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Abstract: 
 

Excited Electronic State Collisional Transfer as a Possible Mechanism for Sulfur Mass-
Independent Fractionation 

Submitted to the Department of Chemistry on ________ in partial fulfillment of the 
requirements for the degree of Doctor of Philosophy 

 
 The Great Oxygenation Event, the introduction of O2 into the Earth’s atmosphere approximately 
2.5 billion years ago, is a critical milestone in the development of life on Earth. The exact timing of this 
event is thought to be correlated with the disappearance of Archean sulfur isotopic anomalies, called 
Sulfur Mass -Independent Fractionation (S-MIF), in the rock record. This anomalous fractionation pattern 
can be described, generally, as an enrichment in the three rare isotopes: S-33 (0.75%), S-34 (4.25%) S-
36 (0.01%), relative to the most abundant isotopologue S-32 (0.75%), However, the mechanism for the 
generation of S-MIF in a reducing atmosphere is still unknown. 
 I use the B-X UV transition (~31,000 − 36,000 𝑐𝑚 ) in S2 as a proxy for study of excited state 
collisional transfer as a possible mechanism for S-MIF. The short-lifetime B state (natural lifetime: 32 ns) 
state-mixes extensively with a longer-lifetime B” state (4200 ns). Furthermore, the most abundant 
isotopologue of S2, 32S-32S has only half the number of rotational states compared to its asymmetric 
counterparts. In this work, I replicated Green and Western’s effective Hamiltonian for the X, B, and B” 
states with additional considerations for mass-dependent vibrational level shifts and nuclear permutation 
effects. 
 I hypothesize that the collisional transfer between the B and B” states occurs differently for 
different isotopologues. This difference results in a different average excited state lifetimes, which, in 
turn, affects the relative rate at which they undergo chemical reactions and enter the rock record. Here, 
spectroscopic B/B” perturbations act as doorways through which population can exchange between the B 
and B” states.  My model incorporates absorption, fluorescence, and predissociation, as described by 
Green and Western. It also includes the Gelbart-Freed model for electronically inelastic collisions and 
Brunner and Pritchard model for rotationally inelastic collisions. I calculate the amount of each 
isotopologue that enters the rock record by time-dependently solving a master equation kinetic model. 
 Results show that, generally, each region where a B vibronic state crosses a B” vibronic state 
behaves differently. However, the interactions display some systematic behavior. Because of the energy 
level patterns, lighter isotopologues are generally favored over the heavier ones (i.e. 32-36 < 32-34 < 32-
33 < 32-32) in the absence of predissociation. When predissociation is present the trend reverses, but 
remains Mass-Dependent, and cannot explain the S-MIF signature in the rock record. The most important 
conclusion, however: the interactions with the smaller B/B” state-mixing showed the larger isotope 
effects. 
 To continue my analysis, therefore, I considered the same B/B” system where the perturbation 
matrix elements are 1% of their original Green and Western values, i.e. a “weak perturbation model”. 
Here, I develop a statistical doorway model, which posits that doorway locations are somewhat random, 
and that the asymmetric isotopologues converge to a limiting, ensemble behavior at lower pressures than 
do symmetric species that are missing half of their rotational states. Results show that this statistical 
isotope effect is relevant to the weak perturbation model, and may help explain the anomalous isotope 
patterns in the rock record. 
 Further analysis shows that non-statistical effects may also play a critical role. These include 
transfer between B and B” states with very small state-mixing (as little as 0.005% ) and non-statistical 
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doorway sampling. I conclude that a model that combines statistical and non-statistical isotope effects 
may explain Archean S-MIF.  
 

Thesis Supervisor: Robert W. Field 
Title: Haslam and Dewey Professor of Chemistry 
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Freed transfer and will be revisited at the end of this chapter. ................................................................... 87 

Figure 3-8: a (left): shows the rotational energy level structure and perturbed nature of the B state, which 
follows the Hund’s case (b) coupling scheme. The central progression is a pure, f symmetry Ω = 1 state 
(yellow). The other two e symmetry progressions begin as either Ω = 0 (red) or Ω = 1 (blue). As J 
increases, they are quickly mixed by the S-uncoupling part of the rotational Hamiltonian, which is 
proportional to (J (J + 1))1/2. This yields two e symmetry Ω = 0/1 states (purple) at higher J. Figure 3-8b 
(right): shows the energy level structure, when S-uncoupling and other off-diagonal elements are 
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ignored. The two e-symmetry states no longer mix together. The Ω = 0 e state remains shifted somewhat 
due to the diagonal matrix elements of the rotational, spin-spin and spin-rotation Hamiltonians (see 
Chapter 2). The filled-in circles represent (-) parity states, while the hollow circles represent (+) parity 
states. ........................................................................................................................................................... 93 

Figure 3-9: The example transition being considered in this section, which goes from an F1, e-
2symmetry, (-) parity, J1 = 3 state, to an F3, e symmetry, (-) parity, J2 = 5 state. This transition is 
nominally allowed by the pure rotational transition propensity rules discussed in the preceding section. 
However, I must also consider the electronically inelastic nature of this collision. ................................... 94 

Figure 3-10: The collisional transfer processes used to calculate the orange part of Equation 28, i.e. 
rotationally inelastic transfer in the unperturbed Ω = 0 e or Ω = 1 e states. The rotational constant, BX is 
the same for both terms in the sum. Likewise, the energy gap is also identical. ........................................ 95 

Figure 3-11: The selection and propensity rules for collisional transfer in the B electronic state of S2. 
These are identical to the selection rules in the B” state (Ω = 0/2), with the addition of the low propensity 
F1 ↮ F3 transitions, and the forbidden ΔJ = 0 transitions. ....................................................................... 98 

Figure 3-12: A summary of the doorway mediated population transfer mechanism. The B and B” states 
are simplified; they ignore fine structure and they do not show energy level shifts (i.e. are diabatic). When 
the two diabatic become near-degenerate, they state-mix and create a doorway (purple states). 
Rotationally inelastic collisions (green) can move population from a relatively pure B state to a relatively 
pure B” state via the doorway. .................................................................................................................... 99 

Figure 4-1: Summarizes the connections between the various states in the B/B” system. The left-side 
figures are cartoons that visualize the nonzero matrix elements for each of the transfer processes 
represented in the simplified (and not-to-scale) energy level diagrams on the right. Note that, for the 
matrix A, the column represents the initial state and the row represents the final state. These connections 
are: absorption (1a and 1b), B/B” collisional transfer (1c and 1d), fluorescence (1e and 1f), 
predissociation (1g and 1h), and excited state chemistry (1i and 1j). The closed system processes (a-f) 
have two sets of non-zero matrix elements one for leaving the initial state (diagonal) and one for entering 
the final state (off-diagonal). The open system processes (g-j) only have terms for leaving the B/B” state 
(diagonal). ................................................................................................................................................. 111 

Figure 5-1: For each isotopologue, the steady-state fraction of the total population in the excited B/B” 
state is plotted as a function of pressure (logarithmic scale). 3232 has half of the rotational states, as 
described in Chapter 2, and is therefore differentiated from the other isotopologues using a dashed line. 
The temperature is 300 K. ......................................................................................................................... 115 

Figure 5-2: The black line shows fex at 1 atm for the data shown in Figure 4-1 (independent axis), as a 
function of reduced mass (dependent axis). The dashed red line shows a linear least squares fit of this 
data. The correlation coefficient (R = 0.96) shows that the pattern approximates a purely S-MDF 
relationship, which would have an R = 1. .............................................................................................. 117 

Figure 5-3: A bar chart depicting the difference in vibrational state population between the 3232 and 
3236 states. Positive values indicate more population in 3236 for a given vibrational state, while negative 
values indicate more population in 3232. The vibrational states are sorted first by e/f symmetry, then 
electronic state, then spin-orbit component. While there is clearly a wide spectrum of behavior, it is not 
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random. In particular, the f-symmetry B”, Ω = 0 vibrational states, show systematic bias toward 3236, 
and therefore suggest a possible origin of the pseudo mass-dependent fractionation effect seen in Figure 
5-2. ............................................................................................................................................................ 118 

Figure 5-4: The B”, f-symmetry, 𝛺 = 0 component of Figure 5-3. The numbers above or below each bar 
represent the vibrational quantum numbers. Note both the widespread, systematic bias towards 3232 and 
the even/odd alternation in the isotope effect. .......................................................................................... 119 

Figure 5-5: The B”, f-symmetry, Ω = 0 component of Figure 5-3. The numbers above or below each bar 
represent the vibrational quantum numbers. Note both the widespread, systematic bias towards 3232 and 
the even/odd alternation in the isotope effect. .......................................................................................... 120 

Figure 5-6: The B”, e-symmetry, Ω = 0 component of Figure 5-3. The numbers, again, represent the 
vibrational states. This graph is shown on the same scale as is Figure 5-4 (f-symmetry states), revealing a 
greatly diminished isotope effect. Furthermore, the systematic patterns are less pronounced here than for 
the f-symmetry states. ............................................................................................................................... 121 

Figure 5-7a (left): highlights the interactions between the e symmetry B and B” states. The perturbations 
are large (red rectangles) due to a homogeneous, spin-orbit interaction. In Figure 5-7b (right): we see the 
perturbations between the f symmetry B and B” states. They are small (blue rectangles) due to a 
heterogeneous, rotational interaction. ....................................................................................................... 122 

Figure 5-8: shows the effect of the homogeneous interaction on the mixed B/B” character of the e 
symmetry B” Ω = 0 v = 7 state. Two isotopologues (3236 and 3232) are depicted, their energies 
calculated relative to the F3 component of their respective B v = 4 state (blue dots). To facilitate the visual 
comparison, I have added in the 3232 states that do not actually exist, due to nuclear permutation 
symmetry considerations (see chapter 2). The black squares show relatively unperturbed states (B” 
character greater than 90%), the red, orange, and yellow squares represent increasingly perturbed states 
(up to ~50%). Due to vibrational level shifts caused by an increased mass, 3236 crosses its B v= 4 state at 
lower J than does 3232. This level shift hints at a possible origin for the pseudo mass-dependent isotope 
effect observed in Figure 5-2. The pink line shows the B” Boltzmann equilibrium rotational state 
distribution. It is clear that, in the 3232 case, the population statistically samples more “dark” B”-
character rotational states, than it does the 3236 case. .............................................................................. 123 

Figure 5-9: The lifetimes of the 3232 isotopologue (e symmetry, B”, Ω = 0, v = 7 vibronic state), 
compared to the lifetime for the  same vibronic state of the 3236 isotopologue, as a function of J(J+1). 
The lifetimes decline as the states mix increasingly with the F3 component of the e symmetry, B, F3, v = 3 
state. Due to vibrational level shifts, the lifetime at J = 1 for is approximately 50% larger for 3232 
compared to 3236. However, observe that the lifetimes are both relatively low compared to the natural 
lifetime of the B” state (~4200 ns). ........................................................................................................... 124 

Figure 5-10: A hypothetical system consisting of one excited vibronic state, and multiple vibrational 
levels (v = 0,1,2 …) of the ground state. Due to Boltzmann statistics, the absorption only occurs out of the 
ground vibrational state. However, the fluorescence occurs to multiple states. ....................................... 125 

Figure 5-11: shows the effect of heterogeneous perturbations on the interaction between the f symmetry 
B", Ω = 0, v =  7 state and the B, v = 3 state. As in Figure 5-8, the energies of the 3232 and 3236 states 
are shown relative to the F  component of the B, v =  3 state, and the pink line shows the B” Boltzmann 
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distribution. The state-mixing (shown on the same color scale as Figure 5-8) is much weaker than for the 
e symmetry components. The f symmetry ensemble samples rotational states with far greater B” character 
than does the e symmetry ensemble. ......................................................................................................... 128 

Figure 5-12: Excited state lifetime as a function of B” state character. The highly nonlinear behavior, as a 
function of state-mixing, is key to this analysis. As an example, the lifetime at 99% B” is 1824 ns, and 
100% is 4200 ns, a nearly 250% increase. ................................................................................................ 130 

Figure 5-13: For 3232 and 3236, a comparison of the B” state character (state-mixing) of the v = 7, Ω =

0 e symmetry states (left) and f symmetry states (right). Note, in particular, for f symmetry, the large 
regions of high B” character, followed by small, but highly perturbed regions. The color of the lines show 
the extent of the perturbations; they progress from black (low perturbation) to red to orange to yellow 
(high perturbation). ................................................................................................................................... 130 

Figure 5-14: For 3232 and 3236, a comparison of the excited state lifetime of the v = 7, Ω = 0 e 
symmetry states (left) and f symmetry states (right). The differences between the two symmetries are 
stark, as the e symmetry lifetimes do not exceed 400 ns, and, more importantly, do not change much as a 
function of J(J+1). Conversely, the lifetimes of the f symmetry states have a large region with lifetimes 
greater than 4000 ns, followed by a sharp decline in lifetime as the B” state crosses the B state. ........... 131 

Figure 5-15: The proposed “safe zone” mechanism for isotopic fractionation in the B”, Ω = 0, v = 7, f 
symmetry states. The weak, heterogeneous perturbations create a “safe zone” of long lifetime states. 
Because the B” state crosses the B state earlier in 3236, than 3236, the population has a lower propensity 
for being collisionally transferred outside of the safe zone. ..................................................................... 132 

Figure 5-16: The rotational constants for the B vibrational levels (blue) and the B” vibrational levels 
(red), as a function of vibrational origin energy. Due to the larger equilibrium bond distance, the 
rotational constants are always smaller in the case of B”. This creates a systemic isotope effect favoring 
3232. ......................................................................................................................................................... 134 

Figure 5-17: The vibrational energy level spacing (roughly ωe), as a function of E(vi). In particular, note 
that the B” vibrational states with v = 5 − 15 (the region with the most pronounced isotope effect) have 
an average energy level spacing of 229 cm-1. The B vibrational states with similar energies (v = 2 − 8) 
have an average energy level spacing of 402 cm-1. ................................................................................... 135 

Figure 5-18: A comparison of the v = 0 →  v " = x Franck-Condon factors (right) and the f symmetry 
isotope effect, as a function of vibrational (right). The left figure is identical to Figure 4. ...................... 136 

Figure 5-19: The Franck-Condon distributions, for absorption out of v = 0, as a function vibrational 
origin energy. Note that, for all B” vibrational levels from approximately v " =  7 to v " =  16, the B” 
Franck-Condon factor is substantially larger than the B Franck-Condon factor. ..................................... 137 

Figure 5-20: This cartoon illustrates the effect of the relative values of the B and B” state Franck-Condon 
factors for two vibrational levels involved in a curve crossing. The red line represents a B” state, the blue 
a B state. The purple squares represent an ensemble of population. The arrows represent a net flow of 
population. Collisional transfer is represented by green arrows, radiation is represented by yellow. ...... 138 
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Figure 5-21: Amount of S2 undergoing a chemical reaction, as a function of time (log scale). Note that all 
isotopologues are calculated assuming Bose-Einstein statistics for nuclear permutation symmetry, i.e. half 
of all energy levels are missing.(This speeds the calculation without losing the general principle discussed 
in the text). ................................................................................................................................................ 141 

Figure 5-22: For our new predissociating, chemically reactive system, this figure shows the isotopic 
fractionation (reacted sulfur for 3236 minus 3232) for each vibrational state, similar to Figure 5-4. Each 
panel, from top left to bottom right, shows how the fractionation changes this time, from one second 
elapsed to 300 seconds elapsed. The colored arrows show the sorting of the vibrational states, by 
electronic state (B/B”), spin orbit state (Ω), and e/f symmetry. Within each category, the vibrational states 
are sorted from v = 0 to v = 21. .............................................................................................................. 142 

Figure 5-23: A cartoon that illustrates the fractionation mechanism for this predissociating system. The 
predissoication limit is set here as 35,599 cm  (red dashed line). Because predissociation is caused by a 
crossing between a bound state and a repulsive state, the predissociation limit does not change with 
isotopologue, as repulsive states do not possess vibrational levels. The bound rotational state 
progressions, represented here by colored, solid lines do change, as usual; they move lower in energy as 
reduced mass increases. ............................................................................................................................ 143 

Figure 5-24: The results of the atmospheric, predissociation model described in this section. All 32 and 
34 isotopes are shown. Each data pointrepresents a height in the atmosphere. The leftmost state was 
calculated at 30 km, each subsequent data point calculated 2 km lower, reaching 0 km at the rightmost 
point. ......................................................................................................................................................... 145 

Figure 5-25: For our predissociating model, this plot shows the quantity reacted at 1 atm (dependent axis) 
as a function of reduced mass for all 7 isotopologues . The dashed red line shows a linear regression. The 
R  value is 96%, indicating a mostly, but not exclusively mass dependent relationship.......................... 145 

Figure 5-26: Quantity reacted for each isotopologue, as a function of height in the atmosphere. ........... 146 

Figure 5-27: Δ  S vs Δ  S shown for the data in Figure 5-26. The red circles represent rocks formed 
from sulfur that reacted at different heights in the atmosphere. The dashed line represents a linear 
regression performed on this simulated data (Δ = 1.08Δ ). The other figure (right), is from Ono, et. al. 
(2017) [26], which represents the actual rock samples that constitute the Archean Reference Array. The 
different colors in the Ono figure represent rock samples gathered at different locations. For this real data, 
the linear regression is  Δ ≈ −1.5Δ . ................................................................................................... 147 

Figure 6-1: The B/B” state-mixing fractions, predicted by second-order non-degenerate perturbation 
theory (Equations 1 and 2), as a function of ΔE for both the strong perturbation model (Chapter 5), and 
the weak perturbation model considered in this chapter. .......................................................................... 151 

Figure 6-2: gives a justification for study of the weak perturbation model, even though it does not match 
the physical reality of the B/B” system. Each panel shows a hypothetical B/B” vibronic level crossing, 
where each circle represents a rotational quantum state. The left column illustrates a strong perturbation 
model, while the right column illustrates a weak perturbation model, where the purple rectangles 
represent a region where the B and B” states can be considered significantly state-mixed. The bottom two 
panels show the effect of the vibrational level shifts (i.e. a change in isotopologue) on this crossing. In the 
strong-perturbation case, the behavior is systematic. In the top panel, many rotational levels are perturbed. 
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As the level crossing shifts to lower J’s, the state-mixing region shifts correspondingly and lower-J states 
are perturbed. In the weak perturbation case, a vibrational level shift may cause a perturbed region to go 
unsampled the small doorway region. The difference of this “quantum sampling” behavior, compared to 
the level-shift behavior discussed in the pervious chapter, will be the focus of this Chapter’s analysis. . 152 

Figure 6-3: A cartoon depicting a single e/f symmetry component of a Hund’s case (a), B” state. The (+) 
parity states and the (-) parity states alternate with J. In this model, collisions cause cannot transfer from (-
) to (+) and vice versa. .............................................................................................................................. 154 

Figure 6-4: For the simple doorway model, the fraction of population reaching a doorway state, as a 
function of n, the (randomly chosen) number of states between the initial excited state and a doorway 
state. Because the number of collisions required scales as n2, only initial excited states that spawn near a 
doorway state can reach the long lifetime state. ....................................................................................... 157 

Figure 6-5: A summary of the symmetric and asymmetric models considered thus far. In the symmetric 
model, there is a single manifold of states. A molecule is excited into an initial state, and a number n is 
randomly chosen. This number represents the number of states between the initial excited state and a 
doorway state leading to a long lifetime B” state. The average number of collisions required for a random 
walk from the initial state to a state n away is n2. The asymmetric model is statistically identical to the 
symmetric model with the following two changes: (1) two different manifolds, with two separate n’s 
selected and (2) the molecule has a 50% probability of excitation into either manifold. The values of n = 
5, n =4, and n = 2 were chosen arbitrarily. There are two doorways (green arrows) in each manifold 
because the model is agnostic as to the direction (positive or negative) of the doorway. ........................ 159 

Figure 6-6: Representative examples of a single run of the symmetric and asymmetric models. The 

independent axis is the number of excitations, N. The dependent axis,  𝐷(𝑁)  , is a running statistical 
average of the number of excitations that reach the doorway, given a randomly chosen doorway location.
 .................................................................................................................................................................. 161 

Figure 6-7: The values of |D − < D > | and |D − < D > |, averaged over 1000 model runs, as a 

function of sample size, N. This plot shows the rate at which the statistical averages, D converge to the 
ensemble average < D >. The asymmetric model clearly converges faster (at lower N) than does the 
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Figure 6-8: The two hypothetical games of chance being analyzed in this section. In the first game, $1000 
is randomly placed in one chest of five. In the second, $500 is placed in one chest in one set of five (set 
A) and $500 is placed in another chest in a different set of 5 (set B). In the first game, I am allowed to 
pick one chest. In the second, I am allowed to select one chest from each set. ........................................ 163 

Figure 6-9: An illustration of the Central Limit Theorem for the D  and D  parameters considered 

in this chapter. For each data point, σ   is the standard deviation of 1000 different calculations of 

D  each using sample size, N, and likewise for σ . As the sample size increases, the ratio 

σ /σ  approaches √2 (dashed black line), as predicted by the Central Limit Theorem. ............... 165 

Figure 6-10: The probability distribution for D (the fraction of excitations in which the excited state 
molecule reaches the doorway), as a function of n (the number of states between the initial excited state 



 

21 

and the doorway), calculated at a variety of pressures at 300 K.  These different pressures correspond to 
different ..................................................................................................................................................... 167 

Figure 6-11: A comparison of two different weak perturbation models. The independent axis is the 
pressure of the atmosphere (logarithmic scale). The dependent axis is the fraction of the S2 molecules that 
have undergone excited state chemistry. The left plot is calculated with all four of the isotopologues 
following symmetric nuclear permutation symmetry rules, i.e. half rotational states missing (dashed lines) 
It serves as a control for comparison to the right plot, which shows the three asymmetric isotopologues 
(3233, 3234, 3236) calculated with their standard (asymmetric) permutation symmetry rules. ............... 169 

Figure 6-12: The asymmetric weak perturbation model from Figure 6-11 (right), beginning at 0.001 atm 
and continuing to 10 atm. This plot shows the convergence of 3232 to the other three as the pressure 
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atm is due to the convergence of 𝛿  and 𝛿 . The sharp decline is due to the near convergence of 𝛿  
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Figure 7-1: Reproduced from Chapter 6, this figure shows the results of the weak perturbation model for 
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permutation symmetry rules. On the right, all isotopologues follow “normal” nuclear permutation 
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Figure 7-5: The reduced term value plot showing the interaction between the B” v =  9 state and the 
neighboring B v = 4 and v = 5 states. Note, in particular, that the B” state does not cross either of the B 
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Figure 7-17: A cartoon that depicts the mostimportant loss mechanisms for population that originates 
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Chapter 1 : A Geological Introduction to Sulfur Mass-Independent 
Fractionation 
 

Abstract:  

 The term “fractionation” describes processes where isotopes of an element partition into different 
chemical, physical, or biological phases within a natural system. For sulfur, fractionation is categorized 
one of two ways. Sulfur mass-dependent fractionation (S-MDF), describes simple, linear, easy-to-define 
relationships between sulfur’s four stable isotopes. Sulfur mass-independent fractionation (S-MIF) 
describes any significant deviation from a mass-dependent relationship. S-MIF signatures in the rock 
record are thought to be correlated with an anoxic atmosphere during the Archean period (4.0 billion to 
~2.4 billion years ago). Their disappearance is a key temporal marker of the Great Oxygenation Event, a 
critical milestone in the development of life on Earth. However, the mechanism that generates S-MIF in 
the anoxic atmosphere has remained unknown for approximately 20 years. Various spectroscopic studies 
have been performed on bands of SO2, but none show the same S-MIF signature as in the rock record. 
Nuclear permutation symmetry restrictions cause missing rotational states in the most abundant 
isotopologue of S2, 32S-32S, and such restrictions have been shown to generate S-MIF in ozone. A S-MIF 
mechanism that invokes nuclear permutation symmetry would be an appealing explanation for the 
Archean rock record because it may cause the three rare isotopes, 33S, 34S, and 36S (which come, 
primarily, from heteronuclear isotopologues) to become enriched, relative to 32S. 

 

1.1. Introduction to Fractionation and Lowercase Delta Notation 
 

 In geology, the term fractionation refers to any process by which different isotopes of the same 

element partially separate into different phases within a natural system. In other words, we say a sample 

(a rock, ocean water, or biomaterial, for example) is fractionated when the relative amounts of isotopes 

contained within the sample differ significantly from their natural abundance ratios. Isotope fractionation 

is an important tool in the Earth and planetary sciences. These isotopic signatures serve as “fingerprints” 

that provide important clues to the physical [1, 2, 3], chemical [4, 5], and biological [6] environment of a 

planet, dating back millions or billions of years. For example, metabolic processes in photosynthesis 

slightly favor uptake of 12CO2, compared to 13CO2. Because the 12C and 13C isotopes are both stable, this 

signature is preserved in sediment and biomaterial, providing insight into the Earth’s current and past 

carbon cycles [7, 8]. 
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 Mathematically, geologists and geochemists quantify light element (C, N, O, S, etc.) fractionation 

using lowercase delta notation. Consider an element with isotopes x, and y, where y is the most abundant 

isotope, and x is a different, less abundant (rare) isotope. The fractionation of rare isotope, 𝑥, is given as 

𝛿  (pronounced: “delta x”) in equation 1.1 below [9], 

𝛿 =
(
[𝑥]

[𝑦])

(
[𝑥]

[𝑦])
− 1. (1.1) 

Here, ([𝑥]
[𝑦])  is the ratio of isotope x to isotope y in the sample being analyzed. The parameter 

(
[𝑥]

[𝑦])  is the ratio of x to y in an agreed upon reference, chosen to closely reflect the natural 

abundance. In the case of sulfur, the subject of this work, the reference is a modified scale based upon the 

Canon Diablo Trilobyte meteorite (called the V-CDT scale) [10, 11]. Note that when  𝛿  is positive, the 

sample is enriched in isotope 𝑥. When 𝛿  is negative, the sample is depleted in isotope 𝑥, relative to the 

chosen reference. 

1.2. Mass Dependent Fractionation 
 

 Isotope fractionation patterns fall into one of two categories: Mass-Dependent Fractionation 

(MDF) and Mass-Independent Fractionation (MIF) [9]. In general, MDF describes ubiquitous, easy-to-

define relationships between the rare sulfur isotopes (and their corresponding 𝛿 values), caused by the 

small differences in the isotopes’ respective masses. However, there are several different MDF 

mechanisms (kinetic, thermodynamic, etc.), which may be more relevant for some elements than for 

others. Therefore, the exact mathematical definition of the MDF will be different for different elements. 

In this section, I derive the MDF relationships observed in sulfur (termed S-MDF).  Sulfur has four stable 

isotopes: the most abundant, 32S (94.99%), and three rare isotopes, 33S (0.75%), 34S (4.25%), and 36S 

(0.01%) [12]. There are, therefore, three 𝛿 parameters: 𝛿 , 𝛿 , and 𝛿 , as defined in Equation 1.1. S-

MDF defines simple, linear relationships between these three 𝛿 parameters. 
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 In sulfur, mass-dependent fractionation is specifically defined to be a thermodynamic process, 

termed “equilibrium mass-dependent fractionation”. For S-MDF, we consider a sulfur isotope exchange 

reaction, where S-R represents a sulfur compound that will permanently store its sulfur in the rock record 

and S-X represents a compound (or set of compounds) that will not. For sulfur-32 and sulfur-33, we have 

Equation 1.2, 

𝑆𝑋 + 𝑆𝑅 ⇋  𝑆𝑋 +  𝑆𝑅 . (1.2) 

The chemical equilibrium constant for this reaction is given by Equation 1.3, 

𝐾 ↔ =  𝑒
⟷

=  
[ 𝑆𝑋][ 𝑆𝑅]  

[ 𝑆𝑋][ 𝑆𝑅]  
. (1.3) 

Likewise, we can imagine an identical reaction for sulfur-34 exchanging with sulfur-32, with the 

associated chemical equilibrium constant given by Equation 1.4, 

𝐾 ↔ =  𝑒
⟷

=  
[ 𝑆𝑋][ 𝑆𝑅]  

[ 𝑆𝑋][ 𝑆𝑅]  
. (1.4) 

Combining Equations 1.3 and 1.4, we obtain (Equation 1.5) [13]:  

Δ𝐸 ⟷

Δ𝐸 ⟷
𝑙𝑛

[ 𝑆𝑋][ 𝑆𝑅]  

[ 𝑆𝑋][ 𝑆𝑅]  
=  𝑙𝑛

[ 𝑆𝑋][ 𝑆𝑅]  

[ 𝑆𝑋][ 𝑆𝑅]  
. (1.5) 

We assume that the largest contributor to Δ𝐸 ↔  is the difference in vibrational frequency between 

reactants and products, i.e. ∆𝐸 ↔  𝛼 − , where m is the isotope mass. Because 𝑚 ≈  𝑚  and 

𝑚 ≈  𝑚 , we can write Equation 1.6 [9],  

Δ𝐸 ⟷

Δ𝐸 ⟷
≈

1
𝑚

−
1

𝑚
1

𝑚
−

1
𝑚

= 0.515. (1.6) 

I can now rewrite Equation 1.5 in a suggestive way (Equation 1.7): 
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0.515 ln

[ 𝑆𝑅] 
[ 𝑆𝑅] 

[ 𝑆𝑋] 
[ 𝑆𝑋] 

= ln

[ 𝑆𝑅] 
[ 𝑆𝑅] 

[ 𝑆𝑋] 
[ 𝑆𝑋] 

. (1.7) 

Because the ratio [ 𝑆𝑅] 
[ 𝑆𝑅] 

 is preserved in the rock record, I borrow notation from Equation 1.1 and 

write [ 𝑆𝑅] 
[ 𝑆𝑅] 

=  (
[𝑥]

[32]) . Likewise, if we assume that the equilibrium concentration of 

[𝑆𝑋] is large compared to that of [𝑆𝑅], it follows that [ 𝑆𝑋] 
[ 𝑆𝑋] 

≈  (
[𝑥]

[32]) . Using the 

definition of 𝛿  given in Equation 1.1, I have Equation 1.8a, which leads trivially to Equation 1.8b, 

0.515 ln(𝛿 + 1) = ln(𝛿 + 1) (1.8𝑎)
 

(𝛿 + 1) . = (𝛿 + 1). (1.8𝑏)
 

Equation 1.8b is the general expression for sulfur-33 mass dependent fractionation. However, Equation 

1.8a reveals an additional simplification. Specifically, I employ a property of logarithms, where 

ln(1 + ∈) ≈ ∈ for small values of ∈. (In practice, 𝛿  is generally quite small and measured in parts per 

thousand). This leads to Equation 1.9, 

𝛿 ≈ 0.515 ∗ 𝛿 . (1.9) 

An identical analysis for sulfur-36 gives the following expression for sulfur-36 MDF (Equation 1.10), 

𝛿 ≈ 1.90 ∗ 𝛿 . (1.10) 

Equations 1.9 and 1.10 will serve as my definitions for sulfur mass-dependent fractionation (S-MDF) for 

the remainder of this text. Observe that three different isotopes (32, 34 and either 33 or 36) define each 

MDF relationship. That is, each 𝛿  is defined in terms of a rare isotope and S-32, and there are two such 

𝛿 ’s that make up each MDF equation. Moreover, because sulfur has four stable, naturally occurring 

isotopes, it can have two such MDF relationships.  This makes sulfur fractionation an especially useful 
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fingerprint, compared to other common elements like oxygen (three stable isotopes), carbon (two), and 

nitrogen (two). Its fractionation patterns encode a larger amount of information. 

 Finally, a word of clarification: mass dependent fractionation generally describes simple 

relationships between the isotope quantities in a sample, where the pattern is directly related to the 

isotopes’ relative masses. However, that definition is specific to each element, chosen to reflect common 

patterns observed in a wide array of rock samples. Other types of MDF exist, such as “kinetic MDF” for 

irreversible reactions. In sulfur, however, the geochemical community defines S-MDF as the equilibrium 

isotope-exchange process described above. 

1.3.  Sulfur Mass-Independent Fractionation 
 

In contrast with S-MDF, sulfur mass independent fractionation (S-MIF) is easier to define, but its 

physical origins are often much more complex.  In words, sulfur mass independent fractionation is 

defined as any significant deviation (greater than ~0.5 parts per million) from mass dependent 

fractionation. Mathematically, we define capital delta notation as follows (Equations 1.11a and 1.11b) 

∆ = 𝛿 − 0.515𝛿 (1.11𝑎) 

∆ = 𝛿 − 1.90𝛿 . (1.11𝑏) 

Sulfur-33 MIF is defined, therefore, as the difference between the 𝛿  actually observed in the sample, 

and the value 𝛿  predicted from 𝛿 , using the mass dependent relationship given in Equation 1.9. 
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(Likewise for sulfur-36 MIF). Figure 1-1 illustrates the difference between a hypothetical set of rock 

samples showing S-MDF and one showing S-MIF. 

