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OPTICAL-OPTICAL DOUBLE RESONANCE STUDY OF THE 3 A' STATE OF
HCP

by

BHAVANI RAJARAM

Submitted to the Department of Chemistry
on January 4, 1995 in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Chemistry

ABSTRACT

Optical-Optical Double Resonance spectra of the vibrational levels of the 3 'A'

state of HCP has been recorded by pumping the Q(6) rotational transition of the

(0,1,0)-(0,0°,0) band ofthe A 'A"<--X 1 + electronic transition of the molecule. The

corresponding spectrum of DCP (only the lowest vibrational levels) has also been

recorded for the first time. Vibrational assignments that have been made imply that the

molecule is quasilinear in this electronic state as suggested by ab initio calculations,

according to which the 3 A' state is the lower component of a Renner-Teller pair that

correlates in the linear configuration with the 1 Fl state of the molecule. In particular,

there is a rapid increase in the A rotational constant with v2 . In addition, it appears that

the bending internal coordinate plays a significant part in both modes 2 and 3, as seen by

the increase in A also along the (0,0,v 3) and (0,1 ,v3) progressions. The assigned vibrational

levels have been fit to a very simple model based on the harmonic oscillator zero-order

picture. However, the interpretation of the physical meaning of the resulting parameters is

difficult because the vibrational potential is not well described by a Harmonic oscillator,

due to the large-amplitude nature of the bending internal coordinate. Work is currently

underway to apply a well established alternative model that combines Renner's matrix

treatment of orbital angular momentum in linear molecules with the "bender" models

capable of treating the large amplitude bending vibration. This model is known to be

successful in the treatment of quasilinear molecules, by virtue of the fact that it applies

equally well to linear and bent molecules.

Thesis co-supervisors: Dr. Robert W. Field Dr. Robert J. Silbey

Titles: Professors of Chemistry
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Chapter 1

Introduction

This chapter serves to provide some background for the work presented in this

thesis, which involves the study of the 3 'A' state of HCP using Optical-Optical Double

Resonance experiments that employ single rovibronic levels of the A 'A" state of the
molecule as intermediates.

Molecules that have more than one accessible minimum in their potential energy

surface in a given electronic state can vibrate with large amplitude from one conformation

to another in a time scale short enough to be experimentally detectable. In the case of

symmetric double minimum potentials, this is detected as tunneling doublets, and the

magnitude of these splittings provide information about the barrier in the potential along a

single large amplitude coordinate. In the case of the problem of the large amplitude

bending of a triatomic molecule from the bent geometry to the linear geometry, because

the potential has axial symmetry, the molecule in the bent configuration can rotate around

its barrier to the linear configuration (there is only one minimum, that surrounds the

barrier to linearity). In such cases, the vibration of the molecule from the bent to the linear

configuration is detected as the evolution of the rotation-vibration energy level pattern

from that of an asymmetric top well below the barrier maximum, to that of the linear

molecule above the barrier.. The work presented in this thesis involves a study of this latter

problem in the 3 'A' state of HCP.

When the molecule in the linear configuration has zero electronic orbital angular

momentum (A = 0) about the molecular axis, this class of barrier problem is known as

"quasilinear" [3]; whereas, if A X C, the spectrum must be fitted to a Renner-Teller model

[7]. When the barrier-containing vibrational mode, (the nominal bending vibration, v2, in

this case) can be observed systematically from v = 0, through pure overtone levels above

the barrier maximum, an accurate characterization of the one-dimensional barrier shape

can be obtained from the spectrum, provided that anharmonic interactions between the

large amplitude bending vibration, and other transverse modes can be ignored.

7
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Figure 1. Energy as a function of bond angle for nonlinear HCP. Higher states.

(Rcp= 3.1653 a , RCH= 2.0239 ao ). (From Reference [1])
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The band origin of the 3 'A' state lies at -50642 cm-' above the zero-point level of

the ground electronic state, and the molecule has a bent equilibrium geometry in this

electronic state. According to ab initio calculations [1], the 3 'A' state of HCP is the lower

component of a Renner-Teller pair that correlates in the linear limit, with the n - n 1 '1

state of the molecule. In addition, these calculations also predict an avoided crossing

between the 3 'A' state and the 4 'A' state, the latter of which correlates in the linear limit

with the iC*2 < 7r2 2 '2; [2] state of the molecule (Figure 1).

In the adiabatic picture the top of the barrier to linearity in the 3 'A' state lies

-5900 cm-' above the potential minimum. This energy can be easily overcome by the

excitation of the bending vibration and so the molecule is expected to show quasilinear

behaviour in this electronic state.

The next few paragraphs will deal with what is known about the way in which the

quasilinear/Renner-Teller behaviour manifests itself in the spectrum of such a molecule.

1.1 Spectral Manifestation of quasilinear behaviour

The work that has been done by different authors on various quasilinear molecules [3-8]

has demonstrated that there lies a lot of crucial information in the Ka-structure in the

bending vibrational levels of such molecules'. This is best understood by considering two

specific cases: quasilinear behaviour in a) a ' electronic state, and b) the lower

component of a Renner-Teller split 'r state.

Ka is, in general, the quantum number for the rovibronic angular momentum and is
the resultant of 1, the quantum number for the vibrational angular momentum associated
with the doubly-degenerate bending vibration of the molecule in the linear configuration,

and A, which is the electronic orbital angular momentum quantum number.

Ka = A + I 

where both A and I are signed quantities.

9
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right; the energy curves are only qualitatively correct. From Reference [9]
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A. ';Y electronic state ( A = O, K= I )

Figure 2 shows schematically, the change in the vibronic level pattern below and

above the barrier to linearity (arbitrarily placed near vb = 2) of a quasilinear molecule in a
1Z electronic state. vb (v ) refers to the number of quanta of excitation in the

non-degenerate (doubly-degenerate) bending vibration of the molecule in the bent (linear)

configuration. vb and vt are related in a 'l electronic state through the relation:

v = 2 vb + .

