJ for the Gaussian Pump pulse, 13 dBm for

the square Stokes pulse) is displayed as a function of intermediate state lifetime in

Figure 6-12. This calculation assumes a Fourier-transform limited Pump pulse.

A second difficulty with molecular targets is that the proper intermediate state for

accessing CNP states is often not known to the same accuracy as for atomic targets.

Only the Rydberg states of H2, NO, and CaF have levels of characterization that

approach that of atomic Rydberg states [77]. As such, some spectroscopic preparatory

work may need to be performed to determine the appropriate CP intermediate state

for STIRAP in order to have strong electric dipole transition moments to CNP states.

CNP states, however, uniformly have near-integer principal quantum numbers and
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are easily identified in the spectrum.

An additional challenge, in both molecular and atomic systems, is unintentional

multi-photon ionization. The fundamental problem is that when driving transitions

that have small electric dipole transition moments, the natural way to improve STI-

RAP efficiency is to use more power in order to increase the Rabi frequency. For

mm-wave Stokes transitions, this is not a problem, because many mm-wave photons

are required to ionize Rydberg states at the values of n∗ that I work at (generally

>10). However, for the optical Pump transition, a single additional photon can easily

ionize a Rydberg state. In certain molecules, the optical cross section for ionization

can be even larger than the optical cross section for excitation to the intermediate

state (as observed in BaF experiments), in which case increasing Pump laser power

is counter-productive to creating CNP Rydberg states.

A conceptually straightforward way of solving both this complication and the

complication of Stokes pulse non-adiabaticity is to use longer Pump and Stokes pulses.

This decreases the required Rabi frequency of each pulse to satisfy the adiabaticity

criterion from Chapter 5, and allows for simple mm-wave shaping of a smooth turn-

off of the Stokes pulse. Pulsed lasers, unfortunately, typically have maximum pulse

durations of ∼ 10− 20 ns. One potential method of producing a long duration pulse

is to introduce a build-up cavity around the sample, allowing the natural filling and

ringing-down of the cavity to form the pulse. This would also benefit from the use of

phase-coherent CW lasers as the Pump source, further increasing STIRAP efficiency.

STIRAP efficiency as a function of intermediate state lifetime with 100 ns Pump and

Stokes pulses, using the same transition dipole moments as above and a Gaussian

envelope of the Stokes pulse, is shown in Figure 6-13.

Despite the many obstacles to performing optical-mm-wave STIRAP to popu-

late CNP states of molecules, the path forward is promising. Experiments currently

underway on atomic systems can be easily extended to molecular systems to demon-

strate population transfer with a decaying intermediate state. The technology and

techniques required to effectively drive STIRAP currently exist, and simply need to

be applied to the systems in question.
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Figure 6-13: The population transfer efficiency of a generic STIRAP scheme with
100 ns pulse duration Pump and Stokes pulses for a variety of intermediate state
lifeteimes. Note that the increase is much more rapid, and the efficiency is nearly
unity even for a 200 ps intermediate state lifetime.
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Chapter 7

Conclusion and future directions

The experiments described in my thesis demonstrate the potential of mm-wave spec-

troscopy of Rydberg states to both investigate the dynamics of strongly coopera-

tive systems and to develop efficient schemes to control coherent population transfer

between Rydberg states. The single-shot observation of free-space mm-wave super-

radiance provides a window into quantum many-body effects at much higher optical

depths than other gas phase superradiance experiments. The free-space nature of this

experiment allows for investigation of cooperative frequency shifts and broadenings. I

have observed frequency shifts and broadenings 105× larger than the natural lifetime

of the transition and 20× larger than the Doppler broadening of the experiment.

Additionally, after the superradiant emission, I have observed long-lived, coherent

emission, the source of which remains to be conclusively determined.