 The physical origins of mass-independent fractionation are often quite obscure, and I will explore 

possible mechanisms for S-MIF more thoroughly later on in this chapter. Here, I should comment that the 

terms “mass-independent fractionation” and “mass-dependent fractionation” may seem somewhat 

misleading to those outside the geochemical community. As mentioned in the previous section, we define 

S-MDF using the specific equilibrium isotope-exchange process. S-MIF, by contrast, describes any 

fractionation significantly different from this one specific S-MDF process. Often, S-MIF effects are 

caused, at least in part, by differences in isotope mass. For example, mass shifts can cause shifts in 

vibrational band frequencies in spectroscopy. Muskatel, et al. demonstrated this phenomenon to be a 

possible source of MIF in N2 UV absorption [14]. In such cases, the S-MIF mechanism “depends on the 

mass”, but it is not “mass-dependent fractionation”. 

 Sulfur mass-independent fractionation acts as an important historical tracer of the atmosphere’s 

oxidation state. It is generally accepted that sulfur fractionation patterns in the rock record are strongly 

correlated with oxygen levels in the Earth’s atmosphere. 

Figure 1-1: Illustrates the differences between a hypothetical series of rock samples that display MDF 
and a hypothetical series of samples that display MIF. The MDF series follows the linear relationship 
shown in Figure 1a and described in section 1.2. A hypothetical series exhibiting MIF is shown in Figure 
1b. This series of samples deviates significantly from the linear relationship. Note that MIF generally 
requires two separate chemical or physical phases, such as two different types of rocks. One type of rock, 
orange in this example, will exhibit positive deviations from MDF (∆ > 0). Another, green, will exhibit 
negative deviations (∆ < 0). 
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1.4 The Great Oxygenation Event and its Relevance to Sulfur Fractionation  
 

The >4.0 billion year history of atmospheric oxygen is divided into two distinct periods. The 

earlier Archean period, ~4.0 to 2.3 billion years ago, was characterized by extremely low atmospheric 

oxygen levels. Modeling of the Archaen atmosphere, using SO2 photolysis as the origin of S-MIF1, 

suggests O2 concentrations >10-5 times larger than those of present atmospheric levels (PAL) [15]. The 

more recent period (2.45 billion years ago to present) is characterized by oxygen concentrations rapidly 

rising to their modern day values. The transition ~2.3 billion years ago is called the Great Oxygenation 

Event (GoE) [16]. 

 The GoE was triggered primarily by the emergence of photosynthetic cyanobacteria in the Earth’s 

oceans, and it had a massive impact on the Earth’s climate and ecosystem. For example, rising oxygen 

levels triggered the Huronian Ice age from ~2.4-2.1 billion years ago, due to oxidation of methane, a very 

strong greenhouse gas, to carbon dioxide and water [17, 18]. In this same period, the toxicity of oxygen to 

the then-predominant organisms triggered a mass extinction event.  On a longer timescale, however, high 

oxygen levels are linked to the evolution of eukaryotic organisms [19], and the greater chemical energy 

content of a more oxygenated environment may have helped drive increasing biodiversity [20], which 

culminated in the Cambrian explosion ~540 million years ago [21]. As such, the GoE is a critical 

milestone in the development of life on Earth, and understanding the exact timing of the GoE, as well as 

its influence on the ecological trajectory of the planet, has significant implications for the emerging field 

of astrobiology. 

 As previously mentioned, sulfur fractionation in the rock record provides the best indicator for 

the timing of the GoE. In 2000, James Farquhar and coworkers [22] reported a surprising discovery: the 

                                                           
1 As I will discuss, SO2 may not be the origin of the S-MIF signature in the Archean atmosphere. 
However, the mechanism by which rising oxygen levels eliminate S-MIF in the rock record should be 
relatively agnostic as to the chemical/photochemical origin of the fractionation. In this context, the 10-5 
PAL number should be taken as a baseline estimate and not an exact value. 
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existence of significant S-MIF signatures in rock samples older than ~2.45 billion years, S-MDF in rock 

samples younger than 2.09 billion years, with a comparatively short transition period in between [23]. 

Moreover, Farquhar, et. al. concluded that this S-MIF pattern was strong evidence of gas phase chemistry 

and photochemistry being influential in the Earth’s Archean sulfur cycle . Figures 2a-b illustrate their 

reasoning, using information adapted from works by Pavlov and Kasting (2002) [15] and by Lyons 

(2009) [24]. 

 As seen in Figure 1-2, volcanic sulfur enters the atmosphere primarily as H2S and SO2. While in 

the atmosphere, these species can undergo a wide range of chemical and photochemical processes. In the 

Archean atmosphere (2a) sulfur is removed by one of two sinks. The first sink involves reduced, 

elemental sulfur wherein S2 polymerizes to S3, S4 and S8. The S8 molecules clump together and  
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precipitate out of the atmosphere as solid aerosol particles [25]. The second sink involves oxidized 

H2SO4, which rains out of the atmosphere as an aqueous solution. Out of the atmosphere, reduced sulfur 

enters the rock record as, for example, pyrite (FeS2), whereas oxidized sulfur enters the rock record as 

different compounds, such as barite (BaSO4) [15]. This two-sink system, by which sulfur can exit the 

atmosphere and enter the rock record in two different chemical forms, allows for preservation of any S-

MIF generated by atmospheric processes (recall Figure 1-1). If such S-MIF is generated, we could expect 

Figure 1-2: shows the major gas-phase chemical and photochemical processes involved in the Earth’s 
sulfur cycle. In the Archean atmosphere (2a), sulfur enters the atmosphere as H2S or SO2. It leaves via 
one of two sinks: a reduced sink as elemental sulfur aerosols, and an oxidized sink as H2SO4. If any 
chemical or photochemical process generate an S-MIF signature, it can be preserved in the rock record 
with the positive S-MIF stored in one sink and the negative S-MIF stored in the other. In the modern 
atmosphere (2b), the high levels of oxygen drive chemistry to the oxidized sink (green arrows). The 
sulfur cycle is no longer capable of separating isotopes, and the S-MIF signature is lost. 
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rock record sulfur compounds generated through one sink to exhibit a positive isotopic anomaly (∆ > 0), 

while sulfur compounds generated through the other exhibit a negative anomaly (∆ < 0). 

 In the Archean atmosphere (Figure 1-2a) the chemical processes that move sulfur toward the 

oxidized sink involve a variety of reactions with atomic oxygen, O2, and other oxygen containing 

compounds. While we estimate Archean oxygen levels to be many orders of magnitude lower than those 

of the present, atmospheric oxygen was still present due to processes such as photolysis of CO2. By 

contrast, processes that move sulfur toward the reduced sink generally involve UV photolysis. In a 

modern, oxidizing atmosphere (Figure 1-2b), high concentrations of oxygen, and absorption of UV light 

by ozone, effectively shut off the reduced sink [25]. Therefore, atmospheric processes that generate S-

MIF are irrelevant to the rock record. Sulfur isotopes cannot be separated permanently, as they eventually 

exit the atmosphere through the same channel.  

1.5. S-MIF Patterns in the Archean Rock Record 
 

 While the disappearance of S-MIF from the rock record ~2.3 billion years ago is widely accepted 

evidence of the Great Oxygenation Event, the identities of the gas-phase chemical or photochemical 

processes that produced the S-MIF signature in the Archean atmosphere remain unknown. In this section, 

I briefly summarize the primary features of S-MIF in the Archean rock record, and highlight those that 

any proposed fractionation mechanism must be able to account for. 

Figure 1-3 shows data from the Neoarchean period, ~2.8-2.5 billion years ago, reproduced from 

Ono 2017 [26], so chosen because the period shows the largest magnitude and most distinct S-MIF 

signature. Comparisons between different Archean eras are somewhat fraught, as there is a very limited 

number of Archean rock formations from which to gather samples, and Neoarchean (~2.8-2.5 billion 

years ago) rock formations are noted by Ono [26] to be exceptionally well preserved. 

Figure 1-3a displays the correlation between 𝛿  and ∆ , while figure 1-3b displays the 

correlation between ∆  and ∆ . Three major features of these data are as follows: 
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1. A strong, relatively (but not entirely) linear correlation between 𝛿  and ∆ , as well as 

between ∆  and ∆ . These relationships are defined by the geochemical community as 

∆ ≈ 0.9𝛿  and ∆ ≈ −0.9∆  𝑜𝑟 ∆ ≈ −1.5∆ . And collectively, these equations are 

referred to as the Archean Reference Array [26, 27, 28]. Any likely mechanism for S-

MIF in the Archean atmosphere should feature similar correlation patterns. 

2. A maximum value for ∆  and ∆  of about 15 parts per thousand. Any proposed 

mechanism would ideally produce an even larger S-MIF than this, as some chemical 

mixing of the reduced and oxidized sulfur likely occurs in the oceans, prior to entering 

the sediment (Figure 4) [26, 29]. This mixing would result in a reduced value of the S-

MIF. 

3.  Pyrite (reduced) samples show ∆ > 0, while sulfate (oxidized) samples show ∆ < 0 

(and vice versa for ∆ ). However,  |∆ | is significantly smaller for the sulfate samples 

than for the pyrite samples. This asymmetry is hypothesized to be the result of bacterial 

sulfate reduction processes in the Earth’s oceans [26]. However, atmospheric processes 

may also play a role. 
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1.6. SO2: Use of Spectroscopy to Explain Sulfur Fractionation Patterns in the Archean Rock 
Record 
 

The atmospheric process with the largest body of research assessing its relevance to the both the 

generation of S-MIF and the replication of the Archean Reference Array is the ultraviolet absorption of 

SO2. The UV spectrum of SO2 is characterized by absorption to one of three different electronic states 

from the electronic ground state (𝑋 𝐴 ). 1) The first involves a weak, spin-forbidden transition (𝑎 𝐵 −

𝑋 𝐴 ) from ~400-350 nm. The second involves a stronger transition to two bound, coupled electronic 

states (𝐴 𝐴 /𝐵 𝐵 − 𝑋 𝐴 ) from ~350-250 nm [30]. The third involves a still stronger transition to a 

bound electronic state (𝐶 𝐵 − 𝑋 𝐴 ) for wavelengths <240 nm [31]. However, the 𝐶 state 

predissociates to SO (1Δ) + O (1D) at wavelengths <220 nm. 

𝜹𝟑𝟒 (𝒐
𝒐𝒐⁄ ) 

 

Figure 1-3: Reproduced from Ono (2017) [26], these two plots show the correlations between the various 
fractionation parameters that define the Archean Reference Array. The top plot (1-3a) shows δ versus 
∆ , while the bottom plot (1-3b) shows ∆  versus ∆ . The different colored data points represent 
different rock samples. See Reference [26]. 
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Over the past 20 years, a number of experiments and models have demonstrated significant 

quantities of SO2 S-MIF, produced via a variety of mechanisms. For example, Lyons (2007) [32] used 

atmospheric modeling to propose isotopologue self-shielding in 𝐶 state photolysis from 190 nm to 220 

nm. For SO2, isotopologue self-shielding is caused by small isotopologue-dependent shifts in the 

transition frequency of vibrational bands in the UV absorption spectrum [33]. For molecules with high 

concentrations in the atmosphere (e.g. SO2 during periods of volcanic activity) with strongly absorbing 

electronic states (such as the 𝐶 state), the transitions of the most abundant isotopologue (32SO2) will 

saturate. Therefore, light at 32SO2 absorption frequencies cannot reach lower levels of the atmosphere. For 

rare isotopologues (e.g. 34SO2,), however, the transition does not saturate and the frequency shifts in their 

absorption spectra exposes rare isotopologues to light at lower altitudes. A photochemical process that 

exhibits self-shielding occurs at a higher total rate for rare isotopologues than for the most abundant 

isotopologue, thereby generating a significant S-MIF signature. 

Lyons observed that the sulfur contained in the SO resulting from the modeled photolysis process 

displayed ∆ > 0 and ∆ < 0, matching the reduced sulfur in the Archean reference array. However, the 

ratio ∆ /∆ ≈  2 − 3 was about 2 to 3 times larger than that found in the rock record. Using a broadband 

light source combined with a bandpass filter, Whitehill and Ono [34] performed experiments on the 

predissociating 190-220 nm UV band of SO2 by irradiating pure SO2 gas and analyzing the solid 

elemental sulfur and residual SO2. They reported a fractionation trend of ∆ /∆ ≈ −1.90, similar to 

Lyons’s prediction and indicative of an isotopologue self-shielding MIF mechanism in the 190-220 nm 

absorption region. However, this pattern substantially differs from Archean reference array and cannot, by 

itself, explain those trends in the rock record [35]. 

  A second proposed mechanism for S-MIF in UV absorption of SO2 is a collision-induced 

intersystem crossing from the singlet, strongly absorbing 𝐴 𝐴 /𝐵 𝐵  to a long-lifetime triplet state 

(likely either 𝑎 𝐵  or 𝑏  𝐴 ). Experiments from Whitehill, et. al. [36] were performed by broadband 

excitation of SO2 in N2 by an Xe arc lamp.  A very large S-MIF effect (up to 10 % for ∆ ) was observed. 
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It has been theorized that this large MIF effect is due to coincidental degeneracies between the singlet and 

triplet vibrational states, facilitating collisional transfer [36].  However, ∆  and ∆  were positively 

instead of negatively correlated (as in the rock record), with ∆ /∆  ≈ 1.12 − 2.25. Furthermore, Lyons 

(2009) [24] has argued against the singlet/triplet collision-induced intersystem crossing mechanism. He 

observed that the reaction that would preserve the isotopic signature (Equation 1.12a) had a smaller rate 

constant compared to the rate of singlet state collisional deactivation (Equation 1.12b) 

𝑆𝑂 +  𝑆𝑂 → 𝑆𝑂 +  𝑆𝑂 (1.12𝑎) 

𝑆𝑂 +  𝑀 → 𝑆𝑂 +  𝑀. (1.12𝑎) 

In Equation 1.12a, 𝑆𝑂  represents singlet state SO2 and has associated rate constant ~4 ×

10  𝑐𝑚  𝑠 . For Equation 1.12b, 𝑀 represents a generic molecule that carries away the excess energy, 

and has associated rate constant ~1 × 10  𝑐𝑚  𝑠 . 

 1.7. The Ozone Eta Effect: Nuclear Permutation Symmetry as a Mechanism for MIF 
 

 The term nuclear permutation symmetry generally describes rules that a molecule’s total 

wavefunction must follow upon the exchange of two identical nuclei. I will illustrate this effect in more 

detail in Chapter 2. Here, I summarize the results. For molecules with two indistinguishable bosons with 

zero nuclear spin (e.g. sulfur in 32S-32S, oxygen in 16O-32S-16O), half of all rotational states (all states with 

either an odd or even rotational quantum number) do not exist. This purely quantum mechanical 

phenomenon has been used famously to explain MIF in the formation of ozone. 

 This idea, originally introduced by Hawthorn and Marcus [37, 38], was brought to prominence in 

seminal papers by Gao and Marcus [39, 40].  Specifically, they reported that nuclear permutation 

symmetry may play a role in the rates of the O2 isotope exchange reaction given by Equation 1.13: 

𝑂 − 𝑂   +   𝑂  ↔  𝑂    +    𝑂 − 𝑂 (1.13) 
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Where a, b, c may or may not refer to the same oxygen isotope. The authors employed statistical RRKM 

theory, assuming that the rate of the reaction was proportional to the number of reactant quantum states 

(𝑁 ) that could access the “ozone” transition state( 𝑂 − 𝑂 − 𝑂  ) [40].  

 I now compare. two different forms of this exchange reaction. These are Equations 1.14a and 

1.14b, where the X’s represent the oxygen atoms with the same mass number, and so on for Y’s and Z’s  

𝑋 − 𝑌 +   𝑋 ↔  𝑋   +    𝑌 − 𝑋 (1.14𝑎) 

𝑋 − 𝑌 +   𝑍 ↔  𝑍   +    𝑌 − 𝑋. (1.14𝑏) 

For the reaction shown in Equation 1.14a, the ozone transition state, X-Y-X, is subject to nuclear 

permutation symmetry restrictions, with half of its total quantum energy levels missing compared to the 

“asymmetric” case. We label the number of O2 states with access to the symmetric transition state as 

𝑁 . Equation 1.14b is an example of a reaction with an asymmetric transition state (X-Y-Z) that is not 

subject to symmetry restrictions. Because the ozone transition state has double the rotational states, Gao 

and Marcus reasoned that 𝑁 > 𝑁 , with =  𝜂. Therefore, the total rate of exchange is greater 

for Equation 1.14a than for Equation 1.14b. This is the so-called “eta-effect” in ozone. Though it is easy 

to describe the eta effect qualitatively, quantitative descriptions are computationally expensive. Gao and 

Marcus observed that, though there are twice the number of quantum transition states in the asymmetric 

case compared to the symmetric case, their modeling best matched meteorite oxygen fractionation data 

with only 𝜂 ≈ 1.18. Marcus [41] has shown that this value of 𝜂 is in rough agreement with classical 

dynamics calculations.2 However, a precise understanding of this phenomenon in ozone remains elusive. 

                                                           
2 For a more detailed explanation, consider an excited, unstable, O3

* transition state, in quasi-equilibrium 
with O2 + O. A certain subset of the O3

* quantum states exhibit quasiperiodic motion, and cannot 
dissociate because dissociation is an aperiodic process. Resonances between a dissociating a non-
dissociating O3* states are more likely in asymmetric O3 than in symmetric O3, as the asymmetric case has 
more rotational quantum states. Therefore, the asymmetric O3* molecule more readily samples the non-
dissociating quasiperiodic states and is consequently stabilized. It has been estimated that about 10-15% 
of all states in O3* are quasiperiodic, in rough agreement with 𝜂 = 1.18. [41].  
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1.8. The Appeal of Symmetry Effects as Mechanisms for S-MIF. 
 

As in the case of oxygen, nuclear permutation symmetry will be a relevant consideration in any 

molecule containing multiple sulfur atoms. As an example, consider S2, the simplest case. Due to the high 

relative abundance of 32S, the molecule that predominantly carries sulfur-32 into the rock record is 32S-32S 

(see Figure 1-2), which is subject to symmetry restrictions. Conversely, the molecules that primarily carry 

sulfur 33, 34, and 36 into the rock record are 33,34,36S-32S, which are asymmetric and therefore not subject 

to the same restrictions. I now consider a chemical/photochemical process whose isotope effect is entirely 

determined by symmetry effects. Using notation from equation 1, I write: [32]sample < [33]sample = 

[34]sample= [36]sample, meaning that  [36]s/[32]s = [34]s/[32]s = [33]s/[32]s. Plugging into equations 12a and 

12b, we obtain 
∆

∆
= −1.8, and  

∆
= 0.5. Both relationships are similar to the Archean reference array 

values of   
∆

∆
= −1.5 and  

∆
= 0.9. Moreover, compounds with multiple sulfur atoms (S2, S4, etc.) are 

reduced, i.e. do not contain oxygen. If these reduced compounds are enriched in rare isotopes, we have 

∆ > 0 and ∆ < 0, which also matches the rock record. 

 However, for an entirely symmetry-driven fractionation effect, the relationships still differ 

significantly from the reference array. Furthermore, the eta-effect cannot be employed in the same way in 

sulfur chemistry as it is in oxygen chemistry. As Babikov [42] notes, sulfur polymerizes to S8, whereas 

oxygen cannot polymerize beyond O3. This means that a comparable eta-effect involving atom exchange 

in S2 (involving an S3 transition state) is likely undone by fast atom exchange in S3 (involving an S4 

transition state). Babikov instead proposed a unique mechanism, involving conformers of S4, as the 

mechanism for S-MIF, but the effect has been neither computationally nor experimentally verified. It also 

predicts ∆ < 0 and ∆ > 0 for reduced sulfur in the rock record, the opposite of the expected pattern. 

Finally, Babikov’s argument rests on the idea that the symmetric 32S-32S-32S-32S has extra conformational 

quantum states compared to an isotopically substituted S4 (e.g. 32S-32S-33S-32S), but Gao and Marcus’s 
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original nuclear permutation symmetry argument related to missing rotational, not conformational states, 

making Babikov’s proposed connection between the two ideas seem tenuous. 

1.9. Summary of our Current Understanding of S-MIF Processes 
 

 In summary, sulfur mass-dependent fractionation describes a specific isotope effect: shifts in the 

equilibrium of an isotope exchange reaction, as a function of isotope, caused by differences in vibrational 

zero point energy. S-MDF patterns are very commonly observed in the rock record. Less commonly 

observed, any significant deviation from the S-MDF pattern is termed sulfur mass independent 

fractionation (S-MIF). Large S-MIF signatures are observed in rock samples formed during the Earth’s 

Archean period (~4.0-2.4 billion years ago), with younger rocks exhibiting a mass-dependent pattern. It is 

thought that S-MIF directly correlates with oxygen levels in the Earth’s atmosphere. In a low oxygen, 

reducing atmosphere, sulfur can exit the atmosphere via one of two channels (sinks): 1) a reduced sink, 

whereby S2 polymerizes to S8, forming solid elemental sulfur aerosol particles and 2) an oxidized sink 

where sulfur rains out of the atmosphere at H2SO4. Because there are two exit channels, any S-MIF 

generated by chemical or photochemical processes can be preserved in the rock record. In a more modern, 

oxygenated atmosphere, the reduced sink is shut down, and the S-MIF signature cannot be preserved. 

 Many attempts have been made to explain sulfur mass independent fractionation in the Archean 

rock record, with limited success. 1) Shifts in the vibrational spectrum of SO2 have been shown both 

empirically and theoretically, to produce large S-MIF signatures via an isotopologue self-shielding, 

dissociation mechanism. However, the fractionation pattern does not match the rock record well. 2) 

Collisional transfer from a bound, strongly absorbing singlet SO2 electronic state to a longer lifetime 

triplet electronic state. This mechanism also produces large S-MIF signatures, possibly due to 

coincidental degeneracies between the singlet and triplet quantum energy levels. But these patterns also 

do not match the rock record, and the chemical reaction that preserves this S-MIF signature is slow 

compared to the collisional deactivation of the singlet state. 3) Nuclear permutation symmetry, wherein 

molecules with identical 32S nuclei, such as 32S-32S, have half their rotational states missing relative to 



 

43 

asymmetric molecules like  33S-32S. This could generate S-MIF signatures that closely resemble those in 

the rock record. However, the most well-known isotope symmetry effect, the eta-effect in oxygen, cannot 

be readily applied in the case of sulfur, due to the latter’s more complex atmospheric chemistry. 

1.10. Gaps in our Current Understanding of S-MIF Processes 
 

 Thus far, attempts to explain Archean S-MIF are characterized by two types of basic mechanisms. 

First, is the effect of vibrational energy level shifts. These can impact both spectroscopy (isotopologue 

self-shielding in C state predissociation) and may create accidental degeneracies between energy levels of 

two different electronic states, which can facilitate transfer between the them (singlet/triplet transfer in 

bound SO2). Second is the concept of nuclear permutation symmetry. The oxygen eta effect is rooted in a 

statistical model of connections between reactant quantum states and transition quantum states. This 

number, as noted by Gao and Marcus, is larger for asymmetric transition states than for symmetric 

transition states. 

 Many proposed S-MIF mechanisms rely heavily on the idea of vibrational energy level shifts and 

nuclear permutation symmetry affecting population transfer, either between one electronic state to 

another, or between one chemical state or another. However, the only evidence of this process (isotope 

fractionation data) is quite indirect. There has never been a full, state-by-state analysis of the mechanisms 

by which population may move between electronic states. This leaves many unanswered questions. For 

example, how do missing rotational states in symmetric molecules affect the transfer process, if at all? Is 

the overall rotation/vibration energy level structure of the two electronic states important? And can that 

overall structure be used to predict S-MIF effects in other systems and molecules? Or, is the transfer 

process more random, determined by coincidental energy level degeneracies between the two states? Is 

this process affected by the strength or character of the perturbations between the two states? Do the 

answers to these questions change for non-equilibrium, unidirectional processes versus equilibrium ones? 
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 To address these questions, this thesis describes a complete state-by-state analysis of the 

ultraviolet B-X electronic state transition in S2, including a full treatment of collisional transfer between 

the B excited state, and a nearby perturbing B” state. It attempts to assess whether this exact system, or a 

similar system could be the origin of S-MIF in the rock record. There many features of S2 that merit a 

detailed analysis, including nuclear permutation symmetry, the systematic nature of the B/B” 

perturbations, and the onset of predissociation at higher vibrational levels that allows for analysis of 

nonequilibrium processes. 

1.11 General Outline of this Work  
 

The general spectroscopic features of the B and B” states of  S2, as well as their UV transitions to 

and from the X state will be explored in detail in Chapter 2. Chapter 3 details a novel collisional transfer 

model that combines a well known model for rotationally inelastic transfer with a doorway/perturbation 

based model for collisional transfer between the B/B” states, providing both intuition and a detailed 

description of the theory that is supplemented by Appendix A. Chapter 4 describes a Master Equation 

model that completely accounts for all radiative and collisional transfer processes in the B/B”-X system. 

This model can be solved both at steady state, and in a time dependent manner, a feature that will be 

important for the analysis in the final four chapters. The model solves for the fraction of population in the 

excited state, for each isotopologue. By assuming that excited state S2 reacts at a much higher rate than 

does ground state, I hypothesize that the excited state population can be considered a fractionation 

parameter. 

 The final four chapters contain results and discussion. Chapter 5 explores the B/B” model in two 

ways: once at steady state (not predissociating), and once time dependently, when including 

predissociation at energy levels greater than 36,000. In both cases, the fractionation approximates a S-

MDF relationship. The fractionation mechanisms are explored in detail, providing insight into the 

influence of energy level patterns on collisional transfer. I conclude that the B/B” state-mixing is too 

large, and therefore too systematic, to generate significant S-MIF. Chapter 6 explores whether or not 
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weaker perturbations could be the origin of S-MIF. Specifically, it develops a statistical model using 

small, random perturbations, and demonstrates that such a model can behave differently due to nuclear 

permutation symmetry (under certain conditions). It then compares the results of the statistical model to 

the output of the master equation model with the B/B” state-mixing matrix elements set to 1% of their 

original vales; it concludes that there is evidence of statistical behavior. Chapter 7 explores the impact of 

non-statistical effects on the results of the weakly state mixed model introduced in Chapter 6. This 

analysis, supplemented by Appendix B, reveals the possibility for very small state mixings, on the order 

of 0.002%, to have a significant impact on isotope fractionation, which greatly expands the number of 

possible S2 electronic state interactions, beyond the B/B” system that could cause fractionation. The 

conclusion in Chapter 8 supplements this analysis with more calculations and suggests future areas of 

study. 
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Chapter 2 : Spectroscopy of the B/B”-X System in S2 
 

Abstract:  

 The goal of this work is to analyze the ability of collisional transfer between excited electronic 
states to generate S-MIF. The B/B”-X system (bound states: ~31,000 - ~36,000 cm-1) in S2 has a number 
of features that make it especially worthy of analysis. First, it has been extensively characterized in a 
variety of studies. Second, the bound vibrational levels of the short-lifetime (~32 ns) B states are 
extensively perturbed by the longer-lifetime (~4200 ns) B” state. This system has been deperturbed by 
Green and Western, which allows for a very detailed state-by-state analysis of fractionation mechanisms. 
Third, the most abundant isotopologue of S2, 32-32, is subject to nuclear permutation symmetry 
restrictions that only allow for (-) parity rotational states. Fourth, the B/B” states predissociate above 
35,999 cm-1, which creates opportunities to study time-dependent, as opposed to equilibrium processes. 
Finally, the nature of the bound B/B” state vibronic level crossings change systematically over the extent 
of the band. This gives a number of different level crossing patterns to be analyzed. My spectroscopic 
model incorporates Green and Western’s effective Hamiltonian, detailed Franck-Condon calculations, 
nuclear permutation symmetry restrictions, predissociation, and mass-dependent vibrational level shifts. 

 

2.1. Introduction 
 

 This work analyzes collisional transfer between the strongly interacting B and B” excited 

electronic states in S2, where the excited states are populated via UV transitions from the X state, to assess 

the ability of rotationally/electronically inelastic transfer processes to create S-MIF in the rock record. A 

number of features of the B/B”-X state make it an especially good test case. For example, the bound 

levels of the short-lifetime B state are perturbed extensively by a longer-lifetime B” state, and these 

interactions have been extensively characterized. The nature of these interactions change systematically 

over the course of the band, which allows me to analyze a variety of different interactions. The most 

abundant isotopologue of S2, 32-32, has half of its rotational levels missing due to nuclear permutation 

symmetry. Also, the B/B” system predissociates above ~36,000 cm-1, which allows us to analyze time-

dependent, as opposed to equilibrium processes. 

  In this chapter, I detail the properties of the B and B” states themselves, their perturbations, as 

well as the properties of their transitions to and from the X state.  In the next chapter, I will detail the 

collisional transfer model. This chapter has two main parts. In the first, I overview a number of key 
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features of the S2 B/B”-X band. The second portion details both the energy level and radiative 

calculations for the X and B/B” states. 

2.2 The B/B”-X UV band of S2: An overview 
 

The complete B/B”-X system in S2 is shown in Figure 1 [43]. The B state has molecular term 

symbol Σ ,  and the bound vibrational levels of the B state (vB =  0-9) stretch from ~31000 cm-1 (323 

nm) to a predissociation limit at ~35999 cm-1 (277 nm). This B state is perturbed over the entirety of this 

range, primarily via spin-orbit interactions by a B” state (𝑣 "  =  0 − 21, term symbol: Π 
 ). It is 

important to note that the B and the B” state have different dissociation limits. The B state dissociates to a 

S (3P) + S (1D) limit at ~42,000 𝑐𝑚 , and the B” state dissociates to a lower energy state, S (3P) + S 

(3P), at 35,5621 𝑐𝑚 . Because the B” state is approaching its dissociation limit at the upper end of this 

range, its vibrational levels become closely spaced. This is why the B” state has double the number of 

vibrational levels in the same energy range. The onset of predissociation around 𝑣  =  10/𝑣 "  =  22 is 

due to spin-orbit interactions with a repulsive, Hund’s case (c) 1u state that correlates to a 1Πu Hund’s case 
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(a) state [44],3, as has been detailed by Ricks and Barrow [45], Green and Western [46], Lewis, et. al. 

[47], and Stark, et. al. [48]. This repulsive 1u state is also shown in Figure 1.   

2.1.1. Previous Studies of the B/B”-X System 
 

 The large body of extensive, detailed research on the B/B”-X system makes it a particularly 

excellent candidate for a state-by-state analysis of population transfer. Foundational research on B/B” 

state spectroscopy was undertaken by Meakin and Barrow [49]; Patino and Barrow [50]; Heaven, Miller, 

and Bondybey [51], among others. However, the seminal work on the topic was performed by Green and 

Western [52, 46]. Green and Western noted that previous attempts to deperturb the B/B” system were 

localized to specific avoided crossings and completely ignored long-range interactions. To fully describe 

the system, they performed two separate “global deperturbations” (first on 𝑣 = 0 − 6 and 𝑣 " = 2 − 12 

                                                           
3 For a full overview of Hund’s cases, see Lefebvre-Brion and Field (2004), Chapter 3. 

Figure 2-1: The relevant potential energy curves, as a function of internuclear distance, R. Note that the 
B” state dissociation limit is lower than the B state, creating a shallower potential energy curve. The 
repulsive Π  state crosses the B state at approximately v = 9. 
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[52] and then on 𝑣 = 7 − 9 and 𝑣 " = 13 − 21 [46]). In these “global deperturbations”, all relevant B 

state spectroscopic parameters, B” state parameters, and B/B” interactions were floated simultaneously, in 

order to best fit the data. The authors also found it necessary to include small, long-range B/B” 

interactions that were not directly observed in their spectroscopic data. Additionally, they calculated the 

intrinsic lifetime of the B state as 32 ns, and the intrinsic lifetime of the B” state as 4160 ns. I will use 

these two values extensively in this work. 