This is easily seen in Figure 3, which shows the correlation of the energy levels of linear

and bent molecules in a non-degenerate electronic state. Far below the barrier to linearity,

the energy varies as a function of Ka , (for a particular value of vb ) roughly as A Ka2,

where A is the rotational constant (o 1/ Ia, where I refers to the moment of inertia and 'a'

is the axis of least moment of inertia). With increasing quanta in the bending vibration,

there is a rapid increase in A (often referred to as A, in the later chapters to emphasize

that it refers specifically to the difference in energy between the Ka = 0 and Ka = 1

sublevels with the same value of b) , until above the barrier it becomes equal to the

bending frequency of the molecule in the linear configuration. This, again, is easily seen in

Figure 3, and follows from the fact that even (odd) values of l, which is equal to Ka in a

1 electronic state, occur only for even (odd) values of vt above the barrier. In this region,

the Ka (= ) sublevels that become nearly degenerate (Figure 2) are those that have the

same value of v: ( the energy as a function of the vibrational angular momentum quantum

number, E( l ) g /2, where g is an anharmonicity constant for the linear molecule, and it

is usually small compared to A for the molecule in the nonlinear configuration).

Quasilinear behaviour in a ' state was first studied by Dixon [3]. The model

potential function used in this study, was a two-dimensional isotropic harmonic oscillator

perturbed by a Gaussian hump:

V(q) = q2 + a exp(-q 2)

12
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Figure 4. The potential function, V(q) = 0.5 q2 + a exp (43 q2 ), for a = 10 and f

between 0 and 0.3, varying in steps of 0.05. From Reference [3].
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B

Figure 6. The effective potential, Vff = V(q) + B 2 /q2 , plotted as a function of q,
the dimensionless bending coordinate, for = 0 (dashed curve) and for t other than
zero ( solid curve) ; a = 20, = 0.2 and B = 100 were used. This figure is only
qualitatively correct.
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where, a and are constants, and q is the dimensionless coordinate of the bending

vibration. The shape of the above potential function is shown in Figure 4 for x = 10, and f3

varying from 0 to 0.3.

The energy levels of such a system are calculated by first evaluating the matrix of

the second term in the expression for V(q), in a suitable finite harmonic oscillator basis set,

adding this matrix to the already diagonal matrix of the two-dimensional harmonic

oscillator, diagonalizing the resulting matrix, and finally multiplying the eigenvalues

obtained from the diagonalization, by the bending vibrational frequency of the molecule in

the linear configuration (e), in order to obtain the energies in cm-' units.

The matrix elements of q2 in the two-dimensional harmonic oscillator basis are

given by:

<v,,I I q2 v,,> = v+l

< v-2, t q2 V, > = < v, I q2 v -2, t > = -1/2 [( v-t )( v + )] 1 /2

Thus it is seen that the matrix is diagonal in t, and so a separate matrix is set up for each

value oft (= Ka, in a 1' electronic state).

The I = Ka = 0 sublevels of the bending vibrational levels, thus calculated for the

various potential curves in Figure 4 showed that the successive vibrational intervals along

the bending progression go through a minimum near the top of the barrier to linearity, for

the cases where the potential has a finite hump ( 5 = 0.1 to 0.3, for ax = 10). This is shown

in Figure 5a. For a fixed shape of the potential ( 3 = 0.1, a = 20), the behaviour of the

vibrational intervals is shown in Figure 5b, for different values of Ka. From this figure, it is

seen that the dip in the vibrational intervals is most pronounced for the I = Ka = 0 sublevels

and it becomes less so for higher values of 1. This can be understood with reference to

Figure 6, where the effective potential, Veff, is plotted as a function of q, for different

values of 1. Veff can be expressed as:

Veff = V(q) + B 2/ q2

16
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Figure 7. Vibronic species of the vibrational levels in E+, and FI electronic states of
linear molecules. The subscripts g or u added in brackets give the species
designation for Eg, and Fig electronic states of symmetrical linear molecules. From
Reference [9].

17



where B is a constant. The second term in the above expression, represents the effect of

the centrifugal force arising from the angular momentum of the nuclei around the a-

inertial axis. When I = 0, the nuclei have zero angular momentum, and Veff= V(q). On the

other hand, when I is non-zero, the centrifugal term gives a positive contribution to the

effective potential energy, and when q is very small (that is, the nuclei are close to the

linear configuration), the centrifugal term dominates over V(q). Thus, the potential curves

for = 0 and I 0 are qualitatively very different close to the linear geometry (q = 0), but

similar at large q. In other words, only for = 0 can the molecule actually bend through

the linear geometry.

B. Lower component of a Renner-Teller split 1 I state ( A = 1, Ka = I + 1I )

When an electronic state of the linear molecule has a finite electronic orbital

angular momentum (that is, A 0 ), then coupling between A and I is possible. This

coupling, is generally called the Renner-Teller effect. In such cases only Ka, the resultant

of A and 1, is a good quantum number.

Figure 7 shows the vibronic species of the vibrational levels in a H electronic state

of a linear molecule ( Ka= 0,1,2... have species X,H1,A,..., respectively). It might be seen

from this figure that there are several vibronic species (Ka values) for each bending

vibrational level, v. Further, for each vc, all the Ka values except one, occur in pairs, the

unique value of Ka satisfying the relation, Ka(unique) = v +1. For the Ka sublevels that

occur in pairs, one has = Ka+A, and the other has t = Ka-A. It is the splitting between

such pairs of levels, with the same value of Ka and vt, that dominates the Renner-Teller

splitting pattern.

A simple group theoretical interpretation of the Renner-Teller effect is as follows.

In the linear configuration, the molecule has axial symmetry ( Cv point group, when

speaking with respect to an unsymmetrical triatomic molecule), and so doubly degenerate

electronic states are allowed in this geometry. However, when the molecule is bent

(through the excitation of the bending vibration), the symmetry of the molecule is lowered

(Cs point group, in the case of an unsymmetrical triatomic molecule), and the resulting

18
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point group does not contain degenerate irreducible representations. Hence the double

degeneracy of an electronic state in the linear configuration would be lifted when the

bending vibration is excited, giving rise to two component electronic states, each of which

can have a minimum in the potential energy curve, either at the linear configuration or the

bent configuration (Figure 8). The correlation of the vibronic levels of a I electronic state,

for small and large Renner-Teller interaction, is shown in Figure 9.