I have also demonstrated the potential to populate high orbital angular momen-

tum CNP states via coherent population transfer techniques. First, using barium and

relatively low Rabi frequencies, I performed coherently enhanced population transfer

directly from the ground state to an nd Rydberg state. Second, using calcium and rel-

atively high Rabi frequencies, I have shown that STIRAP is possible with a standard

pulsed dye laser in combination with a CPmmW spectrometer, and characterized the

parameters necessary for applications to molecular systems.
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7.1 Investigations of cooperative radiation effects

While there are many potential experiments that lend themselves well to investiga-

tions with highly cooperative ensembles of Rydberg states, two directions stand out

for initial work. First, investigations of superradiance with simultaneous monitoring

of the absolute density of Rydberg states is essential to provide an independent de-

termination of the optical depth of each shot as well as the relative density of each

shot. This information will enable a more complete comparison with theoretical mod-

els, especially for determination of the scaling of the induced cooperative frequency

shift. Second, investigations of superradiance in the absence of an untriggered com-

peting superradiant transition must be performed in order to disentangle effects of

the triggered and untriggered processes.

Ideally these two sets of new experiments could be performed at the same time.

Calcium provides a useful test system for both of these experiments. First, an excita-

tion to an ns Rydberg state eliminates competing untriggered superradiance. Second,

there are convenient transitions (either 4s5p→ 3d4s at ∼ 670 nm or 4s5p→ 4sns/nd

Rydberg states at ∼ 805 nm) that would enable monitoring of population excited

from the 4s5p intermediate state to the ns Rydberg state via changes in absorp-

tion/stimulated emission.

Once these experiments have been performed, there are a variety of more ex-

ploratory experiments that can be performed. Investigation of the properties of the

emitted radiation, such as the polarization of the light and presence of any diffraction

patterns (associated with the spatial mode of the radiation), in both triggered and

untriggered experiments, provides important confirmations of fundamental theories

of cooperative radiation. Precise determination of the frequency domain lineshape

as a function of preparation geometry, as illustrated by Figure 7-1, will provide a

revealing demonstration of the importance of relative phase in superradiance experi-

ments. The experiments described in my thesis are all initiated in the “Timed Atomic

State” from Figure 7-1, but by exciting the atoms to Rydberg states from a direc-

tion perpendicular to our mm-wave propagation axis, we can approach a “Symmetric
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Figure 7-1: Parts (A) and (B) demonstrate two different initial phase conditions of a
superradiant sample, the “Timed Atomic State” and the “Symmetric Atomic State.”
Parts (C) and (D) show the predicted evolution of these states in the presence (solid
lines) or absence (dashed lines) of virtual photons, where P (t) is the probability that
atoms are excited as a function of time t. Reprinted from Ref [3]
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Atomic State.” Finally, determination of the source of the long-lived radiation, and

whether it is attributable to subradiance, is essential for a quantitative and useful

understanding of the evolution of the highly cooperative sample.

7.2 Future applications of core-nonpenetrating Ry-

dberg states of molecules

The demonstration of optical-mm-wave coherently enhanced population transfer and

STIRAP in atoms opens the door to routinely being able to populate CNP Rydberg

states in molecules. CNP states are themselves interesting as the Rydberg electron

can act as an embedded reporter of the multipolar moments and polarizabilities of

the ion-core. Exciting CNP states based on different vibration-rotation states of the

ion-core allows for determination of the dependence of these electronic properties on

the internal structure of the ion-core. Determining and understanding this electronic

structure is the first step toward understanding the global structure of Rydberg states

and connecting a purely electrostatics-based long-range model to a full Multichannel

Quantum Defect Theory (MQDT) model. Further, stroboscopic resonances between

the electronic and rotational/vibrational motion of the ion-core permit detailed study

of the mechanisms of transfer of energy between the Rydberg electron and the ion-

core.

CNP states can be used as a tool in a variety of other experiments. The excep-

tionally large polarizability of Rydberg states makes them exceptionally sensitive to

electric fields, and so molecular beams of CNP states can be slowed to a stop in the

lab frame with a single stage of Stark deceleration, leading to very slow moving (in the

laboratory frame) molecular ensembles. Further, as a CNP state is a Rydberg elec-

tron bound to a single vibration-rotation-MJ state of the ion-core, autoionization of

CNP states results in molecular ions prepared in that same single vibration-rotation-

MJ state. These state-selected ions can then be used in either quantum computing

schemes, or used for investigations of ultracold chemical reactions.
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