 The widespread perturbations here are analogous to the 𝐴/𝐵 band in SO2, which, as I noted in 

chapter 1, has been shown to generate a S-MIF signature, presumably via collisional transfer to 

perturbing, long-lifetime, weakly-absorbing triplet states.4 The advantage here, however, is that Green 

and Western provide a largely complete, accurate description of all bound states of both the strongly 

absorbing, spectroscopically “bright” B state, and its perturber: the weakly absorbing, spectroscopically 

“dark” B” state. This allows for a far more detailed, rotationally-resolved, state-by-state analysis of the 

mechanisms by which collisional population transfer can generate an S-MIF signature. While I am 

investigating whether the B/B” interaction is, itself, the cause of S-MIF, this level of detailed analysis 

may give general principles that can guide future studies of the topic.  

2.1.2. The effect of isotope shifts on the B/B” system 
 

 In this work, I employ a modified version of Green and Western’s original model. The simplest 

modification I make is to include the effect of small changes in mass for different S2 isotopologues 

(Green and Western only observed lines for the most abundant isotopologue- 32S-32S). To do so, I assume 

that the vibrational frequency simply scales as the square root of the reduced mass (𝜇), i.e. Equation 2.1 

𝜔 =  
𝑘

𝜇
. (2.1) 

                                                           
4 This, however, has not been proven. 
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where 𝑘 is the spring constant, which is a function of the shape of the electronic state potential energy 

surface. If I assume this shape is independent of isotopologue, I can relate the known 32-32 frequency 

𝜔  , determined by Green and Western, to the frequency of any other isotopologue, using the simple 

relationship given by Equation 2.2: 

𝜔

𝜔
=  

𝜇

𝜇
. (2.2) 

 The rotational constant, 𝐵, is also related to the reduced mass, as shown in Equation 2.3 

𝐵 =  
ℏ

𝜇𝑟
. (2.3) 

Here, ℏ =  ℎ
2𝜋, where h is Planck’s constant. The term 𝑟  is the equilibrium internuclear distance, 

which should also be independent of isotopologue. Therefore, I have Equation 2.4 

= . (2.4)

In a simplistic, but instructive, sense, I think of the bound B state energy level pattern as a series of 

vibrational origins, 𝐸 (𝑣), where 𝑣 is an integer from 0-9, and, likewise, we have the 𝐸 "(𝑣), where 𝑣 =

 0 − 21. Within each vibrational level, there is a series of rotational levels that (roughly) scale as 𝐵(𝑣) ∗

(𝑋) ∗ (𝑋 + 1), where 𝑋 is the pattern forming rotational quantum number (𝑋 is a different quantum 

number for the B state and the B” state, as I will discuss). The rotational constant, 𝐵, is also a function of 

the vibrational quantum number, 𝑣. Figure 2-2 shows the rotational constants for the B and the B” states, 

as a function of their respective vibrational energies. Though they start with similar values, the rotational 

constants for the B” state begin to sharply decrease around 34,000 cm-1. This reflects a softening of the 

potential energy curve and an increase in the equilibrium bond length (Equation 2.3) as the B” state 

approaches its dissociation limit (Figure 2-1). In addition, the shift in vibrational frequency as a function 

of mass causes larger energy level shifts at higher energy. 
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 These differences in behavior between the upper vibrational levels and the lower vibrational 

levels are especially relevant for the B/B”-X UV system, due to the Franck-Condon factors between the X 
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Figure 2-2: Rotational constants for the B and B” states as a function of vibrational energy. The B state 
rotational constants remain relatively constant, while the B” state constants begin to sharply decline 
around 34,000 cm-1, as the B” state approaches its dissociation limit. 

Figure 2-3: The B state Franck Condon progression from v  =  0 to v  =  0 − 9. Above v  =  9, 
the B state predissociates. 
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state and the B state and the B” states. For the purposes of this discussion, I will use the B state as an 

example, but a similar discussion applies to the B” state. For more on the B” Franck Condon 

distribution, and its effects on isotope fractionation, see sections 2.8 and 5.4.   

 To begin, the transition intensity between an X state vibrational level to the B state vibrational 

level is proportional to 𝑞(𝑣 , 𝑣 ), where 𝑞(𝑣 , 𝑣 ) is the Franck Condon factor, the overlap integral 

between the B state and the X state vibrational wavefunctions. Figure 2-3 shows the Franck Condon 

progression for 𝑣  =  0 (which contains ~96% of the equilibrium population) to 𝑣  =  𝑥, with x= 0 to 9. 

In Figure 2-3, the B state Franck Condon factors are much larger for higher 𝑣’s than for lower 𝑣’s. Figure 

2-4 compares curve crossings between the B and B” electronic states with low vibrational quantum 

numbers and crossings between those with high vibrational quantum numbers. Figure 2-4a shows a 

crossing between a B state with 𝑣 =  2, and a B” state with 𝑣 =  5 for both 𝑆 − 𝑆  and 𝑆 − 𝑆 . 

The interaction region is long because the rotational constants are similar, and the effect of the isotope 

shift is minimal. Figure 2-4b shows a crossing between B state, 𝑣 =  9 and B” state, 𝑣 =  18. The 

interaction is short because of the rotational constant disparity and effect of the isotope shift is much 

larger. Due to the Franck Condon weighting, these short interactions may have a greater influence on the 

overall behavior of the system than do the longer ones.  
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Figure 2-4:  (a) shows the level crossing between the B, v = 2 state and the B” v = 5, Ω = 1 state. Figure 
4(b) shows the level crossing between the B, v = 9 state and the B” v = 18, Ω = 1 state. The independent 
axis is “the reduced term value,” where 0.15J(J + 1) is subtracted from each energy value, to achieve 
scale expansion and make the interaction easier to visualize. This is why the B” v = 18 state appears to 
“decrease” in energy as the rotational quantum number increases. The interaction is much more 
protracted, i.e. occurs over a much longer range of J, for the lower vibrational levels (left) than the higher 
ones (right). 

2.3. Nuclear Spin Statistics and Missing Energy Levels in Symmetric Isotopologues 
 

 The symmetric isotopologues, 32-32, 34-34, and 36-36, have two identical nuclei with zero 

nuclear spin (𝐼 = 0). Therefore, any wavefunction  (Ψ ) that completely describes the system must 

obey Bose-Einstein statistics, i.e. the total wavefunction must be symmetric with respect to the exchange 

of the two identical nuclei (Ψ(1,2) =  Ψ(2,1), where 1 and 2 represent the set of nuclear coordinates for 

atom 1 and atom 2, respectively). Due to this quantum mechanical effect, half of all rotational states are 

missing in symmetric S2, compared to asymmetric S2. In this section, I fully derive this effect by 

analyzing the total molecular wavefunctions for the 𝑋 state, the 𝐵 state, and the 𝐵” state individually. 

2.3.1. Introduction: 
 

 I begin by expressing the total wavefunction as a product of translational, vibrational, rotational, 

electronic, and nuclear spin wavefunctions (Equation 2.5) 

Ψ =  𝜓 𝜓 𝜓 𝜓 𝜓 . (2.5) 
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In Equation 2.5, the translational and vibrational components of the total wavefunction depend only on 

the center of mass coordinate and internuclear distance, respectively, and are, therefore, always 

symmetric with respect to the exchange of nuclei. Because 𝐼 = 0, the nuclear spin wavefunction must 

always be, likewise, symmetric. Both 𝜓  and  𝜓 , however, can be either symmetric or asymmetric 

with respect to exchange. Therefore, I consider 𝜓  and  𝜓  in turn for the X, B, and B” states. 

2.3.2. X state, (3Σg
-): 

 

 Because 𝜓  follows the Hund’s case (b) angular momentum coupling pattern [44], the 

rotational pattern forming quantum number is 𝑁, where 𝑁 is the total angular momentum (𝐽), exclusive of 

spin (𝑆), i.e. 𝑁  =  𝐽 − 𝑆. Under the nuclear exchange operation, wavefunctions with 𝑁 =  0,2,4… are 

symmetric (Ψ (1,2) =  Ψ (2,1)) while wavefunctions with 𝑁 = 1,3,5… are antisymmetric 

(Ψ (1,2) =  −Ψ (2,1)) [53]. 

 To determine the symmetry of the electronic wavefunction with respect to nuclear exchange, I 

begin with the electron configuration of the X state: … 5𝜎 2𝜋 2𝜋 . Electrons are fermions (spin ½), and 

their electronic wavefunction must obey Fermi-Dirac statistics. That is, 𝜓  must be antisymmetric 

with respect to electron exchange. The antisymmetry condition is given by Equation 6, where 1e and 2e 

represent the coordinates of the first and second electron (not nucleus), respectively 

𝜓 (1 , 2 ) =  −𝜓 (2 , 1 ). (2.6) 

I now consider 𝜓  as the product of an orbital wavefunction and a spin wavefunction, as in Equation 

2.7 

𝜓 (1 , 2 ) =  𝜓 (1 , 2 )𝜓 (1 , 2 ). (2.7) 

For spin wavefunctions, I define 𝛼 and 𝛽 as the wavefunctions associated with 𝜎 =  ±1, respectively. 

Here, the parameter 𝜎 is the projection of a single electron’s spin angular momentum along the bond axis. 

The wavefunction 𝛼 is associated with 𝜎 = +1 and 𝛽 is associated with  𝜎 = −1. 
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 For the 𝑋 state, with two electrons in an open shell, there are four possible spin wavefunctions. 

They are:  𝛼(1 )𝛼(2 ), 𝛽(1 )𝛽(2 ), 
√

[𝛼(1)𝛽(2) + 𝛼(2)𝛽(1)], and 
√

[𝛼(1)𝛽(2) − 𝛼(2)𝛽(1)]. The 

first three spin wave functions are all symmetric with respect to electron exchange, and therefore 

associated with the triplet X state. This gives Equation 2.8 

𝜓 (1 , 2 ) =

⎩
⎨

⎧
𝛼(1 )𝛼(2 )

1

√2
[𝛼(1 )𝛽(2 ) + 𝛽(1 )𝛼(2 )]

𝛽(1 )𝛽(2 ).

(2.8) 

Because the triplet spin wavefunction must be symmetric with respect to electron exchange, we must have 

the orbital wavefunction antisymmetric with respect to electron exchange 

(𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑥 𝑎𝑛𝑡𝑖𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 =  𝑎𝑛𝑡𝑖𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐). For the orbital wavefunctions, I now define 𝜋  as 

a pi electron orbital associated with 𝜆 = +1. The parameter 𝜆 is the molecular frame projection of a 

single electron’s orbital angular momentum along the bond axis. The 𝜋  orbital is defined, likewise, as 

the pi orbital associated with 𝜆 = -1. The required antisymmetric orbital wavefunction is given by 

Equation 2.9 

𝜓 (1 , 2 ) =
1

√2
𝜋 , (1 )𝜋 , (2 ) − 𝜋 , (1 )𝜋 , (2 ) . (2.9) 

Having ensured that 𝜓  satisfies Fermi-Dirac statistics with respect to electron exchange, I 

now asses the behavior of 𝜓  with respect to nuclear exchange. In electronic coordinates, the 

symmetry operator corresponding to the exchange of nuclei is  𝚤̂ × 𝜎 [54]. Here, 𝚤 ̂is the inversion 

operator, which transforms the electronic coordinates of the orbital wave function from (𝑥, 𝑦, 𝑧) to 

(−𝑥, −𝑦, −𝑧). The spin wavefunction is not a function of spacial coordinates and is therefore symmetric 

with respect to 𝚤.̂ For the orbital wavefunctions, we label their symmetric/antisymmetric behavior under 

the inversion operator as g/u (“gerade”/”ungerade”). For the X state, the 𝜋 states are symmetric (g) states. 
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 The 𝜎 operator is a reflection through a plane containing the internuclear axis, which transforms 

𝜋  to 𝜋 .5 As with 𝚤,̂ it does not affect the spin wavefunction. Therefore, 𝜓  is symmetric with respect 

to electron exchange. Applying the complete 𝚤̂ × 𝜎 operator shows that 𝜓  is antisymmetric with 

respect to exchange. This makes the overall 𝜓  antisymmetric. Because  𝜓  is antisymmetric, and all 

other portions of the wavefunction ( 𝜓 𝜓 𝜓 )  are symmetric,  𝜓  must be antisymmetric. 

Therefore, only odd N’s exist for the X state. 

 However, my calculations are carried out using a Hund’s case (a) basis set, where 𝐽, the total 

angular momentum, is the rotational quantum number, instead of 𝑁. Therefore, we briefly consider the 

consequences of nuclear spin statistics on J. For a case (b) electronic state, the total spin vector S couples 

to N to yield J. For a triplet state, projections of S can equal -1,0, or 1. Therefore, there are three 

possibilities: J = N + 1 (which has e rotationless symmetry), J = N (f rotationless symmetry), or J = N-1 (e 

rotationless symmetry). The 𝑁 quantum number can only be odd, so J is even for e symmetry states and 

odd for f symmetry. The total parity of these states is (-). 

2.3.3. B state (3Σu
-): 

 

 The B state electron configuration is … 5𝜎 2𝜋 2𝜋   The analysis is nearly identical to that for 

the X state, except the electron orbital wavefunction is antisymmetric with respect to inversion, 𝚤,̂ making 

the overall electronic wavefunction symmetric with respect to nuclear exchange. Therefore, the allowed 

N’s are even, and the allowed J’s are odd for e symmetry and even for f symmetry. The total parity is 

again, (-). 

2.3.4. B” state (3Πu): 
 

                                                           
5 Classically, we think of the +/- designation as representing either a clockwise or a counterclockwise 
rotation around the bond axis. The reflection operation described by 𝜎 reverses the direction of that 
rotation [55]. 
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 The B” state follows a Hund’s case (a) coupling pattern. The rotational pattern forming quantum 

number is J, the total angular momentum. Therefore, the rotational wavefunction is symmetric with 

respect to nuclear exchange for even J, and antisymmetric with respect to nuclear exchange for odd J. 

 Analysis of the symmetry properties of the electronic wavefunction is more complex than that for 

the X or B states, but it follows a similar logical path. The electron configuration of the B” state is  

… 5𝜎 2𝜋 2𝜋 5𝜎 . Like the X state, the B” state is a triplet, so we have the same three symmetric spin 

wavefunctions (see Equation 2.8). Unlike the X state, however, there are not one, but two antisymmetric 

orbital wavefunctions allowed by Fermi-Dirac statistics. They are given by Equations 2.10a-b: 

𝜓 , =
1

√2
𝜋 (1)𝜎 (2) −  𝜋 (2)𝜎 (1) (2.10𝑎) 

𝜓 , =
1

√2
𝜋 (1)𝜎 (2) −  𝜋 (2)𝜎 (1) . (2.10𝑏) 

Equation 2.10a has 𝜆 =  +1, and Equation 2.10b has 𝜆 =  −1. Note that neither wavefunction has a 

definite symmetry with respect to the 𝜎 operator, so we create symmetrized wavefunctions, as follows 

(Equations 2.11a-b) 

𝜓 , =
1

√2
[|𝜓 > +|𝜓 >] (2.11𝑎) 

𝜓 , =
1

√2
[|𝜓 > −|𝜓 >]. (2.11𝑏) 

 Here e and f denote the rotationless symmetry [44]. Applying the 𝚤̂ × 𝜎 operator (nuclear 

exchange in electronic coordinates) shows that |𝜓  𝑒 > is antisymmetric, and  |𝜓  𝑓 > is 

symmetric, with respect to exchange of nuclei. Therefore, both even-J and odd-J states exist, with the 

even J’s having f symmetry, and the odd J’s having e symmetry. 

2.4: Introduction to the Green and Western Hamiltonian 
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 In this study, I implement an effective Hamiltonian model for energy levels in the 𝑋, 𝐵, and 𝐵” 

states, similar to that used by Green and Western. The principle differences are the vibrational/rotational 

level shifts and the inclusion of extra states in asymmetric S2, described in Section 2.2. There are, 

additionally, a few small terms included in the Green and Western model that are excluded in my model, 

as they only affect high-J states that will be irrelevant to my collisional transfer model. 

 In the manner of Green and Western, I split the Hamiltonian in two. The larger terms are 

contained in 𝐻  (Equation 2.12a) and the smaller terms are contained within 𝐻  (Equation 

2.12b)  

𝐻 = 𝐵 𝐽(𝐽 + 1) + 𝑆(𝑆 + 1) −  𝐽 − 𝐿 −  𝑆 + 𝐵 𝐽 𝐿 +  𝐽 𝐿

+ 𝐵 𝐽 𝑆 + 𝐽 𝑆 + 𝐵 𝐽 𝐿 +  𝐽 𝐿  (2.12𝑎)
 

𝐻 =  −𝐷𝑅 +
2

3
𝜆 3𝑆 − 𝑆 +  𝛾𝑁 ∙ 𝑆 −

1

2
𝑜 𝑆 𝑒 +  𝑆 𝑒 . (2.12𝑏) 

Here, L, S, R, and J represent the orbital, spin, rotational, and total angular momentum quantum numbers, 

respectively, with their angular momentum projection operators (e.g. 𝐿 ) and the raising and lowering 

operators (e.g. 𝐽 / ) defined as in Levebre-Brion and Field [44]. Likewise, A is the spin orbit constant, 

and B is the rotational constant. Note that the raising and lowering operators are defined in the molecular 

reference frame, so  𝐽  functions as a raising operator and 𝐽  functions as a lowering operator (i.e. 

<Ω+1|𝐽 | Ω> ≠ 0, and  <Ω-1|𝐽 | Ω>≠ 0, where Ω is the projection of J along the bond axis). For more 

details, see Zare (1988) [55]. The terms in the minor Hamiltonian represent centrifugal distortion, spin-

spin coupling, spin-rotation coupling, and “o-type” lambda doubling, with associated constants: D, 𝜆, 𝛾, 

and 𝑜. My model incorporates rotational quantum levels with 𝐽 =  0 − 100. For vibrational levels, I 

include 𝑣 =  0 − 1 for the X state (these two states account for >99% of the equilibrium vibrational 

population), 𝑣 =  0 − 9 in the B state, and 𝑣 =  0 − 21 in the B” state. Again, this accounts for all bound 

upper states in the B/B” system. 
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2.5: Constructing the Effective Hamiltonian 
 

 In this section, I detail every matrix element included in the effective Hamiltonian used in this 

study. To begin, I construct the effective Hamiltonians in the Hund’s case (a) basis set. Hund’s case (a) 

basis states are written in terms of their “good quantum numbers”, i.e quantum numbers that represent 

quantum states with relatively small off-diagonal matrix elements in the case (a) angular momentum 

coupling scheme. I write these basis states as |𝐽 Ω S Σ Λ v >, where Ω is the projection of the total angular 

momentum, Σ is the spin projection, Λ is the orbital angular momentum projection, and v is the 

vibrational quantum number. 

 It is also convenient to define a symmetrized basis set, as follows in Equations 2.13a-b, where e 

and f denote the rotationless symmetry (similar to section 2.3.4). We do so because the Hamiltonian does 

not connect states of opposite symmetry (i.e. < 𝑒|𝐻|𝑓 > =  0, always)  

|𝑒 >  =   
1

√2
(|𝐽 Ω S Σ Λ v >  + |𝐽 (−Ω) S (−Σ) (−Λ) v >)  (2.13𝑎) 

|𝑓 >  =   
1

√2
(|𝐽 Ω S Σ Λ v >  − |𝐽 (−Ω)S (−Σ)(−Λ)v >).  (2.13𝑏) 

The only exceptions are the Ω = 0 components of the X and B Σ  states. For these components, Ω =

 Σ =  Λ = 0. Therefore, the basis states (|𝐽 0 S 0 0 v >) have e symmetry, intrinsically. 

I now list all matrix elements included in my effective Hamiltonian model. I begin with the X and 

B states, as they both correspond to the 𝛴 
  electronic term symbol. The diagonal matrix elements for the 

X and B states, sorted by their corresponding term in the Hamiltonian given in equations 2.12a-b, are 

listed in Table 2-I. The values of the molecular constants are those presented in Green and Western, with 

the exception of the isotopologue shifts described in the previous section. These matrix elements apply to 

both e symmetry and f symmetry states. 
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Table 2-I: 3Σ-  (X and B state) Diagonal Matrix Elements 

Hamiltonian Term Diagonal Matrix Element 

<3Σ-  
Ω| J2 + S2 – Lz

2 -Sz
2 – Jz

2 |3Σ-  
Ω> B (J (J+1)  + S(S + 1) – Ω2 – Σ2) 

<3Σ-  
0| -DR4 |3Σ-  

0> -D[ (J (J + 1))2 + 8 J (J+1) + 4] 

<3Σ-  
1| -DR4 |3Σ-  

1> -D[ (J (J+1))2 + 2J (J + 1)] 

<3Σ-
 Ω| 2/3λ(3S2

z – S2) |3Σ-  
Ω > 2/3λ[3 Σ2 - S(S + 1)] 

<3Σ-
 Ω|γNS|3Σ-  

Ω > γ[Σ Ω – S(S + 1)] 

 

 Table 2-II displays the off-diagonal matrix elements within the 𝛴 
 states, between different spin 

orbit components (i.e. Ω = 0 and Ω = 1). For 𝛴 
  states, 𝛺 =  0 components have exclusively e 

rotationless symmetry. Therefore, all off-diagonal matrix elements must be between two states with e 

symmetry. 

Table 2-II: Off-Diagonal Matrix Elements for 𝜮 
𝟑  (X, B) 

Hamiltonian Term Matrix Element 

<3Σ-  
1 e|-B(J-S+ + J+S-) |3Σ-  

0 e> -2B(J (J + 1))1/2 

<3Σ-  
1 e| -DR4 |3Σ-  

0 e> 4D[ (J (J + 1))3/2 + (J (J + 1))1/2] 

<3Σ-
 1 e|γNS|3Σ-  

0 e> γ(J (J + 1))1/2 

  

Table 2-III shows the diagonal matrix elements for the B” 3Πu state. Note that the last two terms show a 

discrepancy in the behavior between e and f symmetry components, due to o-type (Ω = 0) lambda 

doubling. 

Table 2-III: Off-Diagonal Matrix Elements for 𝚺 
𝟑  (X, B) 

Hamiltonian Term Matrix Element 

<3Π Ω | J2 + S2 – Lz
2 -Sz

2 –Jz
2|3Π Ω > B[ J(J + 1) + S(S + 1) - Ω2  - Σ2 - 1 

<3Π Ω | ALzSz|3Π Ω > A Σ 

<3Π 0 | -DR4 |3Π 0 > -D[ (J (J+1))2 – 2 J (J+1)] 
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<3Π 1 | -DR4 |3Π 1 > -D[ (J(J+1))2 + 4J(J+1) – 4] 

<3Π 2 | -DR4 |3Π 2 > -D[ (J(J+1))2 + 6J(J+1) + 12] 

<3Π Ω |2/3λ(3S2
z – S2) |3Π Ω > 2/3λ[3 Σ2 - S(S + 1)] 

<3Π Ω | γNS |3Π Ω > γ[Σ Ω – S(S + 1)] 

<3Π Ω Ω = 0, e|-1/2o(S+
2e-2ϕ + S+

2e+2ϕ) |3Π Ω Ω = 0, e > o 

<3Π Ω Ω = 0, f|-1/2o(S+
2e-2ϕ + S+

2e+2ϕ) |3Π Ω Ω = 0, f > -o 

  

Table 2-IV gives the off-diagonal matrix elements within the B” 3Π state. All nonzero matrix 

elements are between two states with the same rotationless symmetry. 

Table 2-IV: Off-Diagonal Matrix Elements for 3Σ- (X, B) 

Hamiltonian Term Matrix Element 

<3Π 1 e/f| -B(J-S+ + J+S-) |3Π 0 e/f> -B[ J (J + 1)]1/2 

<3Π 1 e/f| -DR4 |3Π 0 e/f> -23/2D( J (J +1))2/3 

<3Π 1 e/f| γNS |3Π 0 e/f> γ/2(J(J+1))1/2 

<3Π 2 e/f| -B(J-S+ + J+S-) |3Π 1 e/f> B(2J(J+1) – 4)1/2 

<3Π 2 e/f|-DR4|3Π 1 e/f> -23/2D(2J(J+1) – 4)(2(J(J+1)-4)1/2 

<3Π 2 e/f| γNS |3Π 1 e/f> γ/2(2J(J+1) – 4)1/2 

<3Π 2 e/f|-DR4|3Π 0 e/f> -2D((J(J+1) – 2)(J(J+1))1/2)1/2 

 

 Thus far, I have only listed off-diagonal elements within a given electronic state. For 

perturbations between electronic states, Green and Western define the parameters α and β, as in Equations 

2.14a-b 

𝛼 = < 𝐵", 𝑣 "|
1

2
𝐴 + 𝐵 𝐿 |𝐵, 𝑣 > (2.14𝑎) 

𝛽 = < 𝐵", 𝑣 "|𝐵𝐿 |𝐵, 𝑣 >. (2.14𝑏) 

Green and Western list 𝛼 and 𝛽 as a function of 𝑣  and 𝑣 ".  
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Equations 2.15a-e give the B/B” state perturbations in terms of 𝛼 and 𝛽 

< Π 𝑒 𝐻 Σ 𝑒 > = 𝛼 + 𝛽 (2.15𝑎) 

< Π 𝑒 𝐻 Σ 𝑒 > = −
1

2
(𝐽(𝐽 + 1)) / 𝛽 (2.15𝑏) 

< Π 𝑒/𝑓 𝐻 Σ 𝑒/𝑓 > =  2 (𝛼 + 𝛽) (2.15𝑐) 

< Π 𝑒/𝑓 𝐻 Σ 𝑒/𝑓 > =  ∓2 (𝐽(𝐽 + 1)) 𝛽 (2.15𝑑) 

< Π 𝑒/𝑓 𝐻 Σ 𝑒/𝑓 > =  −[𝐽(𝐽 + 1) − 2] 𝛽. (2.15𝑒) 

I assume these perturbations are identical for all isotopologues. This is equivalent to assuming that the 

Franck Condon factors are independent of isotopologue. 

 At this stage in the calculation, I have two Hamiltonians for each isotopologue: one for the X 

state and one for the B/B” system. Each Hamiltonian is then diagonalized in Matlab version 2017a [56], 

producing a set of eigenvalues and their corresponding eigenvectors. An algorithm then assigns an 

eigenstate (|eig>) to a zeroth order, Hund’s case (a) basis state (|J Ω S Σ Λ v>). It finds the basis state that 

maximizes | <J S Ω Σ Λ|eig > |2 and then stores the index for future use. In the next section, the assigned 

case (a) basis states are used to determine spectroscopic selection rules, while the complete eigenstate is 

used to calculate absorption intensity. 

2.6: UV absorption spectroscopy calculations 
 

 The next component of the program calculates the absorption cross-section (σ) for every 

transition allowed by the case (a) selection rules. These rules are: 𝛥𝐽 =  ±1 for 𝑒 → 𝑒 or 𝑓 →

𝑓 transitions, and 𝛥𝐽 =  0 for 𝑒 → 𝑓 or 𝑓 → 𝑔 transitions. Additionally, 𝛥 𝛺 =  0, ±1. 

 In this section, I represent the initial and final eigenstates in the case (a) basis, as in Equation 

2.16. 
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|𝑒𝑖𝑔 > = 𝑐 |𝐽  Ω > |𝑆 Σ Λ > |𝑣 >.  (2.16) 

In Equation 2.16, the sum is over all case (a) basis states, and the 𝑐 ’s are the coefficients, determined by 

the diagonalization procedure defined above. I have also separated the basis state into rotational, 

electronic, and vibrational parts, respectively. Using this construction, the absorption cross-section for a 

given transition (𝜎) given by Equation 2.17 

𝜎 =
2𝜋 𝜈

3𝜖 ℎ𝑐(2𝐽" + 1)
| 𝑐 < 𝐽  Ω |< 𝑆 Σ Λ | < 𝑣 | 𝝁 𝑐 |𝐽  Ω > |𝑆 Σ Λ > |𝑣 >  | , (2.17) 

where 𝜈 is the transition frequency, 𝜖  is the permittivity of free space, ℎ is Planck’s constant, 𝑐 is the 

speed of light, and 𝐽” is the initial state total angular momentum quantum number. Most importantly for 

this section, 𝝁 is the electric dipole moment operator. The dipole moment operator is, here, associated 

with the UV sunlight that drives transitions from the X state to the B/B” state. The term <eig|�̂�|eig> is 

called the transition dipole moment.  Note that 𝝁 operates on the rotational and electronic parts separately. 

The notation for the rotational and electronic components is given by Equations 2.18a-b 

| < 𝐽  Ω |𝝁|𝐽  Ω > | = 𝑆 , , (2.18𝑎) 

| < 𝑆 Σ Λ |𝝁|𝑆 Σ Λ > | = |𝑅 | . (2.18𝑏) 

The term  𝑆 , ,  is the rotational linestrength, and it must be calculated for each value of J and Ω (see: 

next section). By contrast, the term |𝑅 | , the electronic transition dipole moment, is assumed constant 

for the entire electronic state. In separating the electronic wavefunction from the vibrational one, I have 

assumed that the electronic transition dipole moment is independent of the internuclear distance. 

Therefore, the vibrational wavefunction (which is only a function of the internuclear distance) can be 

factored out, as in Equation 2.19 

< 𝑣 < 𝑆 Σ Λ |𝝁|𝑆 Σ Λ > 𝑣 > | = |< 𝑣 |𝑣 > | < 𝑆 Σ Λ |𝝁|𝑆 Σ Λ > |  . (2.19) 
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This factored term is the Franck Condon factor, i.e. 𝑞(𝑣 , 𝑣 ) = |< 𝑣 |𝑣 > | . I consider the rotational 

linestrength, the electronic transition dipole moment, and the Franck Condon factors in the sections 

below. 

2.7: Electronic Transition Dipole Moment and Rotational Linestrengths 
 

 To evaluate 𝑆 , I first consider the dipole moment operator itself (𝝁). The operator is a vector 

quantity that can be written in one of two coordinate systems: (1) a “molecule-fixed” coordinate system, 

with Cartesian coordinates (𝑥, 𝑦, 𝑧), where 𝑧 is the internuclear axis between the two sulfur atoms. (2) A 

so-called “laboratory” coordinate system, with coordinates (𝑋, 𝑌, 𝑍) that is not defined relative to the 

molecule.  

We write the dipole operator in the “lab frame” as follows in Equation 2.20, where  𝚤,̂ 𝚥̂, and 𝑘 are 

unit vectors in the X, Y, and Z directions, respectively 

𝝁 =  𝜇 𝚤̂ + 𝜇 𝚥̂ +  𝜇 𝑘. (2.20) 

The 𝝁 operator is associated with the radiation field that drives transitions from the X state to the B/B” 

electronic states, i.e. UV radiation from the sun. We can assume this light is isotropic, which gives 

Equation 2.21 

�̂� =  3�̂� . (2.21) 

I am interested in the effect of the radiation field on the molecule itself, so I now must transform the 

dipole moment operator from the laboratory frame to the molecular frame. In other words, I express �̂�  

(lab frame) as a linear combination of �̂� , �̂� , �̂�  (molecular frame), with associated coefficents 𝛼 , 𝛼 , 

𝛼 . The linear combination is given by Equation 2.22 

�̂� = 3 𝛼 �̂� + 𝛼 �̂� + 𝛼 �̂� . (2.22) 

I now rewrite the above equation in a particular way to yield Equation 2.23 
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�̂� =
3

2
𝛼 − 𝑖𝛼 (�̂� + 𝑖�̂� ) +

3

2
𝛼 + 𝑖𝛼 (�̂� − 𝑖�̂� ) + 3𝛼 �̂� ). (2.23) 

Equation 2.23 is so written because (�̂� + 𝑖�̂� ), (�̂� − 𝑖�̂� ), and �̂�  have a very limited set of nonzero 

matrix elements when operating on the electronic part of the wavefunction (|SΣΛ>). Here, as previously, I 

will write the electronic wavefunction as the direct product of an orbital wavefunction (|Λ>) and a spin 

wavefunction (|SΣ>). Noting that the dipole only operates on the orbital wavefunction, the nonzero matrix 

elements are given by Equations 2.24a-c 

< Λ + 1 �̂� + 𝑖�̂� Λ >   (2.24a) 

< Λ − 1 �̂� − 𝑖�̂� Λ > (2.24b) 

< Λ|�̂� |Λ >. (2.24c) 

Note that Ω =  Σ + Λ, whrere Σ is the total spin projection quantum number. Because Σ is unchanged, the 

nonzero matrix elements for Ω  are identical. I can now define 𝑅 , 𝑅 , and 𝑅 , as shown in Equations 

2.25a-c 

𝑅 = < Ω + 1
1

√2
�̂� + 𝑖�̂� Ω > (2.25a) 

𝑅 = < Ω − 1
1

√2
�̂� − 𝑖�̂� Ω > (2.25b) 

𝑅 = < Ω|�̂� |Ω >. (2.25c) 

For a transition with 𝛥𝑆 = 0, it can be shown using symmetry relations that the magnitudes of 𝑅 , 𝑅 , 𝑅  

are identical [57]. Therefore, I can define the familiar electronic TDM, |𝑅 | , as in Equation 2.26 

|𝑅 | = |𝑅 | =  |𝑅 | =  |𝑅 | . (2.26) 

This allows me to rewrite < 𝐽  Ω |< 𝑆 Σ  Λ |𝝁|𝐽  Ω > |𝑆 Σ  Λ >, as in equation 2.27 

< 𝐽  Ω |< 𝑆 Σ  Λ |𝝁|𝐽  Ω > |𝑆 Σ  Λ > = |𝑅 | || < 𝐽  Ω |𝜶|𝐽  Ω > | , (2.27) 



 

66 

where   𝜶 = 𝛼 − 𝑖𝛼 , if ΔΩ = 0; 𝜶 = 𝛼 + 𝑖𝛼 , if ΔΩ = −1; and 𝜶 = 3𝛼 , if , ΔΩ = 0. 