In the case of degenerate electronic states (A e 0), the relationship between vb and

v, is as follows:

For the sublevel with Ka= A ± n (n = positive integer),

v,=2vb+n
So, in a I state, for example, for the Ka = 1 (Ka = A corresponds to = 0 in degenerate

electronic states) sublevels,

v,= 2 v,,

while, for the Ka = 0 and Ka = 2 sublevels,

v= 2 vb + 1

Figure 10 shows schematically, the vibronic level pattern of a quasilinear molecule in the

lower component of a 'I state. The top of the barrier has again been placed arbitrarily

close to vb = 2. Here again, an initial increase in A,,, far below the top of the barrier is not

unusual [6], but as the top of the barrier is approached, it can be seen that the Ka= 1

sublevel actually drops below the Ka= 0 sublevel. This is because, the Ka sublevel with the

lowest energy for a particular value of v is now that with Ka = A, ( = 0), while below the

barrier the lowest Ka sublevel was characterized by Ka= O. Further, above the barrier to

linearity, the Ka= 0 and Ka= 2 sublevels which had the same value of v below the barrier

become nearly degenerate. Again it is seen from Figure 10 that the Ka sublevels that

become nearly degenerate above the barrier are the ones that have the same value of v,.

Thus it is seen that in the study of quasilinear molecules an investigation of the

Ka-structure associated with the bending vibrational levels, especially those close to the

top of the barrier, provides crucial information about the height of the barrier to linearity,

22



and about the orbital angular momentum of the electronic state with which the quasilinear

state correlates in the linear limit. For this reason, the experiments chosen here to study

the 3 'A' state of HCP were aimed at observing the Ka= 0, Ka= 1, and Ka= 2 sublevels

for as many vibrational levels as possible in that electronic state. The experimental details

and a vibrational analysis are presented in Chapter 2.

1.2 Notations used

Vibrational levels have been denoted as (v ,v2 Ka ,v3 ), where vi refers to the

number of quanta of excitation in the i internal coordinate displacement. i = 1, 2, and 3

correspond, respectively, to the CH-stretching, the bend, and the CP-stretching internal

coordinates. Footnote 1 explains the meaning of Ka.

The A rotational constant has often been denoted as Aoj (or as A(O,j) in Figures 1,

and 2 of Chapter 2) to refer specifically to the value calculated from the expression:

Aj = ( E(Ka= j) - E(Ka= 0)) / j2

X and A refer to the ground, and the first excited electronic states, respectively,

single rovibronic levels of the latter of which have been chosen as intermediates in the

double resonance experiments reported in this thesis.
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Chapter 2

Optical-Optical Double Resonance Study of the 3 A' State of HCP

2.1 Introduction

The study of the 3 'A' state of HCP has been aimed primarily at understanding the

consequences of the quasilinear/Renner-Teller behaviour predicted for this state by ab

initio calculations [1]. As explained in Chapter 1, the investigation of the Ka structure

associated with the bending vibrational levels contains crucial information in the case of

quasilinear molecules. For this reason the experiments chosen were aimed at observing the

Ka= 0, Ka= 1, and Ka= 2 sublevels for as many vibrational levels as possible in the 3 A'

state of HCP. The following sections will deal with the experimental setup, the OODR

scheme, and an analysis of the observed vibrational spectrum.

2.2 Experimental

A. Sample Handling

The synthesis of HCP is described in Appendix 2B at the end of this chapter. HCP

is not stable at room temperature for more than -6 hours and so it is stored in a

teflon-stoppered glass tube immersed in liquid Nitrogen. It burns in contact with air and so

all sample handling such as the filling of the cell before an experiment and the pumping out

of the sample at the end of the experiment have to be done using a vacuum line so as to

prevent the sample from ever coming in contact with air. HCP is also known to

decompose rapidly upon contact with most metals and so the use of metallic parts in the

sample handling setup needs to be minimized. The 'cell' that holds the sample during the

experiment is made from glass and is isolated from the rest of the sample handling system

using a teflon stopper once it has been filled with the required amount of sample . The cell

is filled before an experiment by subliming the desired amount of HCP (typical pressures

used were - 400 mTorr), monitoring the pressure of the sample using a Baratron located

close to the cell.

25



B. OODR Apparatus:

The apparatus is very similar to that used in previously reported SEP and OODR

experiments [2] and hence will only be discussed briefly. The experiment basically involves

the following sequence of laser excitations: 1) the frequency-doubled output (using KDP

crystals) of a Nd:YAG (Molectron MY34-20) pumped dye laser (Lambda PhysikFL3002)

is locked onto a single rovibronic transition of a well characterized band in the HCP

A 'A" - X 1'+ electronic transition [7]. This is called the PUMP laser and it is sent

through both the arms of a two-arm glass cell using a 50/50 beam splitter. The PUMP

excites fluorescence which is monitored in both arms of the cell using matched

photomultiplier tubes. 2) The output of a second tunable dye laser (Lambda Physik

FL3002) which is also pumped by the same Nd:YAG laser, is sent through only one of the

two arms of the above mentioned cell ( the 'signal' arm) in the counter-propagating

direction relative to the PUMP beam. This laser is called the PROBE when it stimulates

upward transitions from the PUMP-prepared intermediate state. The OODR signal is

monitored as a dip in the side fluorescence excited by the PUMP laser, when the PROBE

laser becomes resonant with an allowed upward transition out of the state prepared in step

1).

Depending on the HCP A 'A"'- X + band chosen in step 1), and the

wavelength region desired for the PROBE, either the 532nm or the 355nm output of the

Nd:YAG laser was used to pump the respective dye lasers. For most of the experiments,

7-59 filters (Corning, 3mm) were used with the photomultiplier tubes to get rid of the

PUMP laser scatter. When the PROBE wavelength was close to and below 500nm, it was

also found necessary to add a 7-51 (Corning, 3mm) filter to minimize scattered light due

to the PROBE laser. A weak back-reflection of the PROBE beam, sent through a U/Ne

hollow-cathode lamp (Starna Cells, # P886), was used for calibration of the PROBE

frequency.
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C. OODR Scheme:

For most of the OODR experiments the band chosen in step 1) was

A (0,1,0) <- X(0,0,0) (Q(6) rotational transition). The experimental data of interest,

namely, the spectra of the Ka= 0, Ka= 1, and Ka= 2 sublevels of the various vibrational

levels of the 3 'A' state, had to be acquired through two separate sets of OODR

experiments. Because of the AKa = +]1 selection rule applicable to each of the two steps of

the double-resonance scheme, the Ka= 0 and Ka= 2 sublevels were accessible through the

A (0,11,0)- X(0,0°, 0) subband, while the Ka= 1 sublevels of the 3 'A' state were

accessible through the A (0,1°0, 0) X(0, 1',0) subband. Figure 1 shows both of these

schemes along with the typical spectrum observed for each vibrational level in the

respective schemes. All the spectra were recorded by tuning the grating; no use was made

of an intracavity etalon and so the resolution is - 0.5cm'. Other vibronic bands in the

A - X electronic transition were only used when searching for an expected vibrational

level in the 3 'A' state, not observed through the A (0,1,0) - X (0,0,0) band due to an

unfavourable Franck-Condon factor from the latter [see section 3.3].