This conditional definition of 𝜶 constitutes the so-called “cosine-alpha” matrix. It has nonzero matrix 

elements for ΔΩ = 0, −1, 1 and ΔJ =  −1,0,1. These values are tabulated in Whitting and Nicholls [57], 

and in Hougen [58]. 

2.8: Calculation of Franck Condon Factors 
 

 Recalling my expression for the total transition dipole moment (Equation 2.28): 

| < 𝐽  Ω | < 𝑆 Σ  Λ |  < 𝑣 |𝝁 |𝑣 > |𝑆 Σ  Λ > |𝐽  Ω > |  = |𝑅 | 𝑆 ,  , 𝑞 𝑣 ,𝑣 . (2.28) 

The term 𝑞(𝑣 ,𝑣 )  in Equation 28 is the Franck Condon (FC) factor. In matrix notation, the FC factor is 

| < 𝑣 |𝑣 > |2, but it is perhaps more intuitive in integral form, as in Equation 2.29  

| 𝜓 𝜓 𝑑𝜏| . (2.29) 

Here, 𝜓  and 𝜓 are the upper state and ground state vibrational wavefunctions, respectively, and the 

integral 𝑑𝜏 is over all space. In words, the Franck Condon factor is the spacial overlap between the 

ground state and excited state vibrational wavefunctions. 

 To calculate the FC factors for all bound vibrational levels in the X, B, and B” states, I use 

LeRoy’s RKR [59] and LEVEL [60] programs. The first program, RKR, uses a modification of the 

semiclassical WKB approximation, which is often used to approximate quantum energy levels (in this 

case, vibrational levels) given a potential energy curve [61]. The RKR procedure inverts this process. 

Given a set of rotational/vibrational levels, the program outputs a series of classical turning points that, 

taken together, form the potential energy curves. 
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 For this study, I input the rotational and vibrational energy levels as constants from a low-order 

Dunham expansion. A Dunham expansion is a simple power expression of the rotational-vibrational 

energy in terms of 𝑣 +  and 𝐽(𝐽 + 1),  as in Equation 2.30 

𝐸(𝑣, 𝐽) = 𝑌 , (𝑣 +
1

2
) (𝐽(𝐽 + 1)) .  (2.30) 

To determine the 𝑌 ,  and 𝑌 ,  constants, I performed a least squares fit using the energy levels provided 

by Green and Western for 32S-32S. The results of this fit for the X and B states are shown in Table V. 

Table 2-V: Least squares fit for Dunham Expansion Constants of X state and B state 

Electronic State Yk,l Least Squares Fit / cm-1 

X Y1,0 725.7  

X Y2,0 -0.2850 

X Y0,0 0.2955 

X Y0,1 -1.633*10-3 

B Y1,0 435.6 

B Y2,0 -3.636 

B Y3,0 0.2191 

B Y4,0 -0.01377 

B Y0,0 0.228 

B Y0,1 -2.552*10-3 

B Y0,2 7.916*10-5 

 

In Table 2-V, the X state and the B state have power expansions of different size. The size of the 

fit was chosen to be as large as possible, while avoiding an “overfit” scenario. I considered the curve 

overfit when the inner classical turning points began to increase with increasing energy, which is clearly 

nonphysical behavior. 
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Next, I use LeRoy’s LEVEL program to calculate the vibrational wavefunctions and Franck 

Condon factors. I used a 12 point piecewise polynomial interpolation [60] to determine the potential 

energy function, V(r), from the classical turning points input from the RKR procedure. LEVEL then uses 

the interpolated V(r) to solve the Schrödinger equation. It does so by choosing a trial energy and 

numerically integrating the Schrödinger equation, beginning at both the inner and outer turning points. It 

then evaluates the discontinuity between the inner and outer solutions, chooses a new trial energy, and 

repeats until the solution converges. Finally, LEVEL uses the converged vibrational wavefunctions to 

calculate the Franck Condon factor, as in Equation 2.29. 

The calculated B-X Franck Condon factors, displayed in Table VI, are used in my line intensity 

calculation.  

Table 2-VI: Calculated Franck Condon factors for 𝒗𝑩 = 0-9 and 𝒗𝑿= 0-1 

vB \ vX 0 1 

0 8.53e-05 9.45816e-04 

1 5.80e-04 5.21e-03 

2 2.13e-03 1.53e-02 

3 5.62e-03 3.16e-02 

4 1.19e-02 5.15e-02 

5 2.18e-02 6.96e-02 

6  3.53e-02 8.00e-02 

7 5.21e-02 7.85e-02 

8 7.10e-02 6.45e-02 

9 9.01e-02 4.16e-02 

 

My calculations compare favorably with Franck Condon factors empirically determined by Anderson and 

Crosley [62]. 
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 I also include the B” state Franck-Condon factors.  While the absorption to the B” state is about 

two orders of magnitude weaker, the fluorescence is also, correspondingly, approximately two orders of 

magnitude weaker. Therefore, at steady state, the B” states will have similar populations to the B state. 

The least squares fit Dunham parameters (i.e. Yj,0 and Y0,k constants) that were input into RKR are 

included in Table 2-VII. 

Table 2-VII: Least squares fit for Dunham Expansion Constants of X state and B” state 

Electronic State Yk,l Least Squares Fit / cm-1 
B” Y1,0 391.5 
B” Y2,0 -7.042 
B” Y0,0 0.2049 
B” Y0,1 5.3*10-4 
B” Y0,2 -2.2*10-4 

 

 The calculated B”-X Franck Condon factors are displayed in Table 2-VIII. 

Table 2-VIII: Calculated Franck Condon factors for vB” = 0-21 and vx = 0-1 

vB” \ vX 0 1 
0 4.53e-07 6.51e-06 
1 6.25e-06 7.71e-05 
2 4.45e-05 0.00047 
3 0.00022 0.0019 
4 0.00082 0.00584 
5 0.0025 0.0143 
6 0.0064 0.029 
7 0.014 0.048 
8 0.026 0.067 
9 0.044 0.078 

10 0.064 0.075 
11 0.084 0.057 
12 0.010 0.032 
13 0.11 0.011 
14 0.11 0.000467 
15 0.098 0.0032 
16 0.084 0.015 
17 0.067 0.029 
18 0.050 0.039 
19 0.035 0.042 
20 0.022 0.035 
21 0.0078 0.015 
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2.9: The Electronic Transition Dipole Moments 
 

The final components needed to determine the absolute absorption cross section (Equation 2.17) 

are the electronic transition dipole moments for the B-X transition (|𝑅 | ) and the B”-X transition 

(|𝑅 | "). I begin with |𝑅 | . To determine this quantity, I consider a hypothetical “pure” B rovibrational 

state with no perturbations from the B” state. I assume that the this upper state, 𝑈, has vibrational 

quantum number 𝑣 , total angular momentum quantum number 𝐽 , etc. Per Green and Western [52, 46], 

the empirically determined excited state lifetime of the B state is 32 ns. Therefore the fluorescence rate 

constant, termed the “Einstein A coefficient” (𝐴 ) is simply 1/32 𝑛𝑠 . 

The Einstein A coefficient is related to the transition dipole moment, as shown in Equation 2.31 

𝐴 =  
1

32
 𝑛𝑠 =

16𝜋

3𝜀 ℎ𝑐 (2𝐽 + 1)
𝜈 𝑞(𝑣 , 𝑣 )|𝑅 | 𝑆 . (2.31) 

In Equation 2.31, the sum is over all possible rotation/vibration states within the X electronic state that the 

B state can fluoresce to. 

 To evaluate this sum, I break it in two (Equation 2.32)  

𝜈 𝑞 𝑣 , 𝑣 |𝑅 | 𝑆 ,  = (𝜈 ) 𝑞 𝑣 , 𝑣 |𝑅 | 𝑆 .

, 

(2.32) 

The first summation is over ground state vibrational quantum numbers, 𝑣 , and the second one is over the 

ground state rotational and electronic quantum numbers, 𝑒  and 𝐽 . I write 𝜈  as (𝜈 ) , 

approximating the transition frequency using the difference in vibrational origin energy between the 

upper state and the ground state. This is an especially good approximation at low J. 

 Equation 2.33 gives the sum over rotational and electronic states is given by, where the factor of 

3 is due to the triplet character of the electronic states 
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(𝜈 ) 𝑞 𝑣 , 𝑣 |𝑅 | 𝑆 ,  

, 

= 3(2𝐽 + 1)|𝑅 | . (33) 

Plugging Equation 2.33 into Equation 2.31 gives Equation 2.34, which can be solved for |𝑅 | . 

1

32
 𝑛𝑠 =

16𝜋

𝜀 ℎ𝑐
|𝑅 |

"
(𝜈 ) 𝑞 𝑣 , 𝑣 (34) 

I use Green and Western’s vibrational origin energies and calculate Franck Condon factors. I obtain 

|𝑅 |
𝑩

≈ 1.97 𝐷𝑒𝑏𝑦𝑒. I perform a nearly identical procedure for the B” electronic states with the 

exception of the larger lifetime and correspondingly smaller Einstein A coefficient (i.e 𝐴 =   𝑛𝑠 ). 

This gives |𝑅 |
𝑩"

≈ 0.24 𝐷𝑒𝑏𝑦𝑒. 

2.10: The Structure of the Intensity Calculation 
 

  My Matlab code loops over all possible case (a) basis states for the X electronic state. For each 

basis state, it determines the case (a) basis states for the B/B” electronic states that are allowed by the 

transition dipole moment selection rules. It then accesses the eigenstate associated with each X and B/B” 

state, and passes these eigenvectors to a separate function. This function then calculates 

∑ ∑ 𝑐 𝑐 𝑆 ,  ,  given the “cosine-alpha” matrix elements detailed in section 2.7. The electronic 

transition dipole moments, |𝑅 | , |𝑅 |
"
 are calculated. Finally, the absorption cross-section, 𝜎, is 

determined, as shown in Equation 2.17. 

 This concludes my discussion of the energy levels and transition intensity for the B/B”-X system. 

In Chapter 3, I will turn my attention to collisional transfer within the B and B” states. 
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Chapter 3 : A Simple, Robust Model for Rotationally and Electronically 
Inelastic Collisional Transfer 
 

Abstract: My kinetic model incorporates both electronically and rotationally inelastic collisions between 
excited S2 and inert species in the atmosphere, primarily N2. The electronically and rotationally inelastic 
collisions act together to transfer population back and forth between the B and B” states. Rotationally 
inelastic collisions are considered for diabatic vibronic states in the Hund’s case (a) basis set. I model 
them with a simplified version of Brunner and Pritchard’s energy gap law, which contains two adjustable 
parameters that are simple to estimate. This model is hybridized with Gelbart and Freed’s model for 
electronically inelastic collisions. In the Gelbart-Freed model, collisional interactions are considered in 
the short-duration limit, where the collisions themselves do not perturb the system. Instead, the 
spectroscopic perturbations, described in Chapter 2 serve as “doorways” between the electronic states. 
This process is called “doorway-mediated transfer”. The Gelbart-Freed model involves the B/B” mixing 
coefficients, so simple phase conventions must be chosen, such that the model produces physically 
plausible results.   

 

3.1. Introduction 
 

 In chapter 2, I described, in detail, the fundamental spectroscopy of population transfer between 

the X and B/B” electronic states of S2. In this chapter, I consider collisional population transfer within the 

excited, B/B” states, induced by collisions with chemically inert species in the atmosphere, primarily N2. 

In general, collisions can readily transfer population between rotational states (via “rotationally inelastic 

collisions”). In some cases, they can also efficiently transfer population between electronic states (via 

“electronically inelastic collisions”). However, collisional transfer between vibrational states is generally 

several orders of magnitude less efficient than rotational/electronic transfer, and I will not consider such 

collisions in this thesis. In this strongly perturbed S2 system, however, population can move between 

vibrational levels indirectly6 via the B/B” spectroscopic perturbations described in Chapter 2. 

 Here, I describe a novel collisional transfer model that completely describes rotationally inelastic 

transfer using the Power Gap (PG) model [63] and simultaneously describes the perturbation-based model 

for electronic transfer, originally proposed by Gelbart and Freed (G-F) [64]. This hybrid PG + G-F model 

                                                           
6 Population can theoretically move between two B state vibrational levels if there is a B” state vibrational 
level that perturbs both of them. 
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is especially notable for its simplicity and broad applicability, as it requires only a few pieces of 

information: 

(1) The B/B” mixed state probability amplitudes for the initial and final states involved in the 

collisional transfer. This information is easily attainable using the Hamiltonian 

diagonalization procedure detailed in Chapter 2. 

(2) Estimates of two adjustable parameters in the PG model. One parameter is a function of the 

intermolecular potential energy between the excited state B/B” S2 and its N2 collision partner. 

The other is primarily a function the S2*/N2 collision frequency, which is itself a function of 

the temperature and pressure of the atmosphere. Both parameters are simple to estimate. 

Another important feature of this model: it ignores purely electronically inelastic collisions (i.e. collisions 

that change electronic state quantum numbers but not rotational ones). Instead, rotationally inelastic 

collisions facilitate electronically inelastic collisions. This gives my model tremendous utility, as it is 

agnostic to the different properties of the two Born-Oppenheimer electronic states involved, and only 

depends on the extent of mixing between them. Therefore, I can indiscriminately apply this model to all 

16210 rovibrational states included in my asymmetric B/B” Hamiltonian, as diagonalized in Chapter 2. 

This greatly simplifies any calculation. 

 I now discuss the Power Gap (PG) model for rotationally inelastic transfer and the Gelbart-Freed 

(G-F) model for electronically inelastic transfer in turn, before describing their hybridization. 

3.2. The Power Gap Law for Rotationally Inelastic Transfer 
 

 Consider a pure, unperturbed vibronic state. This state has a manifold of rotational states (𝑖′𝑠), 

with angular momentum quantum numbers, 𝐽 , and energies, 𝐸(𝐽 ). I begin with Brunner and Pritchards’s 

statistical power gap (SPG) law [65, 66], which is a more complex version of the power gap (PG) law that 

I will introduce later. Equation 1 gives the first-order rate constant (𝑘 → ) for transfer within this 

rotational state manifold from rotational state 1 to rotational state 2 
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𝑘 → = 𝑎|
∆𝐸

𝐵
| 𝑁 (𝐽 , 𝐽 )𝑅(Δ𝐸). (3.1) 

In equation 3.1, 𝑎 is a proportionality constant with the same dimensions as the rate constant (first order, 

in our case). The parameter |∆𝐸| is the absolute difference in energy between the final state and the initial 

state, i.e. |∆𝐸| =  |𝐸 − 𝐸 |. B is the rotational constant for this particular vibronic state. The parameter 𝛼 

is a positive number, generally 1.2 ± 0.2.  𝑁 (𝐽 , 𝐽 ) is a statistical factor that accounts for Δ𝑀 selection 

rules in the collisional transfer process. Here, 𝑀 is the projection of the total angular momentum along the 

laboratory frame fixed axis, and 𝜆 is an integer, fit to empirical data, such that all allowed collisions have 

Δ𝑀 ≤ 𝜆. Typically, 𝜆 is quite large. In the limit where all Δ𝑀 collisions are allowed with equal 

probability, 𝑁 (𝐽 , 𝐽 ) = 2𝐽 + 1. In the opposite limit, where only Δ𝑀 = 0 collisions are allowed, we 

have equation 3.2 [66] 

𝑁 (𝐽 , 𝐽 ) =
(2𝐽 + 1)

(2𝐽 + 1)
. (3.2) 

Here, 𝐽  is the smaller of 𝐽  and 𝐽 . Finally, 𝑅(Δ𝐸) accounts for the difference in translational density of 

states before and after the collision. For transitions where ∆𝐸 < 𝑘 𝑇,  𝑅(Δ𝐸) is approximately unity. If I 

assume ∆𝐸 < 𝑘 𝑇, and ignore the statistical factor (which will be reincorporated in Chapter 4). I can 

write a simplified rotational transfer rate constant given by Equation 3.3 

𝑘 → = 𝑎|
∆𝐸

𝐵
| . (3.3) 

 I will refer to this simplified expression in Equation 3 as the power gap (PG) law. The PG law is, 

primarily, an experimental fitting law. However, using classical mechanics, Brunner and Pritchard 

derived an expression, very similar to Equation 3, which shows that 𝑘 →  ought to follow an energy gap 

power law (i.e. |∆𝐸| ) [63, 67]. For the purposes of this discussion, there are two important assumptions 

in Brunner and Pritchard’s classical derivation. The first is the sudden approximation, i.e. 𝜏, the time of 

the interaction is small enough to ignore. Or, in other words, the derivation is performed in the limit 
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where 𝜏 → 0. If we assume that this is the case, then the molecule does not rotate during the collision. 

Consequently, Brunner and Pritchard derive an expression for  𝑘 → , where 𝑙 is the classical angular 

momentum. The second assumption: the long-range intermolecular potential energy 𝑉(𝑟) is proportional 

to 𝑟 , where n is a positive number and r is the intermolecular distance between S2* and N2. 

 Equation 3.4 shows a simplified equation based on Brunner and Pritchard’s classical derivation   

𝑘 → = 𝑎 (𝑇)[𝑙(𝑙 + 1)] . (3.4) 

Here, the proportionality constant, 𝑎 (𝑇), is a function of the thermally averaged relative velocity of the 

two molecules, which is itself a function of the temperature, 𝑇. The constant is also parameterized by the 

power, 𝑛, in the power law dependence of the intermolecular potential energy surface. Note also that if 

the initial state is 𝑙 = 0  and the rotational energy scales as 𝐵𝑙(𝑙 + 1), then 𝑙(𝑙 + 1) =  , identical to the 

expression in Equation 3. This expression also allows us to determine a reasonable estimate for 𝛼. If n = 

6, for example, (van der Waals interaction) then 𝛼 =  = 1.2. The PG model has been utilized as a 

model for rotationally inelastic transfer in a variety of molecules, such as Li2* [68], LiH [69], and Na2* 

[70], with a variety of collision partners including He [71] and Ne [72]. In these models, the empirically 

fitted values for 𝛼 generally range from ~1-1.4 [65]. In this model, therefore, I choose 𝛼 = 1.2. 

 The PG model has a few limitations. First, as mentioned, the model is most appropriate in the 

limiting case where the N2/S2* collision is short in duration relative to the rotational period of the 

molecule. For longer-duration interactions, the ability of the N2 to perturb the B/B” system and alter its 

energy level structure must be taken into account. An energy corrected sudden scaling (ECS) model was 

developed to account for this effect, which has been extremely successful in describing a large range of 

collisional transfer phenomena. However, this model requires one additional parameter7 that is difficult to 

                                                           
7 This parameter is lc, the length (in units of distance) of the interaction between the N2 and S2 molecule. 
The duration of the collision, 𝜏d, is equal to lc/v, where v is the relative velocity of the two molecules.  
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estimate a priori and therefore must be fit to experimental data. A second shortcoming is that the SPG 

model tends to overestimate 𝑘 →  for transitions with large Δ𝐽 [73], because the real intermolecular 

potential, V(r), becomes repulsive at small values of r.8, [74] Pritchard, et. al. corrected this deficiency of 

the PG model by introducing a parameter, 𝐽∗, that represents the maximum allowed change in Δ𝐽 for a 

single transition. They scale the rate constant 𝑘 →
9 by the factor listed in Equation 3.5 

𝑘 →  𝛼 𝑒
( )

∗( ∗ ). (3.5) 

 

The value of this J* factor, however, is also  generally fitted to empirical data. 

                                                           
8 For detailed information as to why a repulsive potential leads to a limitation in single-collision ∆𝐽, see 
discussion in S.L. Dexheimer, et. al. [74] 
 
9 This rate constant is related to the usual 𝑘 →  by the ECS scaling law. This also requires fitting lc, giving 
the model four fit parameters in total. 

Figure 3-1: The general energy level structures for asymmetric, e.g. 32S-33S, B-state vibronic states (1a – 
left), and B”-state vibronic states (1b-right). Each state has e/f (orange/purple) symmetry manifolds. 
Within each manifold, the total +/- parity alternates (hollow/filled). Note that the structure of the B state 
is fundamentally different than of the B” state. For the B state, the two e-symmetry, spin-orbit states are 
strongly mixed by the S-uncoupling portion of the rotational Hamiltonian, whereas the B” state consists 
of 3 separate, relatively pure spin-orbit (Ω) states. In the B state, the three different manifolds correspond 

to different couplings between N⃗ and S⃗ (J = N + 1, J = N, and J = N − 1). 

 

𝑩 𝚺𝒖 
𝟑  state 𝑩" 𝚷𝒖 

𝟑  state 
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  Because these corrections and improvements of the PG fitting law require additional fit 

parameters that are sensitive to the particular characteristics each system, and are difficult to estimate 

without empirical collisional transfer data, I have chosen not to use them in this work. This allows me to 

preserve the generality of my calculation, while still using a scheme for rotationally inelastic collision that 

has been quite successful in modeling a diverse array of experimental results. 

3.3. Symmetry Restrictions for Rotational Transfer: Homonuclear Propensity  
 

Figure 3-1(left) shows the energy level structure for the B Σ  state, while Figure 3-1(right) 

shows the energy level structure of the B” Π  state. While each manifold of states has a J-independent 

e/f symmetry, the total parity (+ or −), within an e or f symmetry manifold, alternates with rotational 

quantum number. (In Figure 3-1, + parity states are squares and  – parity states are circles). In the most 

general sense, collisions do not preserve either e/f symmetry or +/- parity, as the presence of the collision 

partner destroys the symmetry of the molecule. 

In symmetric isotopologues (e.g. 32S-32S), collisions must preserve +/- parity, as the (+) parity 

states do not exist (see: Chapter 2). However, asymmetric isotpologues of homonuclear diatomic 

Figure 3-2: shows, for a B” spin-orbit state, the +/- parity switching ΔJ = 1, e ⟷ e or f ⟷ f transitions 
(dashed red arrows), that would be high probabilty, if not for the homonuclear propensity rule. These 
collisions violate the homonuclear propensity rule are actually of low probability. 
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molecules, such as 33S-32S or 36S-32S, there is nearly always a strong propensity for collisions to preserve 

total (+/-) parity, even though the opposite parity states do exist. If collisions do not induce transfer from 

the (+) parity manifold to the (-) parity manifold, then the collisional selection rules are identical to those 

in the symmetric molecule, with half of total the population in each of the two collisionally unconnected 

manifolds. Therefore, the tendency for collisions to preserve +/- parity is termed the “homonuclear 

propensity rule”.  

To illustrate the importance of the homonuclear propensity rule, consider a hypothetical scenario 

where +/- changing collisions are completely allowed. In such a scenario, based on the PG law, we could 

naively predict a much larger overall rotational transfer rate for heteronuclear S2, due to the addition of 

strong-propensity, Δ𝐽 = 1, 𝑒 ⟷ 𝑒 𝑜𝑟 𝑓 ⟷ 𝑓 collision-induced transitions that do not exist in 

homonuclear S2. These transitions are shown for a B” state as dashed arrows in Figure 3-2. These 

forbidden  Δ𝐽 = 1 transitions would be strong because they have the smallest energy gap between initial 

state and final state (Recall that the PG rate constant is approximately proportional to |ΔE| . ). 

However, in practice, larger net rotational transfer is not observed when comparing asymmetric to 

symmetric diatomic molecules. For example, Yang et. al. [75] measured line-broadening parameters for 

O2 colliding with N2, where the extent of the broadening reflected the magnitude of the rotationally 

inelastic collision rate. The measured broadening parameters for the heteronuclear 16O-18O isotopologue 

were identical (within experimental error) to those for the homonuclear 18O-18O and 16O-16O 

isotopologues. The Yang, et. al. result is consistent with the homonuclear propensity rule. 

 Results from Ottinger, Velasco, and Zare [76], document the remarkable strength of this 

propensity rule. In spectroscopic experiments performed on collisions of Ar with the 𝐵 Π  state of 6Li-

7Li, the rate constants for Δ𝐽 = 𝑒𝑣𝑒𝑛 collisions that preserve both +/- parity and e/f symmetry were 

determined to be much larger than those for Δ𝐽 = 𝑜𝑑𝑑 transitions that did not preserve +/- but did 

preserve e/f symmetry. Figure 3 depicts these transitions on an energy level diagram of a Π  state. This 
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discrepancy is especially pronounced at low values of Δ𝐽. For example, the e/f preserving, Δ𝐽 = 1 rate 

constants are approximately an order of magnitude smaller than the Δ𝐽 = 2 rate constants, despite the fact 

that the PG law would predict a substantially larger rate constant for Δ𝐽 = 1, versus 2. Furthermore, when 

the average of the neighboring  Δ𝐽 = 𝑜𝑑𝑑 rates are added to each Δ𝐽 = 𝑒𝑣𝑒𝑛 rate, the resulting Δ𝐽 =

𝑒𝑣𝑒𝑛 rates match the homonuclear 6Li-6Li collision rates (see: Figure 3-4) [65]. In other words, the total 

collision rate, summed over all values of Δ𝐽 is the same for both heteronuclear and homonuclear S2, 

consistent with the Yang, et. al. result [75]. 

Figure 3-3: Energy level diagram for the Π  state considered by Ottinger, Velasco, and Zare. The 
arrows show e/f symmetry preserving collisional transfer. The ΔJ = odd transitions are low propensity 
(red, dashed arrow) due to the +/- changing nature of the collision. Conversely, the ΔJ = even transitions 
are high propensity (green, solid arrow) because +/- parity is conserved. This reflects the homonuclear 
propensity rule. 
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 McCurdy and Miller [77] have performed theoretical scattering calculations on asymmetric 

isotopologues of homonuclear molecules. Their calculations show that the near-symmetric selection rules 

are caused by a near-isotropic potential energy surface for the interaction between the molecule and its 

collision partner. We think of the intermolecular potential energy surface as entirely isotropic when the 

center of mass and the center of symmetry of the molecule are the same. In that case, an interference 

effect in the scattering matrix completely destroys the cross section for the +↔ − collisions. This is the 

case for symmetric molecules such as 32S-32S. For asymmetric homonuclear molecules, the difference in 

mass between the two isotopes moves the center of mass slightly away from the center of symmetry, 

meaning the interference effect destroys most, but not all, of the scattering matrix element. 
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Figure 3-4: Hypothetical collisional transfer rate constants for e/f symmetry-conserving collisions. In this 
case,  ∆J = odd collisions switch +/- total parity, while ∆J = even collisions conserve +/- parity. For the 
symmetric case (orange) only ∆J = even collisions are allowed, due to an interference effect in the 
scattering matrix (see text). For the asymmetric case (blue), the ∆J = odd transitions are allowed, but with 
low propensity. Note that the  ∆J = odd transitions “borrow” their transition intensity from the ∆J = even 
transitions. That is, ∆J = even transitions are less probable in the heteronuclear case than in the 
homonuclear case, such that the total rotationally inelastic transition rate (summed over all ΔJ′s) is 
equivalent in both cases. 
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My model, as a starting point, excludes +/- changing collisions. This is a limiting case, but one 

that closely reflects the empirical evidence presented in this section. To more explicitly express this 

starting point, I modify the expression in Equation 3.3 to give Equation 3.6. 

𝑘 → = 𝑎|
∆𝐸

𝐵
| 𝛿 , (3.6) 

In Equation 3.6, 𝑝  and 𝑝  represent the total +/- parity of the initial and final states, and 𝛿 is the 

Kronecker delta symbol, which is 1 if  𝑝 = 𝑝 , and 0 otherwise. Section 8.3 addresses the possibility for 

+/- changing collisions in my model. 

3.4. e/f Symmetry Changing Collisions 
 

 Unlike +/- parity, which nearly always has a strong propensity for conservation in collisions of 

asymmetric isotopologues of homonuclear molecules, rotationally inelastic collisions can sometimes 

change e/f symmetry. To determine the propensity rules for e/f changing collisions, we must consider the 

general forms of e and f symmetry Hund’s case (a) basis states (Equations 3.7a and 3.7b, respectively). 

| 𝑒 >= 1
√2

(| 𝐽 Ω, 𝑣, Λ, 𝑆 Σ > +| 𝐽 (−Ω), 𝑣, (−Λ), 𝑆 (−Σ) >) (3.7𝑎) 

| 𝑓 >= 1
√2

(| 𝐽 Ω, 𝑣, Λ, 𝑆 Σ > −| 𝐽 (−Ω), 𝑣, (−Λ), 𝑆 (−Σ) >) (3.7𝑏)

Note here that the spin (S, Σ)  and orbital (Λ) wave functions are different for e symmetry versus f 

symmetry states. Therefore, in general, collisions between e and f must also change the electronic 

properties of the wavefunction. 

 Gottscho [78] has considered e/f transfer in a variety of experiments performed on different Ω =

1 systems. In alkali dimer experiments on Π  states, e/f changing Δ𝐽 = 1 collisions have been readily 

observed. However, for a Hund’s case (c) 1u electronic state in Te2, there is a strong propensity for 

preserving e/f symmetry. Gottscho reconciled these two observations by noting the differences in 

wavefunction between the Π  and 1u states. For Π , we have Equation 3.8. 
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| Π  𝑒/𝑓 > = 1
√2

(|Λ = 1 > |Σ = 0 > |Ω = 1 > ± |Λ = −1 > |Σ = 0 > |Ω = −1 > (3.8)  

The Te2 1u electronic state correlates to part of a Σ  Hund’s case (a) state. The wavefunction for 1u is 

therefore given by Equation 3.9. 

|1  𝑒/𝑓 > ≈ 1
√2

(|Λ = 0 > |Σ = 1 > |Ω = 1 > ± |Λ = 0 > |Σ = −1 > |Ω = −1 >) (3.9)  

In a Π  electronic state, we see that e/f transfer does not involve a change in the electron spin 

wavefunction (because Σ = 0). In a 1u state, however, e/f transfer does involve such a change. Gottscho’s 

observations indicate a general principle: In the short-duration (non-perturbing) limit, inelastic 

collisions can only move population between rotational states or between other, degenerate orbital 

(but not spin) electronic states. 

 Putting these ideas into practice, we can now consider rotationally inelastic collisions in the B” 

Π  state. In the above two examples, we had either Λ = 0 (sigma state), or Σ = 0 (singlet state). 

Consequently, in Equations 8 and 9, the behavior of Λ was decoupled from that of Σ, and we expressed 

the wavefunctions in terms of separate spin and orbital electronic parts. In the Π  state, we can have both 

|Λ| > 0 and  |Σ| > 0, so the spin and orbital wavefunctions are no longer separable, due to large energy 

difference between the spin-orbit Ω-components. As seen in Figure 3-1b, the states are energetically 

ordered by Ω =  Λ +  Σ. An  Ω = 0 state, for example, has the following wavefunction: |Ω = 0 (e/f) >=

√
∗ |Λ = 1, Σ = −1 > ± |Λ = −1, Σ = 1 >, where the values of Λ and Σ are correlated. If collisions can 

only change Λ and not Σ, then changing Λ = 1 to -1 and vice versa leads to a change from |Ω = 0 > to 

|Ω = 2 >. This violates Gottscho’s general principle because the degeneracy of the different omega states 

has been removed by the diagonal matrix elements (𝐴𝐿 𝑆 ) of the spin-orbit Hamiltonian.  

I apply the Gottscho principle to the B” state as follows: for rotationally inelastic collisions in the 

B” Π  state, e/f changing collisions are allowed in the Ω = 1 spin-orbit component (because  Σ = 0) and 

disallowed in the Ω = 0 or Ω = 2 spin-orbit components (because  |Λ| = |Σ| = 1). These transfer rules 
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are summarized in Figure 3-5a, which shows the propensity rules for transfer in an Ω = 0/2 spin-orbit 

component, and Figure 3-5b, which shows the same in a Ω = 1 spin-orbit component. Because of its 

more perturbed nature in the case (a) basis, I will consider collisional transfer in the B state later on in this 

chapter. 

 

Finally, in diatomic systems where e/f transfer is allowed, a strong propensity for J-increasing 

over J-decreasing collisions, or vice-versa, is sometimes observed [79]. This effect is due to differences in 

the orientation of the e and f symmetry orbital wavefunctions relative to the molecular plane of rotation. 

Specifically, Ottinger, Velasco, and Zare [76] have argued that collisions that change the orientation of 

the orbital wavefunction (and thus change e/f symmetry) have a particular trajectory relative to the 

rotational motion of the molecule. And this preference for a specific trajectory leads to a favoring of 

either Δ𝐽 > 0 or Δ𝐽 < 0 (Figure 3-6).  Bergmann, Klar, and Schlecht [80] have performed theoretical 

calculations that confirm this effect. Their calculations show that the magnitude of this effect is highly 

sensitive to the shape of the intermolecular potential energy surface. As I have constructed my model to 

3-5a - 𝑩" 𝛀 = 𝟎 𝒐𝒓 𝟐 3-5b – B” 𝛀 = 𝟏 

Figure 3-5: Gives examples of fully allowed (solid arrow) and low-propensity (dashed arrow) collisional 
transfer in an Ω = 0 or 2 spin-orbit component (5a – left), and in a Ω = 1 spin-orbit component (5b – 
right). The primary difference between the two is the allowed e/f parity switching collisions in the Ω = 1 
case. 
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be independent of any property that is specific to a particular electronic state, I do not include this effect 

in my collisional transfer model. 

 

3.5. The Gelbart-Freed Model for Electronically Inelastic Collisions 
 

 The Gelbart-Freed (G-F) model for electronically inelastic collisions is unique in that it relies on 

the spectroscopic perturbations, described in Chapter 2, as the exclusive mechanism for collisional 

transfer between electronic states. In this section, I review the fundamentals of the G-F model, describe its 

similarity to the PG model for rotationally inelastic transfer, and discuss a few of its shortcomings. 

 To begin, consider Equation 3.10, which expresses the rate constant 𝑘 →  for transfer from 

electronic state 𝑒  to electronic state 𝑒  in terms of the total N2/S2* collision frequency, 𝑍, and the 

probability, P, that a given collision transfers from 𝑒  to 𝑒  

𝑘 → = 𝑍 ∗ 𝑃 → . (3.10) 

Figure 3-6: There are two, degenerate pi-type orbitals that have |Λ| = 1, one associated with e symmetry, 
the other with f. One of these pi orbitals exist in the plane of rotation, the other is perpendicular to it. The 
collisional trajectory required to torque the out-of-plane orbital (to convert it to the in-plane one) is in the 
plane of rotation and tends to decrease the rotational angular momentum. The collisional trajectory 
required to torque the in-plane orbital is out of the plane of the rotation and tends to increase the rotational 
angular momentum. 
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I now consider the eigenstates e1 and e2 to be linear combinations of two, pure (diabatic) electronic basis 

states, |C> and |D>. These eigenstates are given by Equations 3.11a-b, where the c and d coefficients can 

range from |c|2 = 0 and |d|2 = 1 (not perturbed) to |c|2 = |d|2 = ½ (50-50 mixture) 

|𝑒 > =  𝑐 |𝐶 > + 𝑑 |𝐷 >  (3.11𝑎) 

|𝑒 >=  𝑐 |𝐶 > + 𝑑 |𝐷 >. (3.11𝑏) 

I now introduce a scattering matrix, 𝑉, such that the matrix element | < 1|𝑉|2 > |  is the probability that 

a collision induces a transition from state 1 to state 2. Plugging the eigenstates into Equation 3.10, I obtain 

equations 3.12a and 3.12b 

𝑘 → = 𝑍 ∗ | < 𝑒 |𝑉|𝑒 > | (3.12𝑎) 

𝑘 → = 𝑍 ∗ |𝑐 𝑐 < 𝐶|𝑉|𝐶 > +𝑑 𝑑 < 𝐷|𝑉|𝐷 > + 𝑐 𝑑 < 𝐷|𝑉|𝐶 > + 𝑐 𝑑 < 𝐷|𝑉|𝐶 >   | . (3.12𝑏) 

 Here, I employ the fundamental assumption in the Gelbart-Freed model: 𝑉 is diagonal in the |C>, 

|D> basis. In other words, the probability that a collision directly transfers population from a pure 

C state to a pure D state is small compared to the probability of an electronically elastic collision. If 

this is the case, we can ignore the cross terms, yielding Equation 3.13 

𝑘 → = 𝑍 ∗ | 𝑐 𝑐 < 𝐶|𝑉|𝐶 > +𝑑 𝑑 < 𝐷|𝑉|𝐷 >  | . (3.13) 

Note that this assumption is very similar to one of the key assumptions in the PG model. Specifically, the 

PG model assumes that the collision is short in duration, and consequently does not affect the energy 

level structure of the S2* molecule. Short, non-perturbing collisions are also unlikely to transfer 

population directly from one pure electronic state to another. 

 I now introduce 𝑃  and 𝑃 , the probabilities of elastic collisions in the C state and D state, 

respectively. In the absence of any other collisional transfer processes, it is reasonable to take 𝑃 = 𝑃 =

1. For 𝑃 = 𝑃 = 𝑃, I factor Equation 13, to give Equation 3.14 
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𝑘 → =  𝑍 ∗ |𝑐 𝑐 + 𝑑 𝑑 | ∗ 𝑃. (3.14) 

The factor |𝑐 𝑐 + 𝑑 𝑑 |  is equal to  |< 2|1 > | , which is zero because C and D are orthogonal 

electronic eigenstates. Therefore, the G-F rate constant is always zero in cases where the elastic collision 

rates in state C and state D are equal. 

 For the pure C state and pure D state to have different elastic collision rates, they must have 

different inelastic collision rates (elastic rate + inelastic rate = total rate). Because the GF model excludes 

direct electronic transfer, this leaves either vibrationally or rotationally inelastic collisions as possibilities. 

To illustrate this principle, consider C and D as vibronic states rather than as just electronic states. Similar 

to Gelbart and Freed’s analysis of singlet/triplet quenching in CH2 (methylene), we will also assume that 

the vibronic state C is in its ground vibrational state (𝑣 = 0), and that vibronic state D is in in an excited 

vibrational state (𝑣 ≠ 0). Furthermore, assume that the probability of a single collision causing 

vibrational relaxation in state D is Γ . In this context, Equation 3.9 becomes Equation 3.15 

𝑘 → = 𝑧 ∗ | 𝑐 𝑐 𝑃 + 𝑑 𝑑 𝑃 − Γ  | . (3.15) 

For significant amounts of vibrational relaxation  |< 2|1 > |  no longer factors out of the expression and 

𝑘 → ≠ 0. Figure 3-7 explains the intuitive basis for this model of electronic state transfer. Population in 

pure state C cannot move, and, therefore, all of its collisions are vibronically elastic, but state D is a 

“leaky bucket”, with a significant amount of inelastic collisions. Therefore, population flows from state C 
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to state D and out of the leak.  In this sense, vibrationally inelastic transfer drives electronically inelastic 

transfer.10 This “leaky bucket” concept will be critical to our analysis in Chapter 5. 

                                                           
10 This is an oversimplification, but it is useful for intuition, as the real origin of the effect is quantum 
mechanical. For more insight, let us denote 𝑃(1 → 2) as the probability that a collision transfers from 1 to 
2. Both of these eigenstates, 1 and 2, have partial C character and partial D character. Therefore I can 
define additional conditional probabilities, such as 𝑃(𝐶|1), the probability that a molecule would occupy 
state C, given the fact that it is in state 1. The term 𝑃(2|𝐶) is the probability that a molecule would 
occupy state 2, given the fact it occupies state C.. In this sense, the probability for a transfer from state 1 
to state 2 could be written as 𝑃(1 → 2) = 𝑃(𝐶|1) ∗ 𝑃(2|𝐶) +  𝑃(𝐷|1) ∗ 𝑃(2|𝐷). as 𝑃(1 → 2) =
𝑃(𝐶|1) ∗ 𝑃(2|𝐶) +  𝑃(𝐷|1) ∗ 𝑃(2|𝐷). Plugging in the mixing coefficients we would obtain: 𝑃(1 → 2) =
|𝑐 𝑐 | + |𝑑 𝑑 | This expression is almost correct, except we use probability amplitudes (𝑃 ′𝑠), instead 
of probabilities, i.e. 𝑃(1 → 2) = |𝑃 (𝐶|1) ∗ 𝑃 (2|𝐶) +  𝑃 (𝐷|1) ∗ 𝑃 (2|𝐷)| . Without 
rotational/vibrational relaxation, this expression reduces exactly to Equation 3.13 and is zero if 1 and 2 
are eigenstates. However, if there is internal relaxation in state D then   𝑃 (𝐷|1) = 𝑑 √1 − Γ. Therefore, 
it is the discrepancy in the probability of occupying state C versus the probability of occupying to state D 
that induces the transfer. The use of probability amplitudes instead of probabilities will be addressed 
further in sections 3.8-3.10. 
 

Figure 3-7: An example of vibronic state transfer in the Gelbart-Freed model. Here, the ground 
vibrational level of the C electronic state is perturbed by an excited vibrational state of the D electronic 
state. Population can exchange between the C and D states because of the difference in elastic collision 
rates between the two vibronic basis states. Specifically, the elastic collision rate for the D (v>0) vibronic 
state is reduced due to vibrational relaxation in the pure D state. This mechanism, wherein the 
perturbation acts as a “doorway” or “gateway” from the C state to the D state, is characteristic of Gelbart-
Freed transfer and will be revisited at the end of this chapter. 
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3.6. Shortcomings of the Gelbart-Freed Model 
 For the Gelbart-Freed model, transfer between two diabatic electronic states only occurs when the 

states perturb each other.  As such, the collisional transfer follows the same set of selection rules that the 

spectroscopic perturbations do. For example, Gelbart-Freed collisional transfer preserves symmetry under 

inversion, i.e. only g ⟷g and u ⟷u electronic state transitions are allowed. Furthermore, in the B/B” 

system, the perturbation patterns dictate the collisional transfer propensity. Most prominently, ΔΩ = 0 

transfer is relatively strong and  ΔΩ = 1 transfer is relatively weak at low J.11 

 These perturbation-based selection and propensity rules, however, are not the entire story. Most 

notably, Alexander has modified the Gelbart- Freed model to include the effect of multipolar interactions, 

first applying this model to electronic state transfer in CaO. Specifically, he analyzed inelastic transfer 

rates from the long-lifetime 𝑎 Π  state to the short-lifetime fluorescent A Σ   state, induced by collisions 

with N2O. As in the B/B” system, the eigenstates of CaO are linear combinations of the a and A states, 

primarily due to spin-orbit interactions. Here, though, the permanent electric dipole moment of the ground 

state N2O can induce a transition between two CaO eigenstates, which we label as 1 and 2. That is, the 

transfer rate constant is proportional to | < 2|𝝁|1 > | , where 𝝁 is the electric dipole moment operator we 

first saw in Chapter 2, i.e. Equation 3.16  

𝑘 → 𝛼|< 1|𝝁|2 > | . (3.16) 

As with our discussion of the Gelbart-Freed model, we begin with two electronic states that are linear 

combinations of the two diabatic electronic basis states (Equations 3.17a-b) 

1, 𝐽" > =  𝐴 , " 𝐴, Σ , 𝐽" > + 𝑎 , "|𝑎, Π , 𝐽" > (3.17𝑎) 

2, 𝐽′ > =  𝐴 , 𝐴, Σ , 𝐽′ > + 𝑎 , |𝑎, Π , 𝐽′ >. (3.17𝑏) 

                                                           
11 This is due to the strength of the spin-orbit interaction. At higher values of J, the L-uncoupling 
interaction, which has selection rules ΔΩ =  ±1, becomes more significant, as it is proportional to 
[J(J+1)]1/2. 
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Note here that the electronic states need not have the same total angular momentum quantum number (J” 

vs J’).  

Equation 3.18 shows that 𝑘 →  is a function of the pure A electronic state permanent dipole 

moment (𝜇 =< 𝐴|𝝁|𝐴 >) , the pure a electronic state permanent dipole moment 𝜇 = < 𝑎|𝝁|𝑎 >, and 

the transition dipole moment  (𝜇 =< 𝐴|𝝁|𝑎 >) 

𝑘 →  𝛼  𝑎 , "𝐴 , "𝜇 − 𝑎 , "𝐴 , 𝜇 + 𝑎 , 𝑎 , " −  𝐴 ,"𝐴 , 𝜇 . (3.18)  

 There are several differences between the Gelbart-Freed perturbation model and the Alexander 

perturbation/dipole transfer model. These include interference effects, due to the relative signs of the 𝜇  

and the 𝜇  terms, and a stronger dependence on the J quantum number. Most prominently, every 𝜇 term 

in Equation 18, connects states of opposite parity, in contrast to the +/- parity preservation inherent to the 

G-F model. The Alexander extension of the G-G model has been applied to a variety of other systems 

where two electronic states perturb each other, including with MgO with N2O [81], CN with Ar [82], and 

N2O with He, Ar, and N2 [83].  

However, transitions have also been observed in systems where the two electronic states do not 

perturb each other. For example, auroral N2 emissions in the Earth’s atmosphere are best explained when 

incorporating collisional transfer between the B ( Π ) state and the B’ ( Σ ), the W state ( Δ 
 ), and the 

A ( Σ ) state, induced by collisions with other N2 molecules [84]. In these cases, the pure Gelbart-Freed 

model predicts a rate constant of zero (𝑔 ⟷ 𝑢), but a multipolar interaction can induce collisions between 

electronic states of different symmetry. In the case of auroral N2, collisions between one excited N2 

molecule and another excited N2 molecule (which are governed by an electric dipole transition moment) 

can induce this transfer. The ability of collisions to transfer population between electronic states of 

opposite symmetry (g/u or +/-) will be relevant to our discussion in the final chapter, though I do not 

consider these effects directly in this work.  
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3.7. The Synthesis of The SPG Model and the Gelbart-Freed Model 
 

 To begin to combine the PG and Gelbart-Freed models, I note that, as in Equation 3.12a, the rate 

constant for any collisional transfer process from eigenstate 1 to eigenstate 2 can be expressed in terms of 

the total collision rate, 𝑍, and the probability that a single collision transfers from 1 to 2 (Equation 3.19) 

𝑘 , → , = 𝑍 ∗ | < 2, 𝐽 |𝑉|1, 𝐽 > | . (3.19)  

As in the previous analysis, the fundamental assumption of the Gelbart-Freed model is that the collisions 

are short in duration and do not appreciably perturb the electronic states. Consequently, V is diagonal in 

electronic state. As a simple illustration of this point, consider eigenstate 1 and eigenstate 2 to be linear 

combinations of two diabatic electronic states, |C> and |D>, as in Equations 3.11a-b.   The expression for 

V is given by Equation 3.20a, with Equation 3.20b reminding us that the matrix is expressed in the |C>, 

|D> basis 

𝑉 =  
𝑃 0

0 𝑃

(3.20𝑎) 

𝑏𝑎𝑠𝑖𝑠 𝑣𝑒𝑐𝑡𝑜𝑟 =  
𝐶
𝐷

. (3.20𝑏) 

Again, 𝑃  and 𝑃   are the elastic collision probabilities in the pure C and D basis states respectively. 

While short-duration collisions do not induce electronic transfer, they can induce rotational transfer, as 

we discussed in the section on the PG model (Recall that the power gap law dependence was derived in 

the limit where the duration of the collision, 𝜏, is zero). Therefore, we must consider an expanded basis 

set, incorporating the rotational sub-states of the C and D vibronic states. In this context, V is given in 

Equation 3.21a, for a basis set given by Equation 3.21b 
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𝑉 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡

0 𝑃 / 𝑃 /

𝑃 / 0 𝑃 /

𝑃 / 𝑃 / 0

…
…
…

0      0       0
0      0       0
0      0       0

 ⋮         ⋮        ⋮   ⋱ ⋮       ⋮        ⋮
0      0       0
0      0       0
0       0       0

⋯
⋯
⋯

0 𝑃 / 𝑃 /

𝑃 / 0 𝑃 /

𝑃 / 𝑃 / 0 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

(3.21𝑎) 

𝑏𝑎𝑠𝑖𝑠 𝑠𝑒𝑡 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
 𝐶 𝐽  
𝐶 𝐽

𝐶 𝐽
⋮

𝐷 𝐽
𝐷 𝐽  

𝐷 𝐽 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

. (3.21𝑏) 

The 𝑃 / ’s represent  the probability amplitudes for collisional transfer from one rotational state to 

another, within either the C state or the D state. Note here that: 

1. The matrix 𝑽 is still block diagonal in C and D, consistent with the fundamental assumption of 

the Gelbart-Freed model. 

2. The complete expression for the  𝑃 / ’s, should include a phase factor, because the probability is 

defined as | < 2, 𝐽 |𝑉|1, 𝐽 > | . However, I ignore the phase factors in this calculation. For a full 

explanation as to why the phase factors are ignored, see Appendix 1. 

3. For the B/B” system, the matrix is also, generally, diagonal in +/- parity and e/f symmetry, with 

the exception for e/f symmetry in the B” Ω = 1 state as noted in Figure 5.  

4. The diagonal matrix elements are zero, i.e. I assume that all collisions are rotationally inelastic. I 

will explore the rationale for, and consequences of, this assumption later on in this chapter, as 

well as in Chapter 4. 

 I now must determine the probability amplitudes for the rotational transfer process. I begin by 

restating the PG model (Equation 3.22) 

𝑘 → = 𝑎|
∆𝐸

𝐵
| . (3.22) 
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In Equation 3.22, 𝐽  is the rotational quantum number for the initial state, and J2 likewise for the final 

state, with 𝐽 ≠ 𝐽 . Now, similar to Equation 3.19, I assume that 𝑘 → is proportional to 𝑍, the total 

collision rate. Therefore, I can write Equation 3.23 

𝑘 → = 𝑍 ∗ 𝑎′|
∆𝐸

𝐵
| . (3.23) 

If 𝑍 is the total collision rate, then the remainder of the expression must be the probability that a given 

collision induces a transfer from 𝐽  to 𝐽 , i.e. Equation 3.24: 

𝑃 → = 𝑎′|
∆𝐸

𝐵
| . (3.24) 

Where 𝑎 = . This leads directly to Equation 3.25 

𝑃 →
/ = 𝑎′′|

∆𝐸

𝐵
| . (3.25) 

Where 𝑎 =  √𝑎′ (again, I ignore phase), and 𝛼 = 𝛼/2. I now consider two eigenstates (1 and 2) that are 

linear combinations of an arbitrary number of vibronic basis states (Rather than just linear combinations 

of C and D). These basis states are given by Equation 3.26a-b 

|1 > =  𝑐 , |𝑋 , 𝐽 > (3.26𝑎) 

|2 > =  𝑐 , |𝑋 , 𝐽 > . (3.26𝑏) 

Where the Xi ‘s are diabatic vibronic basis states, and the 𝑐 ’s are their associated coefficients. As notated 

in Equation’s 26, the 𝑐 ’s refer to different rotational states in eigenstate 1 and 2. Finally, I can combine 

the expressions in Equation 3.26a and 3.26b with the expression in Equation 3.25 to give Equation 3.27 

𝑘 → = 𝑧 ∗ | 𝑐 , 𝑐 , 𝑎′′|
𝐸 (𝐽 ) − 𝐸 (𝐽 )

𝐵
| | . (3.27) 
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Where E (𝐽 ) and E (𝐽 ) are the rotational state energies within vibronic basis state, 𝑋 . The term 𝐵  is 

the rotational constant for the vibronic state, 𝑋 . 

3.8. Collisional Transfer in the B state, an Illustrative Example 
 

 To illustrate how Equation 3.27 works in practice, I now consider rotationally/electronically 

inelastic collisions in the B electronic state (term symbol: Σ ) .  

  

 

 

 

 

Figure 3-8: a (left): shows the rotational energy level structure and perturbed nature of the B state, which 
follows the Hund’s case (b) coupling scheme. The central progression is a pure, f symmetry Ω = 1 state 
(yellow). The other two e symmetry progressions begin as either Ω = 0 (red) or Ω = 1 (blue). As J 
increases, they are quickly mixed by the S-uncoupling part of the rotational Hamiltonian, which is 
proportional to (J (J + 1))1/2. This yields two e symmetry Ω = 0/1 states (purple) at higher J. Figure 3-8b 
(right): shows the energy level structure, when S-uncoupling and other off-diagonal elements are 
ignored. The two e-symmetry states no longer mix together. The Ω = 0 e state remains shifted somewhat 
due to the diagonal matrix elements of the rotational, spin-spin and spin-rotation Hamiltonians (see 
Chapter 2). The filled-in circles represent (-) parity states, while the hollow circles represent (+) parity 
states. 
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 As shown in detail on Figure 3-8a, the B state, unlike the B” state, has important perturbations 

between some of its spin-orbit components. Most prominently, there is S-uncoupling between Ω = 0  and 

Ω = 1 e-symmetry states.  Therefore, to treat the B state collisional transfer completely, I must use the 

synthesized G-F and PG model. Consider, as an example, the collisional transfer shown by Figure 3-9. 

The initial eigenstate (state 1 in Equation 27) is the 𝐽 =  3 state of the lower e-symmetry Ω = 0/1  

component (the lower component is termed 𝐹  in spectroscopic notation). State 2 is the 𝐽 =  5 state of the 

higher e symmetry Ω = 0/1  component (termed 𝐹 ). The transition is Δ𝐽 = 2, 𝑒 ⟷ 𝑒, (−) ⟷ (−), and 

would theoretically allowed by the rotational transfer selection rules discussed thus far in this chapter. 

 

 I now return to Equation 3.27. There, the sum over 𝑖 is over all unperturbed, basis electronic 

states. For eigenstate 1 and eigenstate 2, this is a sum over two states: 𝛀 = 𝟎 𝒆 and 𝛀 = 𝟏 𝒆. Therefore, I 

rewrite Equation 3.21 as Equation 3.28 

Figure 3-9: The example transition being considered in this section, which goes from an F1, e-
2symmetry, (-) parity, J1 = 3 state, to an F3, e symmetry, (-) parity, J2 = 5 state. This transition is 
nominally allowed by the pure rotational transition propensity rules discussed in the preceding section. 
However, I must also consider the electronically inelastic nature of this collision. 
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𝑘 → = 𝑧 ∗ | 𝒄𝒊,𝑱𝟏𝒄𝒊,𝑱𝟐𝒂′′|
𝑬𝒊(𝑱𝟐) − 𝑬𝒊(𝑱𝟏)

𝑩𝑿𝒊

| 𝜶 |

  {  ,  }

. (3.28) 

In Equation 3.28, I have color coded the two different components of the rate calculation. In the orange 

part of the calculation, I calculate the rotational transfer rate in either the pure, unperturbed Ω = 0 𝑒 or 

the Ω = 1 𝑒 states. This part of the calculation is illustrated in Figure 3-10. 

 

 I note here that in both the 𝛀 = 𝟎 𝒆 and 𝛀 = 𝟏 𝒆 states, the rotational constant, 𝐵 , is the same. 

Likewise, the energy gaps are identical, i.e. 𝑬𝛀 𝟎 𝒆(𝑱𝟐) − 𝑬𝛀 𝟎 𝒆(𝑱𝟏) =  𝑬𝛀 𝟏 𝒆(𝑱𝟐) − 𝑬𝛀 𝟏 𝒆(𝑱𝟏). 

Neither of these relationships is universally true, especially for B/B” mixed states, but for this example, 

we can write Equation 3.29. This equation states that the probability of a 𝐽 = 3 to 𝐽 = 5 transition is the 

same for both electronic basis states 

𝑃 /
→ = 𝒂

𝑬𝛀 𝟎 𝒆(𝑱𝟐 = 𝟓) − 𝑬𝛀 𝟎 𝒆(𝑱𝟏 = 𝟑)

𝑩𝑿𝛀 𝟎 𝒆

| 𝜶 = 𝒂
𝑬𝛀 𝟏 𝒆(𝑱𝟐 = 𝟓) − 𝑬𝛀 𝟎 𝒆(𝑱𝟏 = 𝟑)

𝑩𝑿𝛀 𝟎 𝒆

| 𝜶 . (3.29) 

Figure 3-10: The collisional transfer processes used to calculate the orange part of Equation 28, i.e. 
rotationally inelastic transfer in the unperturbed Ω = 0 e or Ω = 1 e states. The rotational constant, BX is 
the same for both terms in the sum. Likewise, the energy gap is also identical. 
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 Next, I consider the purple portion of Equation 3.28, i.e. the coefficients 𝒄𝒊,𝑱𝟏 and 𝒄𝒊,𝑱𝟐. These are 

the mixing coefficents for either member of the pair 𝑖 𝜖 {𝛀 = 𝟎 𝒆, 𝛀 = 𝟏 𝒆} basis states. We can estimate 

the ci’s as follows. We imagine a 2x2 Hamiltonian as in Equation 3.30, with basis set: {𝛀 = 𝟎 𝒆, 𝛀 =

𝟏 𝒆}  

𝐻 𝐻 .

𝐻 . 𝐻
= 𝐻. (3.30) 

In Equation 3.30, I have assumed, for simplicity, that the diagonal matrix elements are the same for both 

Ω states (this is not strictly true, due to effects such as spin-spin coupling, as shown in Figure 3-8b). The 

off-diagonal matrix elements come primarily from the spin-uncoupling part of the rotational Hamiltonian. 

Equations 3.31a-b give the eigenvectors of the Equation 3.30 Hamiltonian  

𝐹 , =
1

√2

1
1

(3.31𝑎) 

𝐹 , =
1

√2

1
−1

. (3.31𝑏) 

where the first eigenvector (3.31a) belongs to the higher energy, F1 manifold, while the second 

eigenvector (3.31b) belongs to the lower energy, F3 manifold. If the amount of the S-uncoupling 

interaction was the same for the initial J = 3 F3 eigenstate, and for the final J = 5 F1 eigenstate was the 

same, we would have, in the language of Equation 3.28: 

𝑐𝛀 𝟎,𝑱 𝟑 = 1
√2

      𝑐𝛀 𝟏,𝑱 𝟑 = 1
√2

     𝑐𝛀 𝟎,𝑱 𝟓 = 1
√2

      𝑐𝛀 𝟏,𝑱 𝟓 = −1
√2

 

 If we include the condition given by Equation 3.29, then Equation 3.28 becomes Equation 3.32: 

𝑘 → = 𝑧 ∗ |𝑐𝛀 𝟎,𝑱 𝟑𝑐𝛀 𝟏,𝑱 𝟑 + 𝑐𝛀 𝟎,𝑱 𝟑𝑐𝛀 𝟏,𝑱 𝟑| 𝑃 → = 0 (3.32) 

Note that the extent of the Ω = 0, 𝑙-mixing perturbation does change from 𝐽 = 3 to 𝐽 = 5, so the rate is 

not strictly zero. However, this difference in sign between 𝑐𝛀 𝟏,𝑱 𝟑 and 𝑐𝛀 𝟏,𝑱 𝟓 does result in a new 
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propensity rule for B state rotational transfer, i.e.𝐹 ↔ 𝐹  transfer is low probability in the B electronic 

state. This result matches empirical data on collisional transfer in the B state of S2 from Gottscho [78] and 

Cauchey and Crosley [85] 

ΔJ = 0 collisions. 

 Collisions that do not change rotational quantum number, J, (i.e. rotationally elastic collisions) 

are not included in my model. These types of collisions, which shift the frequency of spectroscopic 

transitions, are generally not observed in linear molecules, such as S2 [86]. Furthermore, such collisions 

are incompatible with the Gelbart-Freed/PG model as currently constructed. For example, |∆𝐸|  

converges to infinity because the initial and final basis energy states are identical. Additionally, if the 

probability of rotationally elastic collisions is similar in the B versus the B” state, then |< 2|1 > |  

factors out of the rate constant expression and the rate is zero, as in Equation 3.14. The assumption that all 

collisions are rotationally inelastic will be discussed further in Chapter 4. 

3.9. Summary of Collisional Transfer Propensities in the B state of S2. 
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 Figure 3-11 summarizes the collisional transfer rules and propensities in the B state of S2. The 

usual rotational propensity rules +↔ +/ −↔ − and 𝑒 ↔ 𝑒/𝑓 ↔ 𝑓 still apply. But here I add 𝐹 ↮ 𝐹  and 

Δ𝐽 ≠ 0. 

3.10. The Big Picture: Collisional Transfer in the B/B” system. 
 

 The propensity rule against .𝐹 ↔ 𝐹  transfer in the B state can be understood in terms of the 

general principle from our discussion of Gottscho’s rule for e/f symmetry transfer [78]. That is: In the 

short-duration (non-perturbing) limit, inelastic collisions can only move population between 

rotational states or other, degenerate orbital (but not spin) electronic states. In the B” case, the 

degeneracy of the different Ω states is removed by a diagonal spin-orbit matrix element, and the transfer 

Figure 3-11: The selection and propensity rules for collisional transfer in the B electronic state of S2. 
These are identical to the selection rules in the B” state (Ω = 0/2), with the addition of the low propensity 
F ↮ F  transitions, and the forbidden ΔJ = 0 transitions. 
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rate between omega states is small because there are only small L-uncoupling interactions perturbations 

between them. In the B state case, by contrast, the degeneracy of the 𝐹  and 𝐹  components is removed by 

a large off diagonal, rotational Hamiltonian matrix element, and the transfer rate is small because of the 

sign difference in the probability amplitudes.12 

 I can now apply these principles to B/B” perturbations. The propensity for transfer from a 

primarily B vibronic state to a primarily B” vibronic state is small. The proof of this is very similar to the 

proof presented in Equations 3.30 to 3.32. We can instead have transfer from a mixed B/B” state to state 

that is primarily B or B” in character. This type of collisional transfer is called doorway or gateway 

mediated population transfer. It is illustrated in Figure 3-12. This doorway mechanism will be crucial to 

understanding the results presented in Chapter 5, and, especially, Chapter 6 

 

 

  

                                                           
12 Note that, had I used a case (b) basis set, the situation would be reversed. For example, the B” state 
spin-orbit interaction will now be off-diagonal, as opposed to on-diagonal and the rate will be small due 
to the phase dependence of the G-F rate constant. 

Doorway Region 

Figure 3-12: A summary of the doorway mediated population transfer mechanism. The B and B” states 
are simplified; they ignore fine structure and they do not show energy level shifts (i.e. are diabatic). When 
the two diabatic become near-degenerate, they state-mix and create a doorway (purple states). 
Rotationally inelastic collisions (green) can move population from a relatively pure B state to a relatively 
pure B” state via the doorway. 
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Chapter 4 : Putting it All Together, A Master Equation Model for Population 
Transfer 
 

Abstract: I now synthesize the eigenstate character of all bound levels of the B/B”-X system; the 
absorption, fluorescence, and predissociation processes; the electronically/rotationally inelastic transfer 
rates, and simple expressions for chemical transfer into the Archean rock record. Rates for all these 
processes are incorporated in a Master Equation kinetic model: a large system of coupled differential 
equations, where each equation represents a single rovibronic state in the system. To incorporate the 
collisional transfer rate constants from Chapter 3, small modifications must be made to account for my 
assumption that all collisions are rotationally inelastic, as well as to maintain detailed balance/thermal 
equilibrium with the surrounding atmosphere. The master equation model can be solved at steady state, 
which requires a “closed” system that ignores predissociation and chemical transfer. These process which 
“open” the system, require a time-dependent solution. This solution is generated using the matrix 
exponential method. 

 

4.1. Overview: 
 In this chapter, I introduce a Master Equation kinetic model that incorporates all relevant, bound 

rovibrational states of the X, B, and B” states of S2, and all radiative and collisional transfer processes 

between these states. For full details on these processes, see Chapters 2 and 3. More specifically, the 

Master Equation model incorporates: 

(1) The complete eigenstate character of all 1208 X states and 16210 B/B” states involved in my 

model. 

(2) Absorption and fluorescence to/from the B/B” states, described in Chapter 2. 

(3) The synthesized Gelbart-Freed/PG collisional transfer model, described in chapter 3. 