2.3 Vibrational assignments and analysis:

Table Al in the Appendix 2A at the end of this chapter lists the term values for the

rotational levels of the various vibrational levels (both assigned and, as yet, unassigned)

observed in the 3 'A' state.The assignment of the origin band was confirmed as discussed

in greater detail in Chapter 3. The next higher vibrational level observed was -422 cm-'

above the assigned zero-point level (ZPL). This frequency which had to correspond to a

fundamental could only be assigned to that of the predominantly bending normal

coordinate. The fundamental frequency of the predominantly CP-stretching normal

coordinate was observed around 784 cm-' through the A (0,0',0) - X(0,0°,0) and the

A (0,1 1,1) - X(0,00 ,0) bands as well as several others (see section 3.3). At least for the

lowest observed vibrational levels, it was possible to group particular Ka= 0 , Ka= 1, and

Ka= 2 sublevels as having the same vibrational quantum numbers appropriate in the bent

configuration of the molecule far below the top of the barrier to linearity. This led to the

observation that the Ao. rotational constant, measured as E (Ka = 1) - E (Ka = 0), varied
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Table 1. Vibronic level assignments, term values, and the A rotational constants

estimated both as the K. = 0- K = 1 spacing (Ao, ) and from the K. = 0- Ka =2

spacing (A ).

Level Term Value (cm-') A, 2

Ka = 0 Ka = 1 Ka = 2 (cm-') (cm- ')

(0,0,0) 50,664 50,688.3 50,758.3 24.3 23.6

(0,1,0) 51,085.8 51,112.9 51,190.9 27 26.3

(0,0,1) 51,448.5 51,474 51,550 25.5 25.4

(0,2,0) 51,576.1 51,606.3 51,691.2 30.8 28.8

(0,1,1) 51,838.4 51,874.9 51,959.6 36.6 30.3

(0,3,0) 52,073.5 52,111.5 52,209.4 38 34

(0,0,2) 52,146.8 52,176.7 52,250.3 29.9 25.9

(0,2,1) 52,306.4 52,351.2 52,454.9 44.8 37.1

(0,1,2) 52,537.5 52,580.4 52,680.6 43 35.8

(0,4,0) 52,585.6 52,635.9 - 50.3 -

(0,3,1) 52,743 52,796.2 52,887.6 53.2 36.2

(0,0,3) 52,802.2 52,849.6 - 47.5 -

(0,5,0) 52,971.9 53,050.1 53,168.9 77.3 49.2

(0,1,3) 53,199.8 53,263.2 53,343.1 63.4 35.8
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] in cm- ) with increasing excitation in mode 2.
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widely from one vibrational level to another. The vibrational assignments proposed in

Table 1 were arrived at by making use of the observed fundamental frequencies and the

fact that quasilinear molecules exhibit a rapid increase in the A,, rotational constant with

increasing excitation in the bending internal coordinate even far below the barrier to

linearity. Table 2 presents the same information in the form of a Deslandres-type array and

the AO, values are also included in square brackets for easy reference. It might be noted

that the A0o values do increase even along the (O,O,v) and the (0,l ,v) progressions! It

does not seem possible to come up with any other more plausible assignment which would

not show this dependence of the Ao, on v3. This behaviour implies a rather strong mixing

between the bend, and the CP-stretching internal coordinates. Figures 2 and 3 show

graphically, the variation of AO along the (O,v2 ,0) and (O,v2 , 1), and the (0,O,v3 ) and

(0,1,v 3 ) progressions, respectively. The AO, values are always higher for the levels that

have both normal modes, 2 and 3 excited, showing that both modes 2 and 3 have

significant bending character. Some of the irregularities in the vibrational intervals (Table

2), especially between some of the lower members of the (O,v2 ,0) and (O,v, ,1)

progressions are likely due to Fermi-Resonance interactions involving levels such as (O,v2

,v3 ) and (0, v2 +2 ,v 3-1).

Tables 3 and 4 present the results of the fits of the four progressions (O,v2 ,0) and

(0,v2 ,1), and (O,0,v3 ) and (0,1,v 3 ) respectively, to the expressions:

GO (0, V2,O) = 02 v2 + x°22 v2 + Y222 V2

GO (O,v2, 1) = G (0,0, 1) + MOT v2 + x 22 v + Y222 v2

(1)

GO (O,O,v 3 ) = v3 + X 3 v32 + y3 33 V3

GO (0,1,v3) = G0 (0,1,0) + i3 "v 3 + x3 v 32+ Y33 V3

where GO (0,v 2 ,v3 ) refers to the energy above the ZPL in the 3 'A' state. As can be seen,

the standard deviation in the residuals is fairly large and the convergence of the power

series expansions is poor. The latter limits the usefulness of the model parameters in
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Table 3. Results of the fits of the (O,v2 ,0) and (O,v2 ,1) progressions to the respective

expressions in (1). The experimental uncertainty in the vibrational energies is -2

cm- .

(O,v2,0) Progression

Parameters cm-' Standard Deviation
° O = 389.3 22 cm-'

x22 = 44.9 11 cm-'

Y222 = -5.9 1 cm'

V2 EXPT. (cm') CALC. (cm') EXPT-CALC

1 422 428.4 -6.4

2 912 911.3 0.7

3 1,409 1,413 -4

4 1,921 1,898.1 22.9

5 2,307 2,331.1 -24.1

6 2,684 2,676.3 7.7

Standard deviation of residuals = 15.6 cm-'.