(4) Predissociation via spin-orbit perturbations by the repulsive 1u state described in Chapter 2. The 

repulsive state fully predissociates for vibrational states with 𝑣 > 9 and 𝑣 " > 21. In this model, 

I only include states with 𝑣 <= 9 or 𝑣 " <= 21. However, there are a number of higher 

rotational levels of 𝑣 = 8, 9 and 𝑣 " = 19, 20, 21 that are above the predissociation limit at 

~35,999 cm-1. The predissociation of these states to S + S is included the model. 

(5) Chemical reactions that irreversibly move excited state S2 into the reduced rock record via the S2 

-> S8 -> FeS2 polymerization mechanism described in Chapter 1. 



 

101 

 The Master Equation model uses the above information as inputs and can be solved in multiple ways, 

to output the following information: 

(1) The population of every X, B, and B” rovibrational state under the “steady state approximation” 

(where the system is at equilibrium and all the transfer rates converge to zero). Note that this 

approximation is only valid in a closed system, i.e. when there are no processes that chemically 

change the system. This excludes predissociation to S + S and polymerization to S3, S4, etc. 

(2) The population of every X, B, and B” rovibrational state as a function of time. I use this, more 

general, solution to incorporate the predissociation and polymerization chemistry described 

above. 

(3) I also adjust a variety of parameters, including the relative strength of the B/B” perturbations, the 

predissociation lifetime, the magnitude of the isotope shift, etc. These changes do not reflect the 

physical reality of the B/B”-X system. However, observation of both the steady-state and time-

dependent behavior as a function of these parameters provides general insight the mechanisms of 

electronic state transfer, and how those mechanisms could affect mass independent fractionation 

in other systems. This will be explored further in Chapters 6, 7, and 8. 

4.2. The Master Equation Model: An Introduction 
 

 A master equation model is a system of coupled, first -order differential equations, as given by 

Equation 4.1 

𝑑�⃗�

𝑑𝑡
= 𝑨𝑃(𝑡). (4.1) 

Here, �⃗�(𝑡) is a vector that lists the population of each B, B”, and X rovibrational quantum state as a 

function of time. The matrix 𝑨 is a special form of matrix called a Markov matrix. The Markovian nature 

of 𝑨 is notable for two reasons. First, the future time evolution of a Markov system depends only on its 

current state and not any preceding state. Second, the solutions to the Markovian equations of motion 
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given by Equation 4.1 are exponential functions. I will invoke both of these properties later on in this 

chapter. For now, we should think of 𝑨 as a network of connections (transfer rates) between the 

individual states of �⃗�. The master equation is a very common formalism for detailed modeling of 

chemical kinetics. For example, it has been used to analyze combustion processes [87], protein and 

peptide folding [88, 89], and quantum mechanical energy transfer [90]. I now detail the construction of a 

master equation model that completely describes processes (1)-(5) in the preceding section. 

4.3.  Modeling Absorption and Fluorescence in the B/B” system 
 

 The first order rate expressions for absorption and fluorescence in a simple two level system are 

given by Equations 4.2a and 4.2b 

𝑑[𝑥]

𝑑𝑡
= 𝐴 → [𝑏] − 𝐵 → 𝜌(𝜈, 𝑇 )[𝑥] (4.2𝑎) 

𝑑[𝑏]

𝑑𝑡
= −𝐴 → [𝑏] + 𝐵 → 𝜌(𝜈, 𝑇 )[𝑥] . (4.2𝑏) 

Here, [𝑥]  and [𝑏]  are the populations of the ground state and upper states, respectively. The 𝐴 → ’s and 

𝐵 → ’s are called the Einstein A and B coefficients, respectively. The term 𝜌(𝜈, 𝑇 ) is the radiation 

density of the sun in SI units of W·s/m2, where 𝜈 is the [x]i <->[b]i transition frequency and 𝑇 is the 

surface temperature of the sun. 

The 𝜌 term can be reasonably estimated as a blackbody with temperature, 𝑇 . However, I 

instead use empirical data from Rottman, Woods, and McClintock, who reported solar irradiance 

measurements taken using the Solar Radiation and Climate Experiment (SORCE) spacecraft [91]. This 

data somewhat overestimates the radiation density, as the sun’s luminosity has gradually increased during 

the history of the solar system [92]. The Archean solar flux, in particular, is thought to be 20-30% lower 

than its present value. The temperature of the planet, however, was about as warm as it is now, and much 

higher than this low solar flux would suggest [92, 93]. This apparent contradiction is referred to as the 
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“faint, young sun paradox” [94].  A number of mechanisms including OCS radiative forcing [95]  and 

reduced cloud cover [96] have been proposed to help resolve this paradox. 

The coefficients 𝐴 →  and 𝐵 → 𝜌(𝜈, 𝑇 ) constitute first order rate constants with dimension: 

[time]-1. Equation 4.3a relates the absorption cross section, 𝜎 , calculated in Chapter 2, to the Einstein A 

coefficient, and Equation 4.3b does the same for the Einstein B coefficient 

𝐴 → =
8𝜋𝜈 (2𝐽" + 1)

𝑐 (2𝐽 + 1)
𝜎 (4.3𝑎) 

𝐵 → =
𝑐

𝜈ℎ
𝜎 . (4.3𝑏) 

where 𝜈 is the transition frequency, 𝑐 is the speed of light, ℎ is Planck’s constant, and J” and J’ are the 

total angular momentum quantum numbers of the 𝑏 and 𝑥 states, respectively.  

 These coefficients are included as terms in the matrix 𝑨 from Equation 4.1. The selection rules 

from Chapter 2 determine the ground and excited rovibrational states of �⃗� that they connect. 

4.4. Modeling B/B” Collisional Transfer 
 

 The first-order rate constants for collisional population transfer are also included in 𝑨. They are 

determined using an expression derived in Chapter 3. This expression is rewritten here as Equation 4.4, 

where states 1 and 2 are different B/B” eigenstates. 

𝑘 → = 𝑍 ∗ | 𝑐 , 𝑐 , 𝑎′′|
𝐸 , (𝐽 ) − 𝐸 , (𝐽 )

𝐵
| | (4.4) 

Recall that 𝑍 is the total hard-sphere collision rate, which is a function of temperature and pressure, and 

the sum is over all possible vibronic states, 𝑖. The 𝑐 ,  and 𝑐 ,  are the coefficients for the initial and final 

J state within the pure vibronic state, 𝑖 .The parameter 𝑎’’ is a proportionality constant, 𝐸 , (𝐽 ) − 𝐸 , (𝐽 ) 
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is the energy gap between the initial and final diabatic state, 𝐵  is the rotational constant for state 𝑋 , and 

𝛼 = 0.6 (see section 3.7).  

While this sum over 𝑖 is theoretically over all Hund’s case (a) vibronic states in the B/B” system, in 

this calculation, I limit the sum to the five most probable basis states within eigenstate 1. Furthermore, 

while collisional transfer can theoretically occur between any two states that share at least some case (a) 

basis state character, here again I limit transfer to the 5 final states with the largest transfer rates. Finally, I 

limit the maximum change in rotational quantum number to |Δ𝐽| ≤ 10. All these limitations are in service 

of computational efficiency. 

As discussed in chapter 3, I assume that every collision is rotationally inelastic.  That is, for each 

eigenstate, 𝑖, we must have the condition given by Equation 4.5  

𝑘 → = 𝑍. (4.5) 

In other words, the total transfer rate out of eigenstate 𝑖 must be equal to the total collision rate, 𝑍. In the 

rate expression given by Equation 4.5, I define the proportionality constant for each eigenstate as: 

(𝑎 ) ∗ 𝑍 = 𝐴 . To determine 𝐴 , I must first determine the total hard-sphere collision rate, using the 

standard expression given by Equation 4.6 

𝑧 = 𝜌 𝜋𝑑 < 𝑣 >, (4.6) 

where: 𝜌  is the number density of molecules; 𝑑 is the average collision diameter of the 𝑁  and 𝑆 ; 

and  < 𝑣 > is the mean speed of the nitrogen molecules. In this calculation, 𝜌  is given by the ideal 

gas law, and < 𝑣 > is calculated using the Maxwell-Boltzmann probability distribution. The typical 

expressions for  𝜌 and < 𝑣 > are given by Equations 4.7a and 4.7b, respectively 

𝜌 =
𝑃

𝑘 𝑇
(4.7𝑎) 
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< 𝑣 >  = (
8𝑘 𝑃

𝜋 𝜇
) . (4.7𝑏) 

Where 𝑃 is the pressure and 𝑇 is the temperature of the atmosphere, 𝑘  is Boltzmann’s constant, and 

𝜇  is the 𝑁 /𝑆  reduced mass. 

From here, I use 𝑍 to determine the 𝐴 𝑠  for each eigenstate, 𝒊, as shown in Equation 4.813 

𝐴 =  
𝑍

∑ 𝑘 →
. (4.8) 

With this, Equation 4.3 becomes Equation 4.9 

𝑘 → = 𝐴 | 𝑐 , 𝑐 , |
𝐸 , (𝐽 ) − 𝐸 , (𝐽 )

𝐵
| | . (4.9) 

I must now include the constraints on the +/- parity and e/f symmetry changing collisions 

discussed in Chapter 3. Let p1 and p2 be the total (+/-) parity of state 1 and state 2, respectively. Likewise, 

let 𝑟  and 𝑟  be the e/f symmetry of the initial and final states. Let e be the electronic state character (B or 

B”) of the basis electronic state, 𝑖. Finally, let Ω  be the spin character of the 𝑖th B” state. These 

conditions lead to Equation 4.10. 

𝑘 → = 𝑧 ∗ 𝐴 | 𝑐 , 𝑐 , |
𝐸 , (𝐽 ) − 𝐸 , (𝐽 )

𝐵
| 𝛿 [1 − (1 − 𝛿 )(1 − 𝛿 , "𝛿 , )]| (4.10) 

In Equation 4.10, the 𝛿 , ’s are Kronecker delta functions, which are equal to 1 if 𝑖 = 𝑗, and 0 

otherwise. The conditional 𝛿 ,  structure in the right part of Equation 4.9 reproduces the same rotational 

transfer selection/propensity rules as in Chapter 3, Figure 3-4. In Equation 4.9, note that Equation 4.10 

gives 𝑘 → =  𝑘 → . 

                                                           
13 The sum in Equation 7 (∑ 𝑘 → ) is the same as summing over the ith column in the matrix A, 
excluding the diagonal matrix element, 𝐴 , . 
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4.5. The Principle of Detailed Balance and the Boltzmann Weighting of Rate Constants 
 

The principle of detailed balance states that, at equilibrium, the total probability of a transition out of 

a quantum state must be equal to the total probability of a transition into a quantum state. While the 

𝑘 → =  𝑘 →  condition seems to satisfy this criterion, I must account for the differing velocities of the N2 

collision partners. In other words, I average the rate constant, as a function of velocity, over the velocity 

distribution of the N2 molecules (Equation 4.11) 

𝑘(𝑇) =  𝑘(𝑣)𝑓(𝑣)𝑑𝑉. (4.11) 

Here, 𝑓(𝑣) is the Maxwell-Boltzmann probability distribution for the relative velocities which is 

given in Equation 4.12  

𝑓(𝑣) =  4𝜋(
𝜇

2𝜋𝑘 𝑇
) 𝑣 𝑒 . (4.12) 

In equation 4.12, 𝑇 is the temperature of the atmosphere 𝑘  is Boltzmann’s constant, 𝑣 is the relative 

velocity of the N2/S2 molecules, and 𝜇 is the reduced mass, i.e. 𝜇 =  . From Equations 4.11 and 

4.12, it can be shown that the 𝑘 →  and 𝑘 →  are related as follows (Equation 4.13). 

𝑘 →

𝑘 →
=  

(2𝐽 + 1)

(2𝐽 + 1)
𝑒 . (4.13) 

Where 𝐽  and 𝐽  are the initial and final total angular momentum quantum numbers, and Δ𝐸 is the 

energy gap between the initial and final states. Intuitively, we can understand Equation 4.13 as a 

condition such that, in the long time limit, the inelastic transfer process will produce a Boltzmann 

distribution of rotational states. Note that the (2𝐽 + 1) M-degeneracy factor, which I had previously 

ignored when deriving the PG model in Chapter 3, returns here. 

To ensure that the relationship in Equation 13 is satisfied for all pairs of collisional transfer rate 

constants, I apply the following weight to each rate constant (Equation 4.14) [65] 
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𝑘 → , =  𝑘 → (2𝐽 + 1)𝑒 . (4.14) 

Where, 𝐸  is the larger of 𝐸  and 𝐸 , and 𝑘 →  is the standard collisional transfer rate constant, calculated 

using Equation 4.3.  

Finally, I incorporate the weighted 𝑘 → , ′𝑠 into the Master Equation model as follows in 

Equations 4.15a-b: 

𝑑[1]

𝑑𝑡
= 𝑘 → , [2] − 𝑘 → , [1] (4.15𝑎) 

𝑑[2]

𝑑𝑡
= 𝑘 → , [1] − 𝑘 → , [2]. (4.15𝑏) 

 

4.6. Open Systems: Chemical Reactions and Predissociation 
 

The system described thus far is closed, in the sense that the system of differential equations is 

capable of satisfying Equation 4.16, without the trivial solution �⃗� =  0⃗: 

𝑑

𝑑𝑡
�⃗� = 0. (4.16) 

In other words, the B/B” and X states can evolve to a point where the system is at equilibrium and there is 

not net flow of population into or out of any individual state. However, Equation 4.16 is sometimes 

impossible to satisfy. I will refer to systems that cannot satisfy Equation 4.16 as “open”, meaning that 

there is a net flow of population either into or out of the B/B”-X system. In this work, I will be especially 

interested in flow of population out of the system due to two processes: chemical reactions and 

predissociation. 

In chapter 1, I discussed the process by which S2 leaves the atmosphere. Specifically, S2 

polymerizes to S4 and S8, which precipitates out of the atmosphere as elemental sulfur aerosol particles. It 
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is then stored in the rock record as reduced species, such as pyrite (FeS2). In this sense, the atmosphere is 

an open system, and we can model this (ultimately) irreversible chemical process by adding an additional 

rate constant to each B/B” state [b]i differential equation, as in Equation 4.17. 

𝑑

𝑑𝑡
[𝑏] =  −𝐴 [𝑏] + 𝐵 →  𝜌(𝜈, 𝑇) [𝑔] − 𝑘 → [𝑏] + 𝑘 → [𝑏] − 𝒌𝒄𝒉𝒆𝒎[𝒃]𝒊. (4.17) 

 Where, in the bolded term, 𝑘  is the net rate of the chemical reaction that removes S2 from the 

atmosphere, by transforming it to S3, S4, and eventually FeS2. Because I am concerned about the net rate 

of transfer, I do not include a back reaction term, such as + 𝒌𝒄𝒉𝒆𝒎,𝒃𝒂𝒄𝒌[𝑺𝟑]. 

 It is important to note: I initially assume that the rate of chemical reactions in the excited state is 

much, much larger than the reaction rate in the ground state. That is, I only include chemical reactions 

with the B/B” states. I will revisit the validity and consequences of this assumption later on in this work. 

 Likewise, I can also include the effects of predissociation from S2 to S(3P) + S (3P) via a spin-

orbit interaction with a 1u state, as discussed in Chapter 2. Because my model focuses on the non-

predissociating vibrational states, I only include predissociation for rotational states of 𝑣 < 9 and 𝑣 " <

21 that exceed the predissociation limit of 35,999 𝑐𝑚 . The longest lifetime of the 𝑣 < 9/𝑣 " < 21  

predissociating states 𝜏  is about 10 ns. Unless otherwise stated, I will use this lifetime as an estimate for  

𝜏  in my model. This was observed by Green and Western [46] for Ω = 0 states of 𝑣 = 10. Because the 

B/1u state interaction is primarily spin-orbit in nature (i.e. ΔΩ = 0), the v = 10, Ω = 0 manifold has the 

weakest predissociation to the Ω = 1 repulsive state. 

The parameter 𝜏  is adjustable in my model. I include it in the B/B” differential equations for as 

follows in the bolded portion of Equation 4.18. 

𝑑

𝑑𝑡
[𝑏] =  −𝐴 [𝑏] +  𝐵 →  𝜌(𝜈, 𝑇) [𝑔] − 𝑘 → , [𝑏] + 𝑘 → , [𝑏] − 𝑘 [𝑏] − (

𝟏

𝝉𝒑
)[𝒃]𝒊. (4.18) 
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As with the chemistry portion of the equation, I do not include a back reaction (i.e. 𝑆 + 𝑆 → 𝑆 ) 

in this version of my model. 

4.7. Visualizing the Master Equation Model 
 

 Figures 4-1a-f visualize and summarize the transfer processes in the B/B”-X system, which are 

encoded in the matrix A. The matrix A is expressed in the following basis set (Equation 4.19) 

𝑏𝑎𝑠𝑖𝑠 𝑠𝑒𝑡 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
  𝑩𝟏  𝑱𝟏  
𝑩𝟏  𝑱𝟐

⋮
𝑩𝟐  𝑱𝟏

𝑩𝟐  𝑱𝟐

⋮
⋮

𝑩𝒏  𝑱𝟏

𝑩𝒏  𝑱𝟐

⋮
𝑿𝟏  𝑱𝟏

𝑿𝟏  𝑱𝟐

⋮
𝑿𝟐  𝑱𝟏

𝑿𝟐  𝑱𝟐

⋮
⋮

𝑿𝑵  𝑱𝟏

𝑿𝑵  𝑱𝟐

⋮ ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. (4.19) 

Where the 𝐵 𝑠 are B/B” vibronic states, and the 𝑋 ′𝑠 are X vibronic states. 
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One note about the fluorescence process, visualized in Figures 4-1e-f: In general, the final distribution of 

vibrational states for fluorescence from the B/B” state to the X state is determined by the B/B”-X Franck-

Condon factors. However, my model only includes 𝑣 = 0 − 1. To bridge this gap, I simply assume that 

the initial Franck-Condon distribution is thermalized on a timescale that is short relative to the “lifetime” 

of the X state. (The “lifetime” is the characteristic time spent in the ground state in-between excitations to 

the B/B” state). To do this, I allow fluorescence to every J state in 𝑣 = 0 − 1, and apply a corresponding 

Boltzmann weight to each of the Einstein A coefficients. 

Figure 4-1: Summarizes the connections between the various states in the B/B” system. The left-side 
figures are cartoons that visualize the nonzero matrix elements for each of the transfer processes 
represented in the simplified (and not-to-scale) energy level diagrams on the right. Note that, for the 
matrix A, the column represents the initial state and the row represents the final state. These 
connections are: absorption (1a and 1b), B/B” collisional transfer (1c and 1d), fluorescence (1e and 
1f), predissociation (1g and 1h), and excited state chemistry (1i and 1j). The closed system processes 
(a-f) have two sets of non-zero matrix elements one for leaving the initial state (diagonal) and one for 
entering the final state (off-diagonal). The open system processes (g-j) only have terms for leaving the 
B/B” state (diagonal). 
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4.8. Solving the Master Equation Model: Closed Systems 
 

 If I do not include chemical transfer to the rock record and predissociation, then the system is 

closed and I solve the Master Equation model at steady state (see: Equation 4.15). To illustrate this 

process, consider a system with a set of upper state differential equations given by Equation 4.20: 

𝑑

𝑑𝑡
[𝑏] = 0 =  −𝐴 [𝑏] +  𝐵 →  𝜌(𝜈, 𝑇) [𝑥] − 𝑘 → , [𝑏] + 𝑘 → , [𝑏] . (4.20) 

In Equation 4.20, the Einstein A and B coefficients and the weighted collisional transfer rate constants are 

defined as before; [𝑥]  is the ground state population; and the differential equation is set to zero to satisfy 

the steady state approximation. I assume the [𝑥] ′𝑠 to be constant, and, consequently, I do not write their 

differential equations. This leads directly to Equation 4.21 

 𝐵 →  𝜌(𝜈, 𝑇) [𝑥] =  −𝐴 [𝑏] + − 𝑘 → , [𝑏] + 𝑘 → , [𝑏] . (4.21) 

Where the [𝑥] ’s are given by the Boltzmann distribution (Equation 4.22): 

[𝑥] =

exp −
𝐸[ ]

𝑘 𝑇
𝑄 . (4.22)

 

Where 𝐸[ ] is the eigenstate energy of ground state [𝑥] , and 𝑄 is the canonical partition function. 

Abstracting Equation 4.21 to matrix notation, let �⃗� be the vector containing the  ∑ 𝐵 →  𝜌(𝜈, 𝑇) [𝑥]  

terms from the left side of Equation 21, for each upper state. The vector containing the relative 

populations of the [𝑏]  states is �⃗� and it is given by Equation 4.23 

�⃗� = 𝑨 �⃗�. (4.23) 
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Where 𝑨  is the inverse of the matrix 𝑨. This inversion procedure is performed in Matlab version 

2017a.14 

4.9. Solving the Master Equation Model: Open Systems 
 

 If predissociation or irreversible chemical reactions are included, then the system is open and the 

steady state approximation no longer applies. Instead, I must solve for �⃗� as a function of time, i.e. �⃗�(𝑡). 

The general solution to the Master Equation model (Equation 4.1) is given by Equation 4.24 

�⃗�(𝑡) =  𝑒𝑨 �⃗�(0). (4.24) 

The term 𝑒𝑨 is called the Matrix Exponential. It is defined using the Maclaurin series expansion of the 

function 𝑒  (Equation 25)15 

𝑒𝑨 = 1 + 𝑨𝑡 +  
1

2
𝑨 𝑡 +

1

6
𝑨 𝑡 +

1

24
𝑨 𝑡 + ⋯ (4.25) 

 The Matrix Exponential is computationally inexpensive to calculate because the 𝑛 𝑥 𝑛 matrix 𝑨 

can be diagonalized as shown in equation 4.26 

𝑨 = 𝑺𝚲𝑺 . (4.26) 

Where 𝑺 and 𝑺 transform into and out of the eigenstate basis of A, respectively. The matrix 𝚲 is 

diagonal with the eigenvalues 𝜆 , 𝜆 , … 𝜆 as the diagonal matrix elements (Equation 4.27) 

                                                           
14 It is not strictly necessary to assume that the [𝑥] ’s are constant. In this case, the matrix A is generally 

not invertible, but �⃗� can still be solved for by determining the nullspace of A. However, this procedure is 
both computationally expensive, and unnecessary, as the population of the [𝑥] ’s are much larger than 
those of the [𝑥] ’s, so I can assume the [𝑥] ’s to be constant. 
 
15 I have used both aforementioned properties of Markov matrices here. The solution to the differential 
equations are exponentials and I can completely determine the future behavior of the system given 
starting state �⃗�(0). 
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𝚲 =

𝜆 0 ⋯ 0

0
⋮
0

𝜆
⋮
0

⋯
⋱
0

0
0

𝜆

. (4.27) 

Plugging into Equation 4.25, I obtain Equation 4.28. 

𝑒𝑨 = 1 + 𝑺𝚲𝑺 𝑡 +  
1

2
𝑺𝚲𝑺 𝑺𝚲𝑺 𝑡 +

1

6
𝑺𝚲𝑺 𝑺𝚲𝑺 𝑺𝚲𝑺 𝑡

+
1

24
𝑺𝚲𝑺 𝑺𝚲𝑺 𝑺𝚲𝑺 𝑺𝚲𝑺 𝑡 + ⋯ (4.28)

 

Because 𝑺𝑺 = 𝚰, where 𝚰 is the identity matrix, I can write the simpler expression that is shown in 

Equation 4.29 

𝑒𝑨 = 1 + 𝑺 𝚲𝑡 + 
1

2
𝚲𝟐𝑡 +

1

6
𝚲𝟑𝑡 +

1

24
𝚲𝟒𝑡 + ⋯ 𝑺 . (4.29) 

And 𝚲𝒊 is simply given by Equation 4.30 

𝚲𝒊 =

⎣
⎢
⎢
⎡𝜆 0 ⋯ 0

0
⋮
0

𝜆
⋮
0

⋯
⋱
0

0
0

𝜆 ⎦
⎥
⎥
⎤

. (4.30) 

Therefore, the matrix exponential reduces to a simple diagonalization procedure, which is also performed 

in Matlab 2018a. 

 The solution to Equation 23, �⃗�(𝑡), is the population of each state in the B/B” system as a function 

of time. It provides a wealth of information that I will begin to analyze in Chapter 5. 
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Chapter 5 : Fundamentals – Fractionation in the Real B/B”-X System 
 

Abstract: 

 The output of the master equation model, solved at steady state without predissociation or 
chemical reactions, closely approximates mass-dependent fractionation. However, each interaction 
between B and B” vibronic states generally behaves in a random manner. The one exception is a series of 
B” states with f rotationless symmetry, odd vibrational quantum numbers, and spin-orbit component, Ω, 
equal to zero. These states have weak state-mixing, compared to most of the B/B” system, because there 
is not a corresponding B, f, Ω = 0 state, so the large spin-orbit, ΔΩ = 0 interactions cannot occur. This 
creates a “safe-zone” mechanism. “Safe-zones” are regions with very large B” state lifetimes that only 
occur in weakly state-mixed systems. The size of the safe-zone is determined by mass-dependent 
vibrational level shifts, with heavier isotopologues having smaller safe-zones. This trend reverses for a 
predissociating system, because lighter isotopes cross the predissociation threshold at lower rotational 
quantum numbers than do heavier ones. The most important conclusions drawn: Weak state-mixings are 
more likely to generate mass-independent fractionation than are strong state-mixings. (2) Collisional 
transfer in the B/B” state is unlikely to be the origin of Archean S-MIF (3) The mass-dependent nature of 
the fractionation from strongly predissociating states, makes such systems unlikely as origins for the S-
MIF in the Archean rock record. (4) Spectroscopic parameters such as Franck-Condon factors, rotational 
constants, etc. are important for creating the systematic patterns that generate the mass-dependent 
fractionation. 

5.1. The Steady State Model: General Results  
 

Figure 5-1 shows the output of a very simple run of the B/B” kinetic model that I detailed in 

Chapter 4. In this run, predissociation does not exist and the quantity measured on the dependent axis is 

the fraction of the total population occupying any excited state (𝑓 )16, for each of the four S-32 

                                                           
16 This fraction is on the order of 10 . Most of the population remains in the ground state.  
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Figure 5-1: For each isotopologue, the steady-state fraction of the total population in the excited B/B” 
state is plotted as a function of pressure (logarithmic scale). 3232 has half of the rotational states, as 
described in Chapter 2, and is therefore differentiated from the other isotopologues using a dashed line. 
The temperature is 300 K. 
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containing isotopologues (3232, 3233, 3234, and 3236), at steady state. The temperature is 300 K. The 

independent axis is the pressure of the atmosphere on a logarithmic scale. Clearly, as the pressure 

increases, the overall excited state fraction decreases. Note also that, at higher pressures, the 

isotopologues begin to sort themselves by mass, with the lightest molecule (3232) having the largest 

fraction in the excited state and the heaviest (3236) having the smallest fraction. This striation is 

especially pronounced for the 1 atm data point. 

 As we noted in Chapter 1, the term “Sulfur Mass-Dependent Fractionation” (S-MDF) describes 

the isotope effect originating from a very specific isotope exchange phenominon. However, the mass 

sorting seen at the higher pressures in Figure 1 closely approximates S-MDF. This is seen more clearly in 

Figure 5-2, which plots 𝑓 (𝑎𝑡 1 𝑎𝑡𝑚) of each isotopologue as a function of the reduced mass, and, to 

emphasize this point, it also includes a least squares fit of that data. Here, the large correlation coefficient 

for the least squares fit (𝑅 = 0.96) indicates an isotope effect that closely approximates a mass-

dependent relationship  (𝑅 = 1). This observation leads to two questions: 

(1) Why does the the collisional transfer between the B and B” states generate mass-dependent 

behavior, even though this kinetic collisional transfer mechanism is completely unrelated to the 

thermodynamic relationship used to define the S-MDF relationship? 

(2) Overall, why does the excited state population decrease with increasing pressure? 
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Figure 5-2: The black line shows fex at 1 atm for the data shown in Figure 4-1 (independent axis), as a 
function of reduced mass (dependent axis). The dashed red line shows a linear least squares fit of this 
data. The correlation coefficient (R = 0.96) shows that the pattern approximates a purely S-MDF 
relationship, which would have an R = 1. 

5.2. A Vibrational State Analysis of Steady State Fractionation 
 

To address question (1), I must break down the behavior of the B/B” system by e/f symmetry, 

electronic state, and vibrational level. For each vibrational state, I summed the steady state population 

over all of its constituent rotational states, as in Equation 5.1, where 𝑆 is the sum, the subscripts 𝑣, 𝑒, 𝑝 

indicate that the sum is for a specific vibrational (𝑣), electronic (𝑒), and e/f symmetry (𝑝), 𝑥  is the steady 

state population of a given rovibronic state, and the sum is over all rotational levels. 

𝑆 , , = 𝑥

 ∈ 

(5.1) 

Figure 5-3 is a bar chart that plots, at 1 atm, the difference in 𝑆 , ,  between 3236 (smallest 𝑓 ) and 3232 

(largest), such that a positive value indicates that the rovibronic state has more population in 3236, and a 

negative value indicates more population in 3232. The quantity plotted on the dependent axis of Figure 5-

3 is made more explicit in equation 5.1 
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𝑆 , , (3236) − 𝑆 , , (3232). (5.2) 

 

Figure 5-3: A bar chart depicting the difference in vibrational state population between the 3232 and 
3236 states. Positive values indicate more population in 3236 for a given vibrational state, while negative 
values indicate more population in 3232. The vibrational states are sorted first by e/f symmetry, then 
electronic state, then spin-orbit component. While there is clearly a wide spectrum of behavior, it is not 
random. In particular, the f-symmetry B”, Ω = 0 vibrational states, show systematic bias toward 3236, 
and therefore suggest a possible origin of the pseudo mass-dependent fractionation effect seen in Figure 
5-2. 

In contrast with systems we will study later on, the isotope effect here varies substantially depending on 

the vibrational state, and while the behavior is complex, it is not entirely random. In particular, the bias 

towards 3232 in the f-symmetry B”, Ω = 0 vibrational states stands out as the primary origin of the 

pseudo mass-dependent effect we saw in Figure 5-2. Figure 5-4 displays this portion in more detail.  
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 In particular, note the even/odd alternation in the isotope effect over a broad swath of vibrational 

levels, from 𝑣 =  0 to 𝑣 =  18. The even levels, overall, favor neither 3232 nor 3236, while the odd 

levels significantly favor 3232. To understand the origin of this behavior, we will consider the interaction 

of these B” vibrational levels with nearby B vibrational levels. Figure 5-5 shows the reduced term value 

plots of two representative 3236 vibrational states: 𝑣 " = 7 and 𝑣 " = 8, as well as their neighboring B 

and B” states. For simplicity and clarity, I do not show the energy level shifts caused by perturbations 

between the B state and the B” state.  

 

 

 

Figure 5-4: The B”, f-symmetry, 𝛺 = 0 component of Figure 5-3. The numbers above or below each bar 
represent the vibrational quantum numbers. Note both the widespread, systematic bias towards 3232 and 
the even/odd alternation in the isotope effect.   
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The difference between the two is quite significant: the B” 𝑣 " = 7 state crosses the B (𝑣 = 3) state at 

approximately 𝐽 = 20, whereas the B” 𝑣 = 8 state does not cross the B state until very high levels of J.  

5.3. v = 7 e/f Symmetry Comparison: The Effect of State-Mixing on Fractionation in B” 𝜴 =

𝟎, v = 7 
 

5.3.1 The e-Symmetry Fractionation Behavior   
 

 We now must explore the mechanism, i.e. why does this low-J crossing cause a substantial 

isotope effect? At this point in the analysis, it is worthwhile to explore the differences in behavior 

between the e symmetry and f symmetry components of the B” Ω = 0 states. The e symmetry B” Ω = 0 

𝑆 , , (3236) − 𝑆 , , (3232) plot is shown in Figure 5-6. Note that the scale of this plot is the same as in 

Figure 5-4. 

Figure 5-5: The B”, f-symmetry, Ω = 0 component of Figure 5-3. The numbers above or below each bar 
represent the vibrational quantum numbers. Note both the widespread, systematic bias towards 3232 and 
the even/odd alternation in the isotope effect.   
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The e-symmetry vibrational states exhibit an isotope effect that is greatly reduced in magnitude, 

compared to their corresponding f-parity vibrational levels. Additionally, the pronounced even/odd 

alternation observed over the vast majority of f-symmetry levels, is not present. 

5.3.2. State-Mixing of the e and f Symmetry Components of 𝛺 = 0, 𝑣 = 7. 
 

 The large difference in behavior between the e symmetry and f symmetry components of the B” 

𝛺 = 0 state is due to state-mixing with the B state. Figures 5-7a-b depict the structure of the B/B” 

perturbations. As we noted in Chapter 3, the B state has term symbol Σ , and consequently, each 

vibrational state has three rotational progressions (named: F1, F2, and F3). Two of the progressions (F1 and 

F3) have e symmetry and mixed Ω = 0 and Ω = 1 character17, while the third (F2) is f symmetry and Ω =

1. There is, however, no f symmetry, Ω = 0 component of the B state. This is very important because the 

major ΔΩ =  0 B/B” perturbation matrix elements originate from a different portion of the effective 

Hamiltonian than do the ΔΩ = 1 B/B” perturbations. The former are termed “homogeneous perturbations” 

                                                           
17The Ω = 0 and Ω = 1 spin-orbit character is mixed by the S-uncoupling portion of the rotational 
Hamiltonian. 

Figure 5-6: The B”, e-symmetry, Ω = 0 component of Figure 5-3. The numbers, again, represent the 
vibrational states. This graph is shown on the same scale as is Figure 5-4 (f-symmetry states), revealing a 
greatly diminished isotope effect. Furthermore, the systematic patterns are less pronounced here than for 
the f-symmetry states. 
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and the latter, “heterogeneous.” The homogeneous matrix elements, which originate from both the spin-

orbit and rotational Hamiltonian, are given by Equation 5.3. 

< 𝐵, Ω=0| HSO+ HROT|B",Ω=0> = <B, 0|
1

2
𝐴 + 𝐵 (𝐿 𝑆 + 𝐿 𝑆 ) |𝐵", 0 >, (5.3) 

where 𝐴 and 𝐵 are the spin-orbit and rotational constants, respectively (see Chapter 3 for more details). 

And 𝐿 , 𝑆 , etc. are raising and lowering operators associated with orbital and spin angular momentum, 

respectively. The heterogeneous matrix originate solely from the rotational Hamiltonian; they are given 

by Equation 5.4. 

< 𝐵, Ω=1|  HROT|B",Ω=0> = <B, 1| − 𝐵(𝐽 𝐿 + 𝐽 𝐿 ) |𝐵", 0 > (5.4) 

For the interaction between the v = 7, B” state and the v = 4, B state, the homogeneous matrix element is 

21.37 𝑐𝑚 , whereas the heterogeneous matrix element (which has an explicit 𝐽 dependence) is only 

0.084 𝑐𝑚  at 𝐽 = 20. This is a difference of over 2 orders of magnitude. 

 Figures 5-7a and 5-7b depict the level structure of an Ω = 0, B” state interacting with a B state. 

The size of the perturbations is reflected in the size of the rectangles connecting the B and B” states. 

Figure 5-7a (left): highlights the interactions between the e symmetry B and B” states. The perturbations 
are large (red rectangles) due to a homogeneous, spin-orbit interaction. In Figure 5-7b (right): we see the 
perturbations between the f symmetry B and B” states. They are small (blue rectangles) due to a 
heterogeneous, rotational interaction. 
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   Figure 5-8 shows the effect of the homogeneous interaction on the mixed B/B” character of the e 

symmetry B” 𝑣 =  7 state (the rotational progression) with the crossing at 𝐽 = 20. Both 3232 and 3236 

are shown relative to their corresponding B state F3 component (the branch with the highest energy). Also 

shown (in pink) is the equilibrium Boltzmann rotational state distribution at 300 K.  

 

Figure 5-8: shows the effect of the homogeneous interaction on the mixed B/B” character of the e 
symmetry B” Ω = 0 v = 7 state. Two isotopologues (3236 and 3232) are depicted, their energies 
calculated relative to the F3 component of their respective B v = 4 state (blue dots). To facilitate the visual 
comparison, I have added in the 3232 states that do not actually exist, due to nuclear permutation 
symmetry considerations (see chapter 2). The black squares show relatively unperturbed states (B” 
character greater than 90%), the red, orange, and yellow squares represent increasingly perturbed states 
(up to ~50%). Due to vibrational level shifts caused by an increased mass, 3236 crosses its B v= 4 state at 
lower J than does 3232. This level shift hints at a possible origin for the pseudo mass-dependent isotope 
effect observed in Figure 5-2. The pink line shows the B” Boltzmann equilibrium rotational state 
distribution. It is clear that, in the 3232 case, the population statistically samples more “dark” B”-
character rotational states, than it does the 3236 case.   

 

 

5.3.3. Why a Difference in Excited State Lifetime Does Not Cause Fractionation in the e Symmetry States  
 



 

124 

The plot shows, for 3232, the B” population samples rotational states with more B” “dark” state 

character than does 3236. The average fluorescence lifetime of a 3232 state, therefore, ought to be larger 

than that for 3236. Figure 5-9 shows that, indeed, this is what I observe. 

 

  However, as I have previously noted, the e-symmetry states do not generate an isotope effect. I 

must therefore account for the fact that a ~50% difference in average lifetime does not translate into an 

appreciable effect. To do so, I consider a simple system, consisting of a single excited electronic state (𝑒) 

and multiple ground electronic states (𝑔, 𝑣 = 0,1,2 …). Rotational levels are ignored here, as they do not 

change the overall analysis but do complicate the mathematics. This system is depicted in Figure 5-10, 

where 𝑘  and 𝑘  are the absorption and the total fluorescence rate constants, respectively. The rate 

constant, 𝑘 , is the sum of the fluorescence rates to individual vibrational levels (𝑘 + 𝑘 + ⋯ ). 

This hypothetical system reflects the nature of the B/B”-X system. Due to Boltzmann statistics, 

3232 

3236 

Figure 5-9: The lifetimes of the 3232 isotopologue (e symmetry, B”, Ω = 0, v = 7 vibronic state), 
compared to the lifetime for the  same vibronic state of the 3236 isotopologue, as a function of J(J+1). 
The lifetimes decline as the states mix increasingly with the F3 component of the e symmetry, B, F3, v = 3 
state. Due to vibrational level shifts, the lifetime at J = 1 for is approximately 50% larger for 3232 
compared to 3236. However, observe that the lifetimes are both relatively low compared to the natural 
lifetime of the B” state (~4200 ns). 
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absorption almost exclusively (96%) occurs out of the v = 0 state of the X electronic state, but the 

molecule then fluoresces to multiple vibrational levels, determined by the distribution of Franck-Condon 

factors. I now consider population flow between the excited state [e] and the ground vibrational states, 

referred to collectively as [g]. 

 The two-level system of differential equations is given by Equations 5.5a and 5.5b 

𝑑[𝑒]

𝑑𝑡
=  𝑘 [𝑔] − 𝑘 [𝑒] (5.5𝑎) 

𝑑[𝑔]

𝑑𝑡
=  −𝑘 [𝑔] + 𝑘 [𝑒]. (5.5𝑏) 

 These equations can be trivially solved to obtain [𝑒](𝑡) and [𝑔](𝑡). The solutions are given as 

Equation 5.6, for initial condition [𝑔](0) = 𝑝  and [𝑒](0) = 0 (i.e. all population is initially in the 

ground state). 

𝑔(𝑡)
𝑒(𝑡)

= 𝑝

⎣
⎢
⎢
⎢
⎡

𝑘

𝑘 + 𝑘

𝑘

𝑘 + 𝑘 ⎦
⎥
⎥
⎥
⎤

+ 𝑝

⎣
⎢
⎢
⎢
⎡

𝑘

𝑘 + 𝑘

−
𝑘

𝑘 + 𝑘 ⎦
⎥
⎥
⎥
⎤

𝑒 (5.6) 

Figure 5-10: A hypothetical system consisting of one excited vibronic state, and multiple vibrational 
levels (v = 0,1,2 …) of the ground state. Due to Boltzmann statistics, the absorption only occurs out of the 
ground vibrational state. However, the fluorescence occurs to multiple states. 
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Because the system is closed (see: Chapter 4), it has a steady state (𝑡 →  ∞) solution. I concern myself 

here with the steady state solution for the excited state [𝑒]. Due to the relatively weak radiation density of 

the sun, I have 𝑘 ≪ 𝑘 , and, therefore, Equation 5.7 

[𝑒](𝑠𝑡𝑒𝑎𝑑𝑦 𝑠𝑡𝑎𝑡𝑒) ≈  𝑝
𝑘

𝑘
. (5.7) 

As noted in Chapter 4, 𝑘 =  𝐵 , → 𝜌(𝜈, 𝑇), and 𝑘 =  ∑ Α → , , where 𝐴 and 𝐵 are, again, the 

Einstein A and B coefficients. I can rewrite Equation 5.7 as follows (Equation 5.8) 

[𝑒](𝑠𝑠) ≈
𝐵 , → 𝜌(𝜈, 𝑇)

∑ Α → ,
. (5.8) 

 Upon substitution of the expressions for the Einstein coefficients, I obtain Equation 5.9 (again, 

ignoring rotational states) 

[𝑒](𝑠𝑠) ≈
𝜌(𝜈, 𝑇)

2𝜋
3𝜖 ℎ

|𝑅 | 𝑞 ,

16𝜋 |𝑅 |
3𝜖 ℎ𝑐

∑ 𝜐 , 𝑞 ,

. (5.9) 

This reduces to Equation 5.10 

[𝑒](𝑠𝑠) ≈
𝑐

8𝜋 ℎ

𝜌(𝜈, 𝑇)𝑞 ,

∑ 𝜐 , 𝑞 ,
. (5.10) 

 First, note that, due to the ~31000 𝑐𝑚  difference in energy between the X and B/B” states, the 

quantities 𝜐 ,  and 𝜌(𝜈, 𝑇) do not change significantly with the small, isotopologue-dependent 

vibrational level shifts. Most importantly, however, note that the |𝑅 |  terms cancel in Equation 5.10. For 

the B state, I calculate |𝑅 | = 1.89 Debye. For the B” state, I calculate |𝑅 | =  0.0243 Debye. In other 

words, the two-orders-of-magnitude difference in absorption rate and in fluorescence lifetime between 

primarily dark states and primarily bright states is due to the electronic component of the transition dipole 

moment. The cancelation of the |𝑅 |  terms indicates that the lifetime of the excited state is irrelevant to 
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excited state population at steady state. The faster the absorption rate, the faster the fluorescence rate.18 

The 50% difference in lifetime between 3232 and 3236 observed in B”, Ω = 0, 𝑣 = 7 does not, therefore, 

translate to a large isotope effect. 

5.3.4. Aside: The Rate of Convergence to Steady State 
 

 Equation 5.6 has another noteworthy feature: the rate at which [𝑒] and [𝑔] reach steady state. This 

rate is determined by the 𝑒  term, where the characteristic time at which the system reaches 

equilibrium is the sum of the absorption and fluoresce rates. Although the rate of absorption driven by UV 

radiation from the sun is very slow (largest absorption rate to any B/B” rovibrational state ≈ 5 ∗

10  𝑠 ), the fluorescence rate is quite fast  (3.1 ∗ 10  𝑠  for the B state, 2.4 ∗ 10  𝑠  for the B” 

state). Therefore, the steady state, equilibrium solution is reached in tens to thousands of nanoseconds. 

For the ground electronic state, at 300K and 1atm, the rate for the 𝑆 (𝑋) + 𝑆 + 𝑀 →  𝑆 + 𝑀 reaction is 

approximately 6 ∗ 10  𝑠 . Though the rate for the 𝑆 (𝐵/𝐵") + 𝑆 + 𝑀 →  𝑆 + 𝑀 is unknown, I will 

assume, for the remainder of this thesis, that the rate of the reaction is slow, compared to the rate of 

fluorescence, and, therefore, steady state is achieved between the X and 𝐵/𝐵” states. For this assumption 

                                                           
18 This is somewhat of an oversimplification. In reality, the electronic transition dipole moment of an 
eigenstate of the B/B” system is a linear combination of the B and B” state electronic transition dipole 
moment. However, the general point holds: the higher the rate of absorption, the higher the rate of 
fluorescence. 
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to be invalid, the excited state reaction rate must be greater than 19 orders of magnitude larger than the 

ground state reaction rate. 

5.3.5. State-Mixing in the f symmetry state 
 

 We return now to my comparison of the 𝐵", Ω = 0, 𝑣 =  7, e and f symmetry states, having 

established the absence of an e symmetry isotope effect. I now continue and compare the structure of the f 

symmetry manifold to the previous discussion of e symmetry. Figure 5-11 shows the interaction between 

the f-symmetry states and the B state. As in Figure 5-8, the energy levels for both 3232 and 3236 are 

shown relative to the F3 component of the 𝑣 = 3, B state. While the overall structure is similar to the e 

symmetry states, the perturbations matrix elements are much weaker, due to the heterogeneous, 𝑙-

3232 

3236 

Figure 5-11: shows the effect of heterogeneous perturbations on the interaction between the f symmetry 
B", Ω = 0, v =  7 state and the B, v = 3 state. As in Figure 5-8, the energies of the 3232 and 3236 states 
are shown relative to the F component of the B, v =  3 state, and the pink line shows the B” Boltzmann 
distribution. The state-mixing (shown on the same color scale as Figure 5-8) is much weaker than for the 
e symmetry components. The f symmetry ensemble samples rotational states with far greater B” character 
than does the e symmetry ensemble. 
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uncoupling interaction that originate from the rotational Hamiltonian. Consequently, the Boltzmann 

distribution (shown in pink) samples states with a far higher degree of dark state character. 

 It is now important to note that excited state lifetime is a very non-linear function of the mixing 

fraction between the B and B” state. I can represent an eigenstate (|Ψ >) of the B/B” Hamiltonian as a 

linear combination of the B state (|𝜓 >) and the B” state (|𝜓 " >) follows in Equation 5.11 

|Ψ > =  α|𝜓 >  + 𝛽|𝜓 " >. (5.11) 

where α = 1 − 𝛽 and represents the fraction of B state character, and 𝛽 represents the B” state fraction. 

 The characteristic lifetime of an electronic state (𝜏) is simply the inverse of the Einstein A 

coefficient (Equation 5.12) 

𝜏 =
1

𝐴
 . (5.12) 

If I account for mixed B/B” character, as well as the natural lifetimes of the B and B” states, I obtain 

Equation 5.13 

𝜏 =
1

(1 − 𝛽)
1

32 𝑛𝑠
+ 𝛽

1
4200 𝑛𝑠

. (5.13) 

This equation is plotted, as a function of 𝛽, in Figure 5-12. 
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5.3.6 The “Safe-Zone” Mechanism for Isotope Fractionation 
 

This highly nonlinear behavior, where the lifetime does not increase substantially until very high 

values of 𝛽, is key to my analysis. Figure 5-13 shows a comparison of the B” character of the e symmetry 

state versus the B” character of the f symmetry state, for both 3232 and 3236, as a function of 𝐽(𝐽 + 1). 

 

3232 

3236 
3232 

3236 

Figure 5-12: Excited state lifetime as a function of B” state character. The highly nonlinear behavior, as a 
function of state-mixing, is key to this analysis. As an example, the lifetime at 99% B” is 1824 ns, and 
100% is 4200 ns, a nearly 250% increase. 

3232 

3236 3232 

3236 

Figure 5-13: For 3232 and 3236, a comparison of the B” state character (state-mixing) of the v = 7, Ω = 0 
e symmetry states (left) and f symmetry states (right). Note, in particular, for f symmetry, the large regions 
of high B” character, followed by small, but highly perturbed regions. The color of the lines show the 
extent of the perturbations; they progress from black (low perturbation) to red to orange to yellow (high 
perturbation). 
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 There is a large, important contrast between the two plots. The e symmetry states have a 

maximum dark state character of  ~90%, and, therefore, have a very large region of high state-mixing. In 

other words, the e symmetry states never leave the “flat region” on the left of Figure 5-12. The f 

symmetry states have a large region with 𝛽 > 0.99, followed by a shorter region with large state-mixing. 

These states do leave the flat region and sample the long-lifetime region of Figure 5-12. To make this 

more explicit, the lifetime of these states, as a function of J(J+1) is shown in Figure 5-14. 

 This figure shows a large disparity between the behavior of the e symmetry and f symmetry 

states. For the e symmetry states, the lifetimes are consistently low (200-400 ns), and, crucially, do not 

change much as a function of 𝑱(𝑱 + 𝟏). For the f symmetry states, the lifetimes are very high (>4000 ns) 

at low J and decline very sharply around J = 20-30. I note, again, that the f symmetry states show a strong 

isotope effect with (𝑓 (3232) > 𝑓 (3236)), this suggests a “safe-zone” mechanism for isotopic 

fractionation. A cartoon illustrating this fractionation mechanism is shown in Figure 5-15. 

3232 

3236 

3236 

Figure 5-14: For 3232 and 3236, a comparison of the excited state lifetime of the v = 7, Ω = 0 e 
symmetry states (left) and f symmetry states (right). The differences between the two symmetries are 
stark, as the e symmetry lifetimes do not exceed 400 ns, and, more importantly, do not change much as a 
function of J(J+1). Conversely, the lifetimes of the f symmetry states have a large region with lifetimes 
greater than 4000 ns, followed by a sharp decline in lifetime as the B” state crosses the B state. 

3232 
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 In words, the mechanism operates as follows. First, I observe that, despite its “dark” character, 

the B” state has a similar population to the “bright” B state, because the |𝑅 |  terms cancel in the steady 

state expression (recall Equation 10 from Section 5.3.3.). This population is collisionally scattered around 

the B” rotational levels in a Boltzmann probability distribution (green curve). This population primarily 

samples the “safe zone”, states with very high lifetimes (𝜏 > 4000 𝑛𝑠), but population will occasionally 

undergo a random walk into the small perturbed region, where the probability of “leaking” down to the 

ground state is much higher. Because, in 3236, the B” state crosses the B state at a smaller value of J than 

it does in 3232, its “safe zone” is smaller, i.e. the perturbed rotational states are sampled with a higher 

propensity. This mechanism mirrors the “leaky bucket” mechanism I used in Section 3.5 to describe the 

Gelbart-Freed model for electronically inelastic transitions. 

 5.4. Broader Conclusions for the entire B/B” System  
 

 While I have only discussed a single B/B” crossing, there are a number of broader conclusions to 

draw: 

5.4.1 Rotationally inelastic collisions can drive perturbation-based isotope effects 
 

In the mechanism described in Figure 5-15, the crucial point is not that the average excited state 

lifetime is lower for 3236 than for 3232, as that is compensated by a greater degree of excitation from the 

Figure 5-15: The proposed “safe zone” mechanism for isotopic fractionation in the B”, Ω = 0, v = 7, f 
symmetry states. The weak, heterogeneous perturbations create a “safe zone” of long lifetime states. 
Because the B” state crosses the B state earlier in 3236, than 3236, the population has a lower propensity 
for being collisionally transferred outside of the safe zone. 
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ground state (Equation 5.10). Instead, it is that population can be moved, via rotationally inelastic 

collisions, from a “safe-zone” state to a “leaky” state. This “flow” from high lifetime to low lifetime 

states generates the isotope effect. This concept of diffusion to a leak will be vital to my discussion of 

statistical isotope effects in Chapter 6. 

5.4.2 Weak perturbations generate larger isotope effects than do strong perturbations 
 

This is seen most clearly in Figure 5-14. For the strongly-perturbed e symmetry states, there is 

very little change in the lifetime (“leakiness”) as a function of 𝐽. Therefore, the “safe-zone” mechanism is 

much less effective for e symmetry states than for the weakly state-mixed f symmetry states. The 

difference in behavior is due to the highly nonlinear relationship between B/B” mixing fraction and 

lifetime seen in Figure 12. In my discussion of Figure 5-2, I noted that the 𝐵", Ω = 0, f symmetry states 

were responsible for creating the systematic isotope effect in the B/B” system. Returning to Figure 5-2, 

note especially that the Ω = 1 e and f symmetry states do not generate isotope effects. This is because the 

B Σ  𝛺 = 1 states have both e and f symmetry components, and, therefore, both the e and f B" states are 

strongly perturbed by the homogeneous spin-orbit interactions (see Equation 5.3, Section 5.3.2.). 

5.4.3. The isotope effect shows systematic patterns over multiple energy levels because the energy levels 
have systematic patterns. 
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This heading may seem almost tautological, but it is important for the broader conclusions at the 

end of this chapter. I observed in Figures 5-3 and 5-4 that the fractionation pattern favors lighter 

isotopologues over a wide range of odd 𝑣 B” vibrational levels. It is clear from my analysis that the “safe-

zone” mechanism for isotopic fractionation favors lighter isotopologues over heavier isotopologues 

because the B” state crosses the B state from above. This type of crossing occurs because the B” state has 

a softer potential well. It therefore has a larger equilibrium bond distance, and this makes the B” state 

rotational constants consistently smaller than the B state rotational constants (Figure 5-16). Were this 

trend reversed, if the B state had the softer well and the B” states crossed the B state from below, the 

isotope effect would favor more population in heavier isotopes, at steady state. 

 Additionally, I observed, in Figures 5-3 and 5-4, an even/odd alternation in vibrational quantum 

number, wherein odd vibrational states exhibited a large isotope effect and even vibrational states 

exhibited none. The reason for this alternation is seen in Figure 5-17, which shows the vibrational energy 

level spacing (𝐸(𝑣 ) − 𝐸(𝑣 )) as a function of vibrational energy level, 𝐸(𝑣 ). For the 𝐵” vibrational 

states with the strongest isotope effect (roughly 𝑣 = 5 − 15), the average energy level spacing is 229 𝑐𝑚 . 

For the B states with similar 𝐸(𝑣 ) (roughly 𝑣 = 2 − 8) the average energy level spacing is 402 cm-1. 
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Figure 5-16: The rotational constants for the B vibrational levels (blue) and the B” vibrational levels 
(red), as a function of vibrational origin energy. Due to the larger equilibrium bond distance, the 
rotational constants are always smaller in the case of B”. This creates a systemic isotope effect favoring 
3232. 
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This nearly 2:1 ratio creates the even/odd alternation in isotope effect. For the odd states (like B” v = 7 in 

Figure 5-5), the vibrational origin for the B” state origin starts just above the vibrational origin of its 

corresponding B state. Due its smaller rotational constant, the B” state then crosses the B state at 

relatively low J. Conversely, for the even states (like B” v = 8 in Figure 5-5), the B” state starts just below 

the corresponding B state, and doesn’t cross the B state until around J = 80 (a region with negligible 

Boltzmann population, compared to J = 20). This is also shown clearly in Figure 5-5. 

5.4.4. Franck Condon factors determine the steady state behavior of the B/B” system 
 

One lingering question from my analysis thus far: in Figure 5-4, why does the isotope effect seem  

larger, generally, for the vibrational levels in the center of the distribution(𝑖. 𝑒. 𝑣 = 5 − 17), than they do 

at low or high values of 𝑣? Figure 5-18 juxtaposes a plot of isotope effects as a function of f-symmetry 

vibrational level with a plot of 𝑣 = 0 →  𝑣 " = 𝑥 Franck Condon factors. 

 

Figure 5-17: The vibrational energy level spacing (roughly ω ), as a function of E(v ). In particular, note 
that the B” vibrational states with v = 5 − 15 (the region with the most pronounced isotope effect) have 
an average energy level spacing of 229 cm-1. The B vibrational states with similar energies (v = 2 − 8) 
have an average energy level spacing of 402 cm-1. 
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Here, it can be seen that the B” Franck Condon factors (right) follow a very similar pattern to the odd-𝑣 

isotope effect. Larger FC factors are toward the middle of the distribution, smaller ones at high 𝑣  and at 

low 𝑣; this closely mirrors the magnitudes of the isotope effects (left), as a function of vibrational level. 

In effect, we can think of the B/B” system as a series of bright state/dark state crossings that are 

statistically weighted by the B” Franck Condon factors.  

The cause of this correlation can be seen in Equation 5-10. While the electronic state character 

does not affect the steady state population of a given excited state (because darker states have both lower 

absorption and correspondingly lower fluorescence rates), the population is statistically weighted by the  

𝑣 = 0 →  𝑣 / " = 𝑥 Franck-Condon factor. This is because absorption occurs primarily out of 𝑣 = 0, 

while fluorescence occurs to a variety of X state vibrational levels (see Figure 12, section 5.3.3). 

Therefore, odd vibrational levels within the v = 5-15 states, which, coincidently, have the low J B/B” state 

crossings required to drive the overall behavior of the B/B”-X system. 

 The effect of the Franck Condon weights will be discussed further in chapter 8. For now, I will 

use them to answer one more question raised at the beginning of this chapter: why does the overall 

excited state population (𝑓 ) decrease as a function of pressure, as seen in Figure 1? Consider Figure 5-

19, which shows the Franck Condon between 𝑣 = 0 for the vibrational levels of the B and B” states, as a 

function of energy.  
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0

-1
2

32
36

-3
23

2

Figure 5-18: A comparison of the v = 0 →  v " = x Franck-Condon factors (right) and the f symmetry 
isotope effect, as a function of vibrational (right). The left figure is identical to Figure 4. 
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Figure 5-19: The Franck-Condon distributions, for absorption out of v = 0, as a function vibrational 
origin energy. Note that, for all B” vibrational levels from approximately v " =  7 to v " =  16, the B” 
Franck-Condon factor is substantially larger than the B Franck-Condon factor. 

 Figure 5-19 shows that, over the range of B” vibrational levels from 𝑣 " = 7 to 𝑣 " =  16, the B” 

Franck-Condon factors are larger than their B state counterparts. This discrepancy contributes to the 

overall behavior of the B/B” system. In my discussion of Figure 5-1, I observed that the excited state 

population declines as the pressure of the background gas (i.e. the pressure of the atmosphere) increases. 

Figure5- 20 is a cartoon showing how the steady state behavior of the system relates to these Franck-

Condon factors. 
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 In Figure 5-20, the top three panels show the case where the B” FC factor is larger than the B FC 

factor. In the absence of collisions (top left), there is more population, at equilibrium, in the B” state, 

compared to the B state, due to its larger Franck Condon factor (Equation 5.10). The top central panel 

shows the effect of introducing collisions into the B/B” system. The overall rate constant for collisional 

transfer from B to B” is equal to that for transfer in the reverse direction. However, because there is 

greater population in B” compared to B, there is a net transfer from the B” state to the B state. This 

creates more total population in the B state than there was in the absence of collisions. Because the 

equilibrium between the B state and the X state is now perturbed, the B state fluoresces to reestablish this 

equilibrium (top right). Conversely, with q(B) > q(B”) (bottom left) there is more population in the B 

state, compared to the B” state. When the collisions are introduced, there is a net flow of population from 

the B state into the B” state (bottom center), and the system reestablishes equilibrium via absorption of 

population from the X state to the B state (bottom right). 

Figure 5-20: This cartoon illustrates the effect of the relative values of the B and B” state Franck-Condon 
factors for two vibrational levels involved in a curve crossing. The red line represents a B” state, the blue 
a B state. The purple squares represent an ensemble of population. The arrows represent a net flow of 
population. Collisional transfer is represented by green arrows, radiation is represented by yellow. 
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 I have ignored one additional transfer process in this analysis. While I focused on the 

reestablishment of equilibrium between the X and the B state, equilibrium is also perturbed between the 

B” and X states, and the response of the system to reestablish this equilibrium counteracts the effects 

described in the previous paragraph. However, the reestablishment of equilibrium between the B” and X 

states occurs much more slowly than it does for the B and X states. This is due to the expression we 

derived in Equation 5.6, which shows that equilibrium in an B/B”-X two level system is established at a 

characteristic rate equal to the sum of the absorption and fluorescence rates. The absorption rate is much 

smaller than the fluorescence rate, so the equilibration rate is roughly equal to the fluorescence rate. 

Therefore, the much longer lifetime of the B” state implies a much slower establishment of equilibrium, 

compared to reestablishment of equilibrium in the B state. It is the latter process, then, that drives the 

overall behavior of the system. 

 In summary, I can explain the declining values of 𝑓  as a function of atmospheric pressure by 

noting the larger values of the B” FC factors relative to B FC factors, over a wide energy level range 

(𝐸 ≈ 33000 𝑐𝑚 −  35000 𝑐𝑚  of the B/B” system (see Figure 5-19). 

5.5. Modeling the Fractionation Behavior of the S2 B/B”-X System in the Atmosphere 
 

5.5.1. Introduction to the Model 
 

 It is very important to note, at this point, that while my analysis of the B/B”-X system has yielded 

insight, it thus far does not reflect a complete picture of excited state S2 in the Earth’s atmosphere. To 

give a more complete picture, I introduce a few additional features: 

(1) Predissociation: At this point, I open the B/B” system (see: Chapter 4). That is, I allow 

predissociation from rotational states with 𝑣 ≤ 9 and 𝑣 " ≤ 21, but energies above the 

35,999 𝑐𝑚  predissociation limit. Additionally, I allow predissociation via absorption to 𝑣 ≥

10 and 𝑣 " ≥ 22 vibrational states.  
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(2) Chemistry: I also include a hypothetical chemical reaction that moves excited state S2 (S2*) 

toward the rock record. As an example, I have Equation 5.1419 

𝑆∗ + 𝑆 + 𝑀 → 𝑆 + 𝑀. (5.14) 

For ground state S2, at atmospheric pressure, the reaction has a rate constant ~10  𝑠 . I 

postulate that the reaction will happen much faster for excited state 𝑆∗. In this calculation, I use a 

rate constant =  1 ∗ 10  𝑠 , and assume that the rate is identical for any reaction B/B” 

rovibrational state. The value of the rate constant is arbitrary, but the behavior will be identical, as 

long as the rate of the chemical reaction is slow compared to the quantum mechanical processes 

(absorption/fluorescence and collisional transfer). 

(3) Atmospheric profile for temperature and pressure: To make this calculation as reflective of 

the Earth’s atmosphere as possible, I calculate the quantity of S2 undergoing a chemical reaction 

as a function of height in the atmosphere. The pressure of the atmosphere decreases as the 

exponential function given in Equation 5.15 [97]. 

𝑃(ℎ) = (1 𝑎𝑡𝑚)𝑒 .  (5.15) 

where ℎ is the height in the atmosphere in km. and P(h) is the atmospheric pressure in 

atmospheres. Similarly, temperature is also a function of height in the atmosphere, though the 

relationship is somewhat more complex (Equation 5.16) 

𝑇(ℎ) =  
288 𝐾 − 9.76

𝐾

𝑘𝑚
ℎ          𝑓𝑜𝑟 ℎ = 0 − 10 𝑘𝑚 

  200 𝐾                                     𝑓𝑜𝑟  ℎ = 10 − 30 𝑘𝑚 .
(5.16) 

                                                           
19 The reaction in Equation 5.14, is not the only possibility. The excited state S2 adsorbs directly onto an 
elemental sulfur aerosol, as another example. 
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The first portion of Equation 5.16 represents the declining temperature in the troposphere due to 

convection. The second portion of equation represents the tropopause, an inversion layer between 

the troposphere and the stratosphere, where temperature is roughly constant [97]. 

(4) More isotopologues included in the calculation. While the S-32 isotopologues (32-32, 32-33, 

32-34, 32-36) are the most relevant for calculating the ∆  and ∆  parameters, the S-34 

isotopologues (34-33, 34-34, and 34-36) have a smaller, but significant impact (~5%). 

5.5.2. The Time Dependent Behavior of This Open System 

Because the system to be solved is now open, I must now solve the system of differential 

equations as a function of time, using the matrix exponential method described in Chapter 4. The time 

data is in Figure 5-21. 
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Figure 5-21: Amount of S2 undergoing a chemical reaction, as a function of time (log scale). Note that all 
isotopologues are calculated assuming Bose-Einstein statistics for nuclear permutation symmetry, i.e. half 
of all energy levels are missing.(This speeds the calculation without losing the general principle discussed 
in the text). 



 

142 

This figure depicts a consistent pattern of behavior for all isotopologues. As time progresses, the amount 

of sulfur stored in the rock record increases. It increases at slightly different rates for each of the four 

isotopologues. In contrast to our earlier system, which excluded predissociation, in this system, the rocks 

are most enriched in S-36, followed by the lighter isotopes in order. This process continues for about 30 s, 

until all 𝑆  predissociates.20 

                                                           
20 In reality, some S2 re-forms due to the reaction 𝑆 + 𝑆 + 𝑀 →  𝑆 . However, this reaction occurs very 
slowly compared to this quantum mechanical dissociation process, so I ignore it in this analysis. 