(O,v2, 1) Progression

Parameters cm-' Standard Deviation

GO(O, 0, 1) = 773.3 95 cm-'

o2 = 366.8 107 cm'

x22 =41.6 34 cm-'

Y222 = -5.4 3 cm-'

V2 EXPT. CALC. EXPT-CALC

1 1,174 1,176.4 -2.4

2 1,642 1,630.2 11.8

3 2,079 2,102.4 -23.4

4 2,584 2,560.7 23.3

5 2,961 2,972.6 -11.6

6 3,308 3,305.7 2.3

Standard deviation of residuals = 16.6 cm-'.
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Table 4. Results of the fits of the (O,O,v3) and (O,1,v3 ) progressions to the respective

expressions in (1). The experimental uncertainty in the vibrational energies is -2

cm -1 .

(O,0,V3 ) Progression

Parameters cm-' Standard Deviation

M = 796.6 13 cm-'

X°3 =-32.3 5 cm -'

Y33 = 2.0 0.5 cm -'

V 3 EXPT. (cm-') CALC. (cm -') EXPT-CALC

1 784 766.3 17.7

2 1,483 1,480.2 2.8

3 2,138 2,153.7 -15.7

4 2,795 2,799 -4

5 3,430 3,428.3 1.7

6 4,068 4,053.8 14.2

7 4,680 4,687.7 -7.7

Standard deviation of residuals = 11.8 cm-'.

(0, 1,v3 ) Progression
Parameters cm-' Standard Deviation

GO(O, , 0) = 474.7 40 cm-'

M3 
= 700.7 46 cm'

X33 = 1.1 15 cm -'

y 3 33 = -1.5 1 cm-'

V 3 EXPT. CALC. EXPT-CALC

1 1,174 1,174.9 -0.9

2 1,873 1,868.1 4.9

3 2,535 2,544.9 -9.9

4 3,206 3,195.9 10.1

5 3,807 3,812.1 -5.1

6 4,385 4,383.9 1.1

Standard deviation of residuals = 7.1 cm-'.
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predicting the positions of vibrational levels outside the range of the data used in the fits.

Also, it was not possible to perform a global fit of all the assigned levels to an expression

of the form:

GO (O, V2 ,v3) = 02 v2 + x°2 v2 + Y222 v 2 + 30 v 3 + x°3 V
2 + y33 V + X0 3 V2 V3 (2)

either taking into account or not taking into account the Fermi interaction mentioned

above. These difficulties have been encountered before in other molecules as well [3] and

had been attributed to the inappropriate separation of the vibrational and rotational

degrees of freedom in the conventional approach, on which expressions such as (1) and

(2) are based. These expressions are derived from a model Hamiltonian based on a

rigid-rotor, harmonic oscillator zero-order picture. Such a model is not likely to work

when the vibrations cannot be regarded as being of small amplitude. The rapid increase in

AO, along the (O,V2,0) progression clearly demonstrates the large amplitude nature of the

bending internal coordinate in the 3 'A' state of HCP. Another major drawback of the

conventional treatment is that it leads to a different rotation-vibration Hamiltonian for a

linear and a non-linear molecule, while a single rotation-vibration Hamiltonian is required

to treat a quasilinear molecule, which has a bent equilibrium geometry but which can

vibrate through the linear configuration.

These difficulties have been successfully dealt with in the study of several different

quasilinear molecules [4] by resorting to the more sophisticated Semi-rigid bender [5]

model. Work is now in progress to try to apply this model to treat the

quasilinear/Renner-Teller behaviour of HCP in the 3 'A' electronic state following the

methods discussed in Reference [6].
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Appendix 2A

Table Al. All of the rotational levels observed for the various vibronic levels of the 3 'A' state of

HCP. The estimated experimental uncertainty in the energies is about 2 cm-' .

Ka = 0

J Term Value
(cm-')

6 50,664

6 51,085.8

6 51,448.5

6 51,576.1

6 51,838.4

6 52,073.5

6 52,146.8

6 52,306.4

6 52,537.5

6 52,585.6

Ka = 0 (Cont.)

J Term Value
(cm -')

6 52,743

6 52,802.2

6 52,971.9

6 53,199.8

6 53,248.6

6 53,348.8

6 53,459.3

6 53,625.6

6 53,870.5

6 53,880

Ka = 0 (Cont.)

J Term Value
(cm-')

6 53,972.3

6 54,094.2

6 54,428.9

6 54,471.5

6 54,732.2

6 54,929.6

6 55,049.8

6 55,344.3

6 55,568.4
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Ka = 2

J Parity Term
Value
(cm-')

5 f 50,751.9

6 e 50,758.3

7 f 50,765.2

5 f 51,184.1

6 e 51,190.9

7 f 51,197.4

5 f 51,543.8

6 e 51,550

7 f 51,557.1

5 f 51,685.1

6 e 51,691.2

7 f 51,698.5

5 f 51,953.1

6 e 51,959.6

7 f 51,966.8

5 f 52,203.3

6 e 52,209.4

7 f 52,216.6

5 f 52,244.1

6 e 52,250.3

7 f 52,258.1

5 f 52,448.7

6 e 52,454.9

7 f 52,462.1

5 f 52,674.4

6 e 52,680.6

7 f 52,687.9

5 f 52,881.4

6 e 52,887.6

7 f 52,895

5 f 53,162.5

6 e 53,168.9

7 f 53,176.4

6 e 53,297.5

7 f 53,304.6

Ka = 2 (Cont.)

J Parity Term
Value
(cm-')

5 f 53,336.5

6 e 53,343.1

7 f 53,350.6

5 f 53,486.2

6 e 53,492.5

7 f 53,499.6

6 e 53,847.4

7 f 53,854.4

5 f 53,931.8

6 e 53,938.2

7 f 53,945.6

5 f 54,109.1

6 e 54,113.7

7 f 54,120.7

6 e 54,485.6

7 f 54,492.8

5 f 54,716.3

6 e 54,722.5

7 f 54,729.9

5 f 55,090.9

6 e 55,097.1

7 f 55,104.4

5 f 55,521.4

6 e 55,527.8

7 f 55,534.9

5 f 55,732.7

6 e 55,739.2

7 f 55,746.8

5 f 55,824.9

6 e 55,830.6

7 f 55,837.8

Ka= 1

J Parity Term
Value
(m-')

5 f 50,682.4

6 e 50,688.3

7 f 50,695.9

5 f 51,106.9

6 e 51,112.9

7 f 51,120.8

6 e 51,474

5 f 51,600.6

6 e 51,606.3

7 f 51,614.4

5 f 51,869.1

6 e 51,874.9

7 f 51,882.9

5 f 52,105.5

6 e 52,111.5

7 f 52,119.1

5 f 52,170.8

6 e 52,176.7

7 f 52,184.5

5 f 52,344.6

6 e 52,351.2

7 f 52,358.9

5 f 52,575.7

6 e 52,580.4

7 f 52,589.5

5 f 52,630.6

6 e 52,635.9

7 f 52,643.2

5 f 52,790.3

6 e 52,796.2

7 f 52,804

6 e 52,800.4

7 f 52,807
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Table la. (Cont.)

Ka= 1 (Cont.)
J Parity Term

Value
(cm')

5 f 52,843.5

6 e 52,849.6

7 f 52,857.2

5 f 53,044.7

6 e 53,050.1

7 f 53,057.6

6 e 53,263.2

5 f 53,342.7

6 e 53,348.4

7 f 53,356.3

5 f 53,391.1

6 e 53,396.8

7 f 53,404.9

6 e 53,547.8

7 f 53,555.6

6 e 53,709.6

7 f 53,716.2

6 e 53,714.9

7 f 53,722.8

5 f 53,857.5

6 e 53,861.2

7 f 53,868

5 f 53,993.1

6 e 53,985.1

7 f 53,979.6

6 e 54,230.9

7 f 54,238.4

6 e 54,345.1

7 f 54,352.5

6 e 54,443.7

7 f 54,451.9

5 f 54,565.9

6 e 54,571.9

7 f 54,579.5

5 f 54,586.1

6 e 54,592

7 f 54,599.7

Ka = 1 (Cont.)
J Parity Term

Value
(cm'')

5 f 54,881.6

6 e 54,887.2

7 f 54,895.1

5 f 54,962.5

6 e 54,966.9

7 f 54,972.7

5 f 55,119.1

6 e 55,124.4

7 f 55,131.9

5 f 55,167.9

6 e 55,173.1

7 f 55,180.9

5 f 55,378.5

6 e 55,383.9

7 f 55,391.6

5 f 55,507.9

6 e 55,512.4

7 f 55,520.7

5 f 55,601.4

6 e 55,607

7 f 55,614.8

6 e 55,728

7 f 55,736.4

6 e 55,755.9

7 f 55,763.8

5 f 55,767.3

6 e 55,773.6

7 f 55,781
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Appendix 2B

Synthesis of HCP and DCP

HCP was synthesised by the pyrolysis of commercially available CH3PCI2, using

the setup shown in Figure B 1. The setup consists of the following parts:

A teflon-stoppered glass tube to hold the precurssor ( CH3PC12), a needle valve

(made of Stainless steel, to resist any possible corrosion from the precurssor) to control

the flow of the precurssor, a thermocouple guage to monitor the pressure of the

precurssor in the system, a quartz tube (7mm diameter) for the pyrolysis, a cylindrical

oven maintained at 900° C, using a temperature controller, two vacuum traps, one with

KOH pellets and placed in a dry ice bath, and the other, placed in a liquid nitrogen bath to

collect the products of the pyrolysis, a teflon-stoppered glass tube to collect and store the

HCP sample, and a vacuum pump.

Prior to starting the synthesis the setup is evacuated with the oven turned on.

When the pressure goes down to a few mTorr, and the temperature of the oven has

stabilized close to 9000 C, the dewars of the traps, 1 and 2 (Figure B 1) are filled with dry

ice and liquid nitrogen, respectively, and allowed to equilibrate (the vacuum pump is kept

running.for the entire duration of the reaction). Then the sample tube is carefully opened,

and the needle valve is adjusted such that the pressure of the precurssor, as measured by

the thermocouple guage placedright before the pyrolysis tube is - 200-400 mTorr.

The gaseous products of the pyrolysis first pass through the trap 1 containing KOH

pellets, which removes most of the HC1 formed in the reaction. Methane and other low

boiling products are pumped off, while HCP and most of the other byproducts are

collected in trap 2 [7]. The reaction is typically allowed to run for atleast 4-5 days

(replenishing the dry ice and the liquid nitrogen every 3-4 hrs.).

After the reaction has been stopped, HCP (along with CH 2 formed as a

byproduct) is sublimed out of trap 2 by replacing the liquid Nitrogen with pentane slush

(Pentane, cooled to its freezing point of -130 C by slowly stirring in liquid Nitrogen) and

is collected in the teflon-stoppered glass tube cooled by liquid Nitrogen in trap 3.

Synthesis of DCP:
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DCP was synthesised from CDC12PH2 [8], using a setup which is essentially the

same as that described above for HCP. The important differences are as listed below:

1) Pyrolysis is carried out at a much lower temperature of -250 ° C.

2) A larger diameter (-22mm) pyrex tubing is used for the pyrolysis.

3) The elimination of HCI is accomplished in the pyrolysis tube itself, by filling the tube to

roughly half its diameter with anhydrous K2CO 3, thus making trap 1 (Figure B1)

unnecessary
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Chapter 3

Study of the 3 'A' State of DCP

3.1 Introduction

The investigation of the vibrational isotope effect, resulting from the substitution

of one or more atoms in a molecule with their isotopes, has been known to provide crucial

information about the force field and the normal modes of vibration in a given electronic

state of the molecule. The experimentally observed vibrational frequencies are generally

used to determine the potential function under the influence of which the nuclei are

moving in a given electronic state. However, in most cases the number of force constants,

summed over all symmetry species, is larger than the (3N-6) normal vibrations of an

N-atomic molecule, thus the former cannot all be determined from the latter. An

isotopomer has, to a very high approximation the same electronic structure. Hence, the

potential function is essentially the same but the vibrational frequencies are different

because of the difference in the masses. In other words, isotopic substitution does not

affect the F-matrix, but alters the G-matrix [1]. So the observed vibrational frequencies of

an isotopomer provide additional equations for the evaluation of the force constants. The

force constants (F-matrix) are, in turn, needed to calculate the normal modes, and these

are required, for example, to calculate the Franck-Condon factors for transitions between

two electronic states.

Secondly, the shift in any vibrational frequency resulting from isotopic substitution

enables the correlation of that vibrational frequency with a particular internal coordinate

displacement. The shift in a certain vibrational frequency will be more pronounced if the

atom which is replaced by its isotope has a large amplitude in that normal mode. Based on

the same argument, it follows that the zero-point level in a given electronic state would

show a negligible isotope shift. These aspects of isotopic substitution have made the study

of the 3 'A' state of DCP crucial in making definitive vibrational assignments and thus

better understanding the corresponding spectrum of HCP.

43



3.2 Assignment of the Band Origin of the 3 1A' State

The initial spectra of the 3 'A' state of HCP were recorded primarily through single

rotational transitions (mostly Q(6)) in the A (0, 1',0) <- X(0,0 0,0) band. Nothing is known

about the Franck-Condon factors for transitions out of the A (0,11,0) level to the

vibrational levels of the 3 'A' state, and if it was assumed that the lowest observed level in

the 3 A' state was indeed the zero-point level, and that all of the lowest vibrational levels

up to - 1650 cm-' had in fact been observed, then it was extremely difficult to make any

plausible vibrational assignments for the observed levels. In particular, the spacing

between the likely members of the pure bending progression seemed to increase too

rapidly. So one question that definitely required an answer was, whether the lowest level

observed was really the zero-point level (ZPL) of the 3 A' state.

_ I'....

3 A'
j

150757.01

1

X( +
(0-0_, _

l[44I4 l (Lowest observed level)

DCP

1 50664.01

-. LtrDI II
s5381

AmLnp

Fig 1. Relative positions of the lowest observed vibrational levels in the 3 1A' state of

HCP and DCP (all energies are in cm') .
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One way to check this was to estimate the position of the lowest observed vibrational level

of the 3 'A' state of DCP relative to that of HCP and see whether the difference in energy

seemed plausible if these levels did correspond to the ZPL's of the two isotopomers. The

isotope shift in the zero-point levels can be calculated using the experimentally observed

transition frequencies to the two levels under consideration, from the respective X(0,0 0,O)

levels of the two isotopomers, provided the relative positions of the X(0,0°,O) levels of

HCP and DCP2 are known (Figure 1). According to this calculation the lowest observed

level in the 3 'A' state of DCP is about 444 cm-' lower than the corresponding level in

HCP, which is in very reasonable agreement with what one would expect if these levels

were in fact the respective zero-point levels of the two isotopomers.

Another way to confirm this would be to see whether the bending fundamental

frequency of HCP (- 422 cm-' ), arrived at by assuming that the ZPL has been assigned

correctly shows the expected shift in frequency upon deuteration ( this bending frequency

is observed to be -353 cm-' in the case of DCP). In the "uncoupled (vibrations)

approximation" 3 [2] this ratio should be equal to the ratio of the relevant diagonal

G-matrix element, g22 . That is 4,

,2 g22

.), g22

where, the primed quantities refer to the isotopomer. In the 3 'A' electronic state, the

right-hand side of Equation (1) works out to - 1.19, and the left-hand side to -1.74. The

2 This calculation is presented in the appendix to this chapter.
3 The product of all the roots X of the secular equation I GF-XE = 0 is equal to the
value of the determinant I GF . That is,

Hfl= I GF I = IGI IFI
In the "uncoupled approximation" the G and F matrices are diagonal and so it

follows that,
Xi = gii fii, or, fii = Xi / gii = 5.89146 10

-7
V

2 / g22 where,
v is the vibrational frequency in cm-' and g22 is expressed in amu' .
Further, because isotopic substitution does not alter the F-matrix, we obtain

Equation (1).

4 The g22 element used here is the same as the g33 element in section 4-6 of [1], but
modified as in section 15.2 of [2] to get the units to be uniform (amu-' instead of amu-' A2)
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fact that the above equation is not as accurate as one might have hoped is a reflection

more of the limitations of the extreme approximations involved, rather than of an incorrect

vibrational assignment. To confirm this, the same calculation was also performed for the A

state of the molecule using the known bending fundamental frequencies [3] of HCP

(-604 cm-' ) and DCP (-451 cm-' ). In that case the values obtained were 1.34 and 1.72

respectively, for the right- and left-hand sides of (1).

3.3 Vibrational Assignments

Even after the assignment of the zero-point level of the 3 'A' electronic state had

been confirmed, vibrational assignments were not straightforward even for the lowest

vibrational levels. In particular, it was not clear if the CP-stretching fundamental (v3) had

been observed or not. Deuteration is expected to have a significant effect only on the

CH-stretching frequency (V1, which is not expected to be Franck-Condon active) and the

bending frequency (V2), but not on V 3. The spectrum of the 3 A' state of DCP, recorded

through the Q(6) rotational transition of the A (0,11,0) <- X (0,00,0) band, showed an

extra level, not observed in the corresponding spectrum of HCP, about 708 cm-' above the

zero-point level. This level could be unambiguously assigned as being the (0,0,1) level

based on its small A rotational constant. This identified an energy region in which to

search for the V 3 fundamental of HCP by pumping several different vibrational

intermediates in the A electronic state, at least some of which would be expected to have a

'better Franck-Condon factor for access to the (0,0,1) level in the 3 'A' state than the

intermediate level originally used (A (0,11,0) ). Thus, the CP-stretching fundamental

frequency of HCP was subsequently observed around 784 cm-' above the ZPL through

the A (0,00,0) and A (0,1',1) intermediates, among others. A list of all the levels

observed in the 3 'A' state of DCP, with their rotational quantum number assignments, is

presented in Table 1. The vibrational assignments of the observed levels, along with the A

rotational constants calculated according to equation

A E(Ka2)E(K =2)-E(K =) (2)
4
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Table 1. Energies of the rotational levels observed for the various vibronic levels in

' state of DCPa

Level J Ka Parity

(v,,v ,v3)
(0,0,0)

(0,1,0)

(0,0,1)

(0,2,0)

(0,1,1)

(0,0,2)

(0,4,0)

(0,1,2)

(0,0,3)

a The experimental uncertainty in the energies presented is - 2 cm-'.
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EnergyEnergy

(cm-')

50,757.8

50,804.6

50,810.1

50,816.6

51,110.7

51,163.4

51,169

51,175.3

51,466.3

51,521.2

51,502

51,559.9

51,565.5

51,571.9

51,816.7

51,873.8

51,879.1

51,885.7

52,104.7

52,150.3

52,156.2

52,162.9

52,188.3

52,261.2

52,267.4

52,495.3

52,549.4

52,555.4

52,562

52,675.5

52,720.8

52,726.8

52,733.5

.
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Table 2. Vibronic level assignments, term values, and estimated A rotational

constants in the 3 1A' state of DCPb

Level Term Value (cm') Ao,2
(v1,v2,v3) K=0 K=2 (cm-')

(0,0,0) 50,757.8 50,810.1 13.1

(0,1,0) 51,110.7 51,169.1 14.6

(0,0,1) 51,466.3 51,521.2 13.7

(0,2,0) 51,502.1 51,565.5 15.9

(0,1,1) 51,816.7 51,879.1 15.6

(0,0,2) 52,104.7 52,156.2 12.9

(0,4,0) 52,188.3 52,261.2 18.2

(0,1,2) 52,495.3 52,555.4 15

(0,0,3) 52,675.5 52,726.8 12.8

b The experimental uncertainty in the energies presented is - 2cm' .
c The A rotational constant has been denoted as A, 2 to emphasize that it has been
calculated from the Ka=2-Ka=0 spacing (Equation (2))

Table 3. Deslandres-type array for the observed vibrational levels in the 3 A' state

of DCPC

V2 / V 3

0

1

2

3

4

0

0

352.9

352.9
391.3

744.2

1,430.5

708.5

705.9

1

708.5
350.3

1,058.8

638.4

678.7

2

1,346.9
390.6

1,737.5

570.8

3

1,917.7

c The numbers represent the vibrational energies in cm'.
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are presented in table 2. The vibrational energies of the observed Ka= 0 sublevels

presented in the form of a Deslandres-type array in Table 3.

Appendix 3

Calculation of the difference in the ZPE of HCP and DCP in the X state

of the molecule.

The energy of the zero-point level is given by:

G ( ,) + + 3 X 22 +ll X33 + X13 + X12 + X23
2 2 4 4 4 2 2

The spectroscopic constants in the above expression for HCP and DCP, along with

their sources are given in Table 1.

GH (0,0 0,0) = 2985.6 cm-'

GDCP (0,0 0,O)= 2447.8 cm -'

So, A(zero-point energy) = 538 cm-

Table 1. Spectroscopic constants for the ground state of HCP and DCP

HCP

x13 =4.0 cm-'

53 = 1242.1 cm- 1

X33 =-6.7 cm- '

DCP

X33 = 1.1 cm

x23 = 0.0 cm - 1

3 = 796.6 cm- 1

X03 = -32.3 cm - '

Y333 = 2.0 cm- '

GO(0, 1,0) = 474.7cm - 1

30" = 700.7 cm- '

y333 = -1.5 cm-'

a G. Strey and I. M. Mills, Mol. Phys. 26, 129 (1973).

b P. Botschwina and P. Sebald, J. Mol. Spectrosc. 100, 1 (1983).
c A. Cabana, Y. Doucet, J. M. Garneau, C. Pepin and P. Puget, J. Mol. Spectrosc. 96, 342 (1982).

d J. Lavigne, C. Pepin and A. Cabana, J. Mol. Spectrosc. 104, 49 (1984).
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e J. Lavigne, C. Pepin and A. Cabana, J. Mol. Spectrosc. 99, 203 (1983).
f o2 of DCP was calculated from the corresponding value for HCP using the Teller-Redlich product rule
[4] appropriate for the fI vibration of an XYZ-type of linear molecule:

2 MX X HX ID (Ix =Iy)
JH mD j H 2 ,

where Ij refers to the moment of inertia about the j-inertial axis, M is the molecular weight, and m is the
atomic weight of the respective isotopic species.
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Chapter 4

Summary and Conclusions

The 3 'A' state of HCP has been studied using the Optical-Optical Double

Resonance technique. The spectra show evidence for quasilinear behaviour of the

molecule in this electronic state.This is seen particularly in the rapid increase in the A

rotational constant (measured as E (Ka= 1) - E (Ka= 0)) with increasing quanta of

excitation in the bending internal coordinate.

The OODR spectrum of the 3 'A' state of DCP has also been recorded for the first

time.This study only included the lowest vibrational levels ( up to -1900 cm-' ), but it

played a crucial role in the assignment of the band origin and that of the v 3 fundamental in

the 3 A' state of HCP.

Vibrational assignments have been proposed, based on the observed fundamental

frequencies of the two modes expected to be Franck-Condon active (v2 and v3 ), and the A

rotational constants of the various vibrational levels, keeping in mind the fact that the A

rotational constant depends on the bond angle.

The vibrational assignments led to the observation that the A rotational constant

also increased along the (0,0,v 3 ) and (0,1,v 3) progressions (corresponding to increasing

excitation of the nominal CP-stretching internal coordinate), suggesting that the bending

internal coordinate plays a significant part in both modes 2 and 3. This involvement of the

bending internal coordinate in the two modes should be borne out by a normal coordinate

calculation5 based on the F-G matrix method [1], and would also have an important effect

5 If the G and F matrices are available for a molecule in the electronic state of
interest, then the eigenvalues X , of the secular equation GF - EXI =0 (E is the identity
matrix) give the harmonic frequencies of the vibrations. The matrix of the eigenvectors, A
that diagonalize the GF matrix are related to the L-matrix, which is the transformation
matrix from normal to internal coordinates (it is the inverse of this matrix that is sought).

i.e. S=LQ
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on the Franck-Condon factors for transitions from the A (0,11,0) intermediate to the

various vibrational levels of the 3 'A' state. A calculation of the latter might explain the

absence of levels involving excitation in mode 1 in the recorded spectra, and also the

observed relative intensities of the levels with varying excitations in modes v2 and v 3 .

Unfortunately, no calculations exist in the literature for the Harmonic force

constants (F-matrix) in the 3 'A' state of the molecule.Work is now in progress to come

·up with the best possible guesses for the elements of the F-matrix so that the normal

coordinates and hence the Franck-Condon factors for the 3 'A' - A (0,11, 0) transitions

could be calculated.

Work is also in progress to try to model the Renner-Teller/quasilinear behaviour by

fitting the assigned vibrational levels according to the methods of Reference [2], which

combines Renner's matrix treatment of orbital angular momentum in linear molecules with

the Bender models capable of treating large-amplitude bending motions. This model

applies equally well to linear and bent molecules, and has been very successful also in

predicting the positions of vibrational levels well outside the range of data used in the fit

to the model [3].
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