Figure 5-22: For our new predissociating, chemically reactive system, this figure shows the isotopic 
fractionation (reacted sulfur for 3236 minus 3232) for each vibrational state, similar to Figure 5-4. Each 
panel, from top left to bottom right, shows how the fractionation changes this time, from one second 
elapsed to 300 seconds elapsed. The colored arrows show the sorting of the vibrational states, by 
electronic state (B/B”), spin orbit state (Ω), and e/f symmetry. Within each category, the vibrational states 
are sorted from v = 0 to v = 21. 
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 To understand the mechanism for this isotopic fractionation, consider Figure 5-22. This Figure is 

similar to Figure 5-4 – it shows isotopic fractionation (3236 – 3232) as a function of vibrational level. 

Each frame shows how this fractionation changes as a function of time. 

5.5.3 Fractionation Behavior of the Predissociating System 
 

At the earliest time, 1 second, Figure 5-22 shows a variety of fractionation patterns, some 

favoring 3236 (the positive values are generally at higher v’s), and some favoring 3232 (the negative 

values are generally at lower v’s). Most importantly, and unlike the non-predisscociating states in our 

previous discussion, this pattern manifests for both electronic states, for both e/f symmetries, and for all 

spin-orbit components. As time moves forward, this pattern gets more pronounced and encompasses more 

lower v vibrational states, until, eventually, every vibrational level is fractionated in favor of the higher 

mass 3236. I can interpret this pattern in the following way (Figure 5-23). 

 

Figure 5-23: A cartoon that illustrates the fractionation mechanism for this predissociating system. The 
predissoication limit is set here as 35,599 cm  (red dashed line). Because predissociation is caused by a 
crossing between a bound state and a repulsive state, the predissociation limit does not change with 
isotopologue, as repulsive states do not possess vibrational levels. The bound rotational state 
progressions, represented here by colored, solid lines do change, as usual; they move lower in energy as 
reduced mass increases. 
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 The predissociation limit, as seen in Figure 5-23, is not a function of reduced mass, because 

predissociation is caused by interactions between a bound state and a repulsive state. This repulsive state, 

by definition, does not have vibrational levels that can shift with reduced mass. The bound vibrational 

states, however, can shift. Thus, the lighter isotopologues cross the predissociation limit at lower 

rotational quantum number than do the heavier isotopologues. This is similar to the “safe zone” 

mechanism described for the previous model. In this case, however, a larger “safe-zone” protects the 

population from predissociation into S + S, rather than fluorescence to the ground state of S2.  

 This mechanism explains the universality of the isotope effect over all symmetries, electronic 

states, and spin-orbit components, as all rovibrational levels above the 35,999 𝑐𝑚  limit predissociate. 

It also explains the increasing preponderance of the isotope effect over time. As more of the molecule 

predissociates, there is less available to chemically react and to be stored in the rock record. The complete 

results of the atmospheric, predissociation model, as a function of pressure, are shown in Figure 5-24. 

This plot shows a similar pattern to the simplified, steady-state model in Figure 1: the isotope 

effect is more pronounced at higher pressures than at lower pressures, because increasing the pressure 

increases the rate at which population is transferred into the predissociating states. But, most notably, the 

data is ordered by mass, with the lightest isotope at the bottom and heaviest at the top. And while the 

mechanism, and mass ordering, is different, this plot seems to indicate another “pseudo mass-dependent” 

relationship. We can see this more clearly in Figure 5-25, which shows the quantity reacted at 1 atm 

versus the reduced mass of each of the seven isotopologues. While the correlation is positive instead of 

negative, the linear regression again reveals a nearly linear relationship (𝑅 = 96%), indicating pseudo 
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mass-dependent behavior. Predissociation, therefore, is not likely to be the origin of the S-MIF 

signature in the rock record. 

 

 

Figure 5-24: The results of the atmospheric, predissociation model described in this section. All 32 and 
34 isotopes are shown. Each data pointrepresents a height in the atmosphere. The leftmost state was 
calculated at 30 km, each subsequent data point calculated 2 km lower, reaching 0 km at the rightmost 
point. 

Figure 5-25: For our predissociating model, this plot shows the quantity reacted at 1 atm (dependent axis) 
as a function of reduced mass for all 7 isotopologues . The dashed red line shows a linear regression. The 
R  value is 96%, indicating a mostly, but not exclusively mass dependent relationship. 
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5.5.4. Fractionation Behavior of S2 in the Atmosphere 
 To see this more clearly, consider Figure 5-26, which directly shows the quantity reacted for each 

isotopologue, as a function of height in the atmosphere. This plot shows that, due to varying pressure 

(and, to a far lesser extent, temperature), the magnitude of the isotope effect can change significantly with 

the height in the atmosphere at which it was generated. In particular, the larger isotope effects are 

generated closer to the ground, due to the larger number of inelastic collisions available. 

 I now use the data to project what the S-MIF fractionation would look like if this predissociation 

mechanism was the sole source of the isotope effect in the atmosphere. This projection is shown in Figure 

5-27. 

Figure 5-26: Quantity reacted for each isotopologue, as a function of height in the atmosphere. 
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Figure 5-27: Δ  S vs Δ  S shown for the data in Figure 5-26. The red circles represent rocks formed 
from sulfur that reacted at different heights in the atmosphere. The dashed line represents a linear 
regression performed on this simulated data (Δ = 1.08Δ ). The other figure (right), is from Ono, et. al. 
(2017) [26], which represents the actual rock samples that constitute the Archean Reference Array. The 
different colors in the Ono figure represent rock samples gathered at different locations. For this real data, 
the linear regression is  Δ ≈ −1.5Δ . 

 Figure 5-27 shows that the isotope effect generated by the predissociation mechanism does not 

match the Archean Record Array. The magnitude of the isotope effect is too small compared to the rock 

record, and the correlation is positive as opposed to negative. 

5.6 Conclusions thus far and next steps 
 In a limited sense, this chapter has failed in its goal of providing a plausible explanation for the 

Archean Reference Array. Neither collisional transfer mechanism that included the predissociation, nor 

the one that ignored it could reproduce the pattern shown in the rock record. Because both relied on 

mechanisms where curve crossings would shift with reduced mass, they both generated pseudo mass 

dependent isotope effects. However, I have reached a number of conclusions, which will guide my 

analysis in the next three chapters. 

(1a) Small perturbations generate larger isotope effects than do large perturbations. We saw 

this most clearly in our analysis of B” Ω = 0 e symmetry and f symmetry states, where the f 



 

148 

symmetry states had perturbation matrix elements ~1% of those for e symmetry states. This leads 

to a corollary: 

(1b) Western’s deperturbation of the B/B” system, while extremely extensive, is incomplete 

for my purposes. If perturbations on the order of only 0.01  𝑐𝑚 drive isotope effects, then it 

may be the case that even weaker perturbations may generate even larger isotope effects. 

Western’s model was, fundamentally, an energy level fit model. In such a model, B/B” 

perturbations are included only if they substantially improve the calculated energy levels, relative 

to the empirically observed ones. Therefore, the smaller perturbations are least likely to be 

included, even though they may be the most significant for the purposes of this work. 

(2) In the real B/B” system, described in this chapter, the missing states for homonuclear 𝑺𝟐 

(i.e. 32-32 and 34-34), do not seem to influence the overall isotopic fractionation trends. This 

is congruent with my proposed mechanisms in the predissociating and non-predissociating case, 

as both involve curve crossings that shift in a mass-dependent manner. I note here that the B/B” 

perturbations span over many rotational levels. Returning to Figure 5-14, even for the weakly 

perturbed f-symmetry states, there still remains a region of approximately ~6 rotational states, 

where the lifetime of these states is less than 1000 ns. Therefore, even if half of the rotational 

levels are missing, there is still a significant region of rotational state space where the B” state 

“leaks” to the ground state, thereby retaining the expected pseudo-mass dependent fractionation 

mechanism. This is another argument in favor of weaker perturbations. If the “leaky” regions 

could be reduced to spanning a single rotational state, mass-independent mechanisms may come 

into play. This idea will be the focus of Chapter 6. 

(3) As described in Chapter 1, the experiments that analyze isotopic fractionation for gas-phase 

SO2 involve absorption of broadband UV radiation, followed by isotopic analysis of the resulting 

elemental sulfur that precipitates out of the gas phase. This process, as I discussed, cannot provide 

insight into the mechanism by which the isotopic fractionation occurs. For example, it has been 
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assumed that the 𝐶 state generates a mass-independent pattern when absorbing radiation from 

~220-190 nm due to predissociation. The results presented in this chapter call that 

interpretation into question. I would expect that, if the  𝐶 state fractionation mechanism was 

dominated by predissociation, we would observe a largely mass-dependent effect. There may be 

some other, potentially very weak, interaction responsible. 

 These three observations lead to a single conclusion: understanding weak perturbations is 

essential to understanding isotopic fractionation. This perhaps reduces the prospects of using experiments 

(which are far better at observing large perturbations) to determine the fractionation mechanism. 

However, I will proceed, in Chapter 6, by artificially reducing both the homogeneous and heterogeneous 

perturbations in the B/B” system. While this artificial system will no longer reflect the empirical studies 

of Green and Western, it is now doubtful that the perturbations contained in their model can completely 

describe the fractionation behavior of the B-X system. There may be other, weakly perturbing electronic 

states that are important to this discussion.   The objective of chapter 6, therefore, will be to obtain deeper 

insight into the collisional transfer fractionation mechanism using these weaker perturbations. 
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Chapter 6 : Statistical Isotope Effects in Weakly Perturbed Systems 
 

Abstract: At the end of Chapter 5, I hypothesized that weak state-mixings have a larger potential to 
generate significant fractionation patterns than do strong state-mixings. Therefore, I examine a “weak 
perturbation” model in which the perturbation matrix elements are set to 1% of Green and Western’s 
original values. I propose that, if the state-mixing J-regions are small enough, the fractionation may have 
a statistical component, i.e. the doorways can be treated as occurring randomly. Here, I derive a simple 
statistical doorway model that predicts the following: homonuclear S2 (missing rotational states) and 
heteronuclear S2 (all rotational states) would have the same ensemble, limiting behavior if there were an 
infinite number of B/B” vibronic level crossings. However, because the asymmetric isotopologues have 
twice the number of rotational states, they require fewer inelastic collisions to converge to this limiting 
behavior, and they, therefore, converge at lower pressures. The “weak perturbation” model does generate 
S-MIF. Through comparison with a control model, I show that the additional states partially homogenize 
the behavior of the three asymmetric isotopologues, as predicted. This makes the isotope effect more 
similar to the Archean Reference Array, though significant discrepancies remain. Additionally, there is 
significant evidence of non-statistical effects in the “weak perturbation” model. These effects are 
analyzed in Chapter 7. 

 

6.1 Introduction: Why Consider a Weak Perturbation Model? 
 In this chapter, and continuing into chapter 7, I will consider a model in which the perturbation 

matrix elements that connect the B and B” states are artificially set to 1% of the values given by Green 

and Western. This artificial model does not reflect the physical reality of the B/B”-X system. However, 

it is extremely useful to consider because the physical models (both predissociating and non-

predissociating) produce isotope effects that approximate sulfur mass dependent fractionation (S-MDF), 

while the Archean Reference Array displays mass independent fractionation (S-MIF). In this introduction, 

I briefly consider how the patterns of B/B” interactions are fundamentally different in this new model 

(which I will term the “weak perturbation model”), compared to those considered in the previous chapter 

(i.e. the “strong perturbation models”). Additionally, I consider how this difference might create S-MIF 

patterns in the weakly perturbed system. 

 Fundamentally, the B/B” state mixing that is created by an off-diagonal matrix element can be 

estimated using second-order, non-degenerate, time-independent perturbation theory. For the strong 

perturbation model, this second order expression is given by Equation 6.1: 
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𝑚 / "(𝑠𝑡𝑟𝑜𝑛𝑔) =  
|𝐻 / "|

Δ𝐸
. (6.1) 

where 𝑚 / " is the state-mixing fraction, Δ𝐸 is the difference in energy between the diabatic (i.e. 

unperturbed) B and B” states, and 𝐻 / " is the off diagonal matrix element, the perturbation that connects 

the two states, as tabulated by Green and Western. For the weak perturbation model, I use Equation 6.2 

𝑚 / "(𝑤𝑒𝑎𝑘) =  
|0.01𝐻 / "|

Δ𝐸
. (6.2) 

 I now graph, in Figure 6-1, the 𝑚 / ", as a function of Δ𝐸, for both the strong perturbation case 

and the weak perturbation case. 

Figure 6-1: The B/B” state-mixing fractions, predicted by second-order non-degenerate perturbation 
theory (Equations 1 and 2), as a function of ΔE for both the strong perturbation model (Chapter 5), and 
the weak perturbation model considered in this chapter. 

 Figure 6-1 makes clear that the energy gap required to induce significant B/B” mixing is much 

smaller in the weak perturbation model, compared to the strong perturbation model. This simple idea has 

large ramifications for the behavior of the weak perturbation model relative to the model considered in 

Chapter 5. This difference in relative behavior is depicted in a cartoon (Figure 6-2).  
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  As Figure 6-2 shows, there is a fundamental difference in behavior between the strong 

perturbation and the weak perturbation models. In the strong perturbation case, many rotational levels are 

significantly state-mixed, and an isotope-dependent, vibrational level shift simply changes which 

rotational levels are perturbed, in a mass-dependent way. In Figure 6-2, as the crossing shifts downward, 

rotational states with smaller-rotational quantum numbers are perturbed correspondingly. This type of 

Figure 6-2: gives a justification for study of the weak perturbation model, even though it does not match 
the physical reality of the B/B” system. Each panel shows a hypothetical B/B” vibronic level crossing, 
where each circle represents a rotational quantum state. The left column illustrates a strong perturbation 
model, while the right column illustrates a weak perturbation model, where the purple rectangles 
represent a region where the B and B” states can be considered significantly state-mixed. The bottom two 
panels show the effect of the vibrational level shifts (i.e. a change in isotopologue) on this crossing. In the 
strong-perturbation case, the behavior is systematic. In the top panel, many rotational levels are perturbed. 
As the level crossing shifts to lower J’s, the state-mixing region shifts correspondingly and lower-J states 
are perturbed. In the weak perturbation case, a vibrational level shift may cause a perturbed region to go 
unsampled the small doorway region. The difference of this “quantum sampling” behavior, compared to 
the level-shift behavior discussed in the pervious chapter, will be the focus of this Chapter’s analysis. 
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systematic interaction was discussed at length in the previous chapter. However, the weak perturbation 

model may behave very differently. If the state-mixing region is small enough, the rotational quantum 

states may “sample” the perturbed region for one isotopologue but not another. In such a case, I 

hypothesize, the patterns of perturbations may behave in a statistical fashion. 

 The potential for statistical behavior is relevant to my discussion of S-MIF. Specifically, and as 

discussed in Chapter 1, the S-MIF pattern in the Archean reference array can be approximated using the 

following relation: [36]/[36] ≈ [34]/[34] ≈ [33]/[33] > [32]/[32] . In other words, the rock 

sample is enriched in the three rare isotopes, compared to S-32. This is significant because the three rare 

isotopes come primarily from asymmetric isotopologues, i.e. 32-36, 32-34, and 32-33, while the most 

abundant isotope, S-32, comes primarily from 32-32, a symmetric isotopologue. 

 As discussed in Chapter 2, the three asymmetric isotopolgues have a fundamental statistical 

difference from the symmetric isotopologues: they have twice as many rotational quantum states than 32-

32. This Chapter, then, explores whether a statistical explanation for S-MIF in the rock record is 

plausible. It is important to note at the outset: the behavior of the weak perturbation is not truly statistical. 

It is, ultimately, determined by systematic mathematical patterns (i.e. Equations 1-2, and the level shift 

patterns discussed in Chapter 2, Section 2.3). The non-statistical aspects of the weak-perturbation model 

are important, and will be analyzed in Chapter 7. 

 This chapter will demonstrate that, although the limiting, ensemble behavior of the asymmetric 

and the symmetric isotopologues is the same, the number of inelastic collisions required to reach that 

limit is different, and that this difference can generate S-MIF. 

6.2 The importance of total parity in symmetric vs. asymmetric comparisons. 
 The characterization of asymmetric S2 isotopologues as simply having twice as many rotational 

states than symmetric S2, while technically true, ignores one important complication. As discussed in 

Chapter 2, the symmetric isotopologue, 32-32, has only rotational states with (-) total parity. By contrast, 

asymmetric isotopologues have two manifolds of rotational states, one with (-) parity and one with (+) 
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parity. Crucially, collisions cannot switch between states with two different parities (see section: 3.3). 

This is illustrated in Figure 6-3. 

 This figure shows that, for a given rotational state progression, the total parity alternates back and 

forth with rotational quantum number, J. Therefore, I have two different, independent rotational state 

manifolds that occupy similar, but not entirely identical perturbation environments. Each of these 

manifolds contains approximately half of the total excited state population. 

 My hypothesized mechanism for fractionation utilizes doorway-mediated collisional transfer 

between the short-lifetime B state and the long-lifetime B” state. In this mechanism, the highly mixed 

states (the purple states in Figure 6-2) act as “doorways” between the B and B” diabatic electronic states. 

In other words, population in a B doorway state has a significant chance to be collisionally transferred  

into a B” state and vice versa. In the weak perturbation model, it may be possible that some isotopologues 

“sample” a doorway, while others do not.  Isotopologues that sample the perturbed, doorway regions may 

collisionally transfer more population into long lifetime B” states. These isotopologues would have a 

Figure 6-3: A cartoon depicting a single e/f symmetry component of a Hund’s case (a), B” state. The (+) 
parity states and the (-) parity states alternate with J. In this model, collisions cause cannot transfer from (-
) to (+) and vice versa. 
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longer average excited state lifetime, and may more readily undergo excited state chemistry, thereby 

resulting in preservation of this isotopologue enrichment in the rock record. 

6.3 Modeling a doorway-mediated mechanism: 
 

 To analyze the ability of a statistical doorway mechanism to generate S-MIF, I create two simple 

models, one for the symmetric case and one for the asymmetric case. For the symmetric model, an excited 

state molecule is created at time 𝑡 = 0. This excited electronic state exists in a particular rotational state 

si, within a manifold of rotational states 𝑠 , 𝑠 … When the molecule is created at 𝑡 = 0, a random integer 

integer, n, between 1 and 1000 is also selected.  This represents the distance, in number of rotational 

states, that this excited state must walk to reach a doorway state. Once the doorway state is reached, the 

molecule is “stored” in the other electronic state, from which it does not leave.21 Finally, I introduce an 

excited state lifetime 𝜏 . This introduces a “time limit”. If a molecule does not reach a doorway state 

before it fluoresces, it is not stored in the long lifetime state. 

 I can model the competition between rotational wandering and fluorescence using a system of 

differential equations. I will let 𝑘 = 1
𝜏  be the first-order rate constant for fluorescence out of the 

excited state. I will also postulate a total collision rate, 𝑍. Here, a single collision has 50% probability of 

transferring population from 𝑠  𝑡𝑜 𝑠  and 50% probability of transferring population from 𝑠  𝑡𝑜 𝑠 . 

For this hypothetical random walk, the number of collisions required to transfer population a distance of 

𝑛 states is 𝑛 . The rate of transfer from the initial state to a doorway state that is 𝑛 states distance is thus 

𝑍
𝑛

. Letting [ex] be the population of this entire excited state manifold and [D] be the population that 

                                                           
21 This model can work two different ways. It could represent transfer from a bright state to a large 
manifold of dark states, from which it never escapes. Alternatively, it could represent transfer from a dark 
state to a bright state where the excited population is lost to fluorescence. For this specific B/B” system, it 
seems to be the latter case, though that is not definitive. Evidence in favor of this hypothesis is presented 
in sections 5.2, 7.5.3, and 8.3.  
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reaches the doorway state and is “stored” becomes a long lifetime state, I express the coupled differential 

equations in Equations 6.3a and 6.3b 

𝑑[𝐷]

𝑑𝑡
=  𝑍

𝑛
[𝑒𝑥] (6.3𝑎) 

 
𝑑[𝑒𝑥]

𝑑𝑡
=  − 𝑍

𝑛
[𝑒𝑥] − 𝑘 [𝑒𝑥]. (6.3𝑎) 

The time dependent solutions for this system are given by Equation 6.4 

𝐷(𝑡)

𝑒𝑥(𝑡)
=  

𝑍
𝑛

𝑘 + 𝑍
𝑛

0

+

− 𝑍
𝑛

𝑘 + 𝑍
𝑛

1

𝑒
  

 . (6.4) 

As 𝑡 →  ∞, the solution for [𝐷](𝑡, 𝑛) converges to Equation 6.5 (assuming an initial excited state 

population of 1). This equation is also parametrized by n, the number of states the molecule must move to 

reach the doorway: 

[𝐷](𝑡 → ∞, 𝑛) =  

𝑍
𝑛

𝑘 + 𝑍
𝑛

. (6.5) 

I now plot Equation 6.5 as function of n, using the values from my model, where  𝑍 is 4.9 ∗

10  𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠/𝑠 (see section 4.4.) and 𝑘  is the B state fluorescence rate = 1/(32 𝑛𝑠). Note that the 
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choice of the B state lifetime is arbitrary. I could have assumed the B” state was the initial state and the 

analysis would proceed identically. This plot is Figure 6-4. 

 Due to the 𝑛  dependence of the initial state to doorway transfer rate, the function shown in 

Equation 6.5 and Figure 6-4 is very nonlinear. Only initial states that are within approximately n = 40 

rotational levels, have a significant probability (>10%) to be collisionally removed from the bright B state 

to the long-lifetime B” state. The nonlinearity of this function will be critical to our discussion of the 

pressure dependence later on in this chapter. 

 If this process is repeated for different, randomly chosen values of 𝑛, (representing excitations to 

different regions of the rotational state manifold), I would compute a statistical sample average of the 

fraction of the population moved to the doorway, 𝐷 , as shown in Equation 6.6 

𝐷 =  
1

𝑁
𝐷(𝑡 = ∞,  𝑛 )

 

. (6.6) 
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Figure 6-4: For the simple doorway model, the fraction of population reaching a doorway state, as a 
function of n, the (randomly chosen) number of states between the initial excited state and a doorway 
state. Because the number of collisions required scales as n , only initial excited states that spawn near a 
doorway state can reach the long lifetime state.   
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The sum is over all 𝑁 samples, and, for each sample, the number of steps to the doorway is randomly 

chosen. If I repeat this process a sufficient number of times, I obtain the ensemble average, < 𝐷 >, as in 

Equation 6.7 

< 𝐷 >  =  lim
→

1

𝑁
𝐷(𝑡 = ∞,  𝑛 )

 

.  (6.7) 

Here, < 𝐷 > is the ensemble average number of initial excitations that reach the doorway (at steady 

state), given a randomly chosen doorway location, 𝑛.  

In statistical mechanics, the ensemble average is given by an alternate expression, Equation 6.8 

< 𝐷 > = 𝑝 𝐷(𝑡 = ∞, 𝑛)

 

, (6.8)  

where 𝑝  is the probability of a particular doorway location being chosen. In this case, the doorway 

location, n, has an equal chance of being any number between 1 and 1000. Therefore, 𝑝  = 1/1000 for all 

values of 𝑛. (This probability distribution is called a microcanonical ensemble.) 𝐷(𝑡 = ∞, 𝑛) is simply 

the expression given by Equation 6.5. Now, Equation 6.8 becomes Equation 6.9 

< 𝐷 >  =
1

1000
 

𝑍
𝑛

𝑘 + 𝑍
𝑛

. (6.9) 

  

Intuitively, the ensemble average is valid when 𝐷 is calculated every possible microstate of the system 

(every possible value of 𝑛 ) according to the probability of occupying that particular microstate. 

The concept of an ensemble average is essential for comparing the symmetric isotopologue model 

to an asymmetric isotopologue model. The asymmetric isotopologue model has two, entirely separate 

manifolds that, in this model, do not connect with each other. The probability of excitation to each of 

these manifolds is 0.5. Thus, the ensemble average < 𝐷 >  is defined as in Equation 6.10 
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< 𝐷 > =  0.5 < 𝐷 > +  0.5 < 𝐷 > . (6.10) 

The terms < 𝐷 >  and < 𝐷 >  are the ensemble averages of the (+) parity and (-) parity manifolds, 

respectively. Because, in this chapter, I am interested only in statistical effects, I assume that the (+) and 

(-) manifolds follow the same rules as a symmetric manifold.22 That is, < 𝐷 >  =  < 𝐷 > =   <

𝐷 > . This, trivially gives < 𝐷 > = < 𝐷 > . It is crucial to note here: this result would be 

universal for any chosen probability distribution for 𝐷, not only the steady state model used here. 

                                                           
22 In other words, there is no reason, a priori, to assume the (-) parity manifold is more or less likely to 
sample doorway states, relative to the (+) parity manifold. In order to predict the behavior of these two 
manifolds, we would require knowledge of the vibrational origins, rotational constants, etc. These are 
non-statistical aspects that we will consider in the next chapter. 

Figure 6-5: A summary of the symmetric and asymmetric models considered thus far. In the symmetric 
model, there is a single manifold of states. A molecule is excited into an initial state, and a number n is 
randomly chosen. This number represents the number of states between the initial excited state and a 
doorway state leading to a long lifetime B” state. The average number of collisions required for a random 
walk from the initial state to a state n away is n2. The asymmetric model is statistically identical to the 
symmetric model with the following two changes: (1) two different manifolds, with two separate n’s 
selected and (2) the molecule has a 50% probability of excitation into either manifold. The values of n = 
5, n =4, and n = 2 were chosen arbitrarily. There are two doorways (green arrows) in each manifold 
because the model is agnostic as to the direction (positive or negative) of the doorway.  
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Intuitively, although the asymmetric case has twice the number of chances to find a nearby doorway, each 

nearby doorway only counts half us much, because there is a 50% chance of excitation from the ground 

state into the other manifold. These factors of 2 and 0.5 cancel. Figure 6-5 summarizes the symmetric and 

asymmetric models thus far.  

 Again, the parameters < 𝐷 >  and < 𝐷 >  represent the fraction of excited molecules, at 

steady state, that reach a doorway state, averaged over all possible doorway locations. The result, <

𝐷 > = < 𝐷 > , does not preclude the possibility of a statistical isotope effect, however. In 

particular, it is not necessarily the case that 𝐷 =  𝐷  for a particular sample size, N. The next 

section will demonstrate that the rate of convergence of 𝑫𝒔𝒚𝒎 and 𝑫𝒂𝒔𝒚𝒎 to the ensemble average <

𝑫 >𝒂𝒔𝒚𝒎= < 𝑫 >𝒔𝒚𝒎 is not the same. This difference in convergence rate generates the statistical 

isotope effect we are looking for. 

6.4 The Doorway Model Results 
 Figure 6-6 compares representative results from a single model run of the symmetric model to a 

single run of the asymmetric model. For the Nth step, in a symmetric run, a random doorway location, nN, 

is chosen, and a running statistical average is calculated using this nN, as well as nN-1, nN-2…n1. This is 

Equation 6.11 

𝐷 (𝑁)  =
1

𝑁
 

𝑍
𝑛

𝑘 + 𝑍
𝑛

. (6.11) 

For each step, 𝑁, in an asymmetric run, two random doorway locations, 𝑚  and 𝑛  are chosen, and the 

running statistical average is calculated, as in Equation 6.12, where the factor of 0.5 represents the 50-50 

chance of absorbing to either the (+) parity or the (-) parity manifold 

𝐷 (𝑁)  =
0.5

𝑁
 

𝑍
𝑛

𝑘 + 𝑍
𝑛

+ 
0.5

𝑁
 

𝑍
𝑚

𝑘 + 𝑍
𝑚

 . (6.12) 
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In Figure 6-6, 𝐷    and 𝐷  are displayed on the dependent axis, while N, the number of samples is 

the independent axis. Figure 6-6 represents the average behavior of a single S2 molecule over a repeated 

series of N excitations to random locations in the rotational state manifold. 

 

Figure 6-6: Representative examples of a single run of the symmetric and asymmetric models. The 
independent axis is the number of excitations, N. The dependent axis, D(N) , is a running statistical 
average of the number of excitations that reach the doorway, given a randomly chosen doorway location. 

 Figure 6-6 shows 𝐷  and 𝐷 , the fraction of excitations that reach the doorway (at steady 

state), averaged over different randomly chosen doorway locations. Both of these averages fluctuate a 

significantly for small sample sizes, but as the N approaches 1000, they both begin to converge to 

approximately the same value, the ensemble average < 𝐷 >. Repeated runs of this model give < 𝐷 > ≈

0.01906. It is also clear from these two particular model runs that the asymmetric model appears to 

converge to the ensemble average faster (i.e. at smaller N’s) than does the symmetric model. Figure 6-7 
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demonstrates that this observation is not unique to the two particular model runs shown in Figure 6-6. It 

displays |𝐷 − < 𝐷 > | and |𝐷 − < 𝐷 > | averaged over 1000 model runs. Physically, if a single 

run represents a single 𝑆  molecule undergoing N repeated excitations. Averaging over a series of model 

runs represents the behavior of an ensemble of many 𝑆  molecules undergoing N repeated excitations.

 

Figure 6-7: The values of |D − < D > | and |D − < D > |, averaged over 1000 model runs, as a 

function of sample size, N. This plot shows the rate at which the statistical averages, D converge to the 
ensemble average < D >. The asymmetric model clearly converges faster (at lower N) than does the 
symmetric model. 

 The asymmetric model converges faster than does the symmetric model. In the following 

sections, I explain this phenomenon in two different ways: the first intuitive, the second more formal. 

6.5 Mathematical Intuition: Two Games of Chance 
 

 Imagine two different games of chance. In the first game, I am allowed to select between one of 

five different treasure chests. Four of these five chests contain nothing. The fifth contains $1000. If D the 
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random variable that represents the amount of money I will have won after opening a single chest, then 

the expectation value, < 𝐷 >   is given by Equation 6.13.   

< 𝐷 >   =  
1

5
(0 + 0 + 0 + 0 + $1000) = $200 (6.13) 

Now imagine a second game. In this game, there are two series of five chests, series A, and series B. The 

total prize money of $1000 is halved. $500 is placed randomly in one of the series A chests, and $500 is 

placed in one of the series B chests. In this game, I am allowed to choose 1 chest in each series. The 

expectation value, < 𝐷 >   ,is the sum of expectation values for the money earned from series A and 

B, i.e. Equation 6.14. 

< 𝐷 >   = < 𝐷 > + < 𝐷 >  =
1

5
(0 + 0 + 0 + 0 + 500) +  

1

5
(0 + 0 + 0 + 0 + 500) = $200 (6.14)   

i.e. the expectation values are the same. These two games are depicted as Figure 6-8. 

 

Figure 6-8: The two hypothetical games of chance being analyzed in this section. In the first game, $1000 
is randomly placed in one chest of five. In the second, $500 is placed in one chest in one set of five (set 
A) and $500 is placed in another chest in a different set of 5 (set B). In the first game, I am allowed to 
pick one chest. In the second, I am allowed to select one chest from each set. 

 However, consider now the probability of winning some money (P(win)). For the first game, that 

probability is, trivially, 20%. For the second game, the probability of winning some money can be 

calculated as in Equation 6.15. 



 

164 

𝑃(𝑤𝑖𝑛) = 1 − 𝑃(𝑑𝑜𝑛 𝑡 𝑤𝑖𝑛 𝑚𝑜𝑛𝑒𝑦, 𝐴) ∗ 𝑃(𝑑𝑜𝑛 𝑡 𝑤𝑖𝑛, 𝐵) = 1 − 0.8 ∗ 0.8 = 0.36 = 36% (6.15) 

My odds of winning some money nearly are nearly double in game 2, compared to game 1. 

 Put differently, if I was charged $10 to play either game 1 or game 2, and did not know, a priori, 

what the money values in the chests were, I would more quickly realize that in game 2 would I would win 

money than I would in game 1. 

6.6 Mathematical Formalism: The Central Limit Theorem 
 

 The above games of chance give an intuitive illustration of the Central Limit Theorem from 

statistics. In the context of our doorway example, the theorem states the following: 

If 𝑫𝟏, 𝑫𝟐,…, 𝑫𝑵 are random samples of a random variable, D, where D has an ensemble average  

< 𝑫 >, and statistical variance, 𝝈𝟐, then the sample mean 𝑫 =  ∑ 𝑫𝒊
𝑵
𝒊 𝟏  converges to a normal 

probability distribution with mean < 𝑫 >, and standard deviation, 
𝝈

√𝑵
 as the sample size, 𝑵 → ∞. 

Consider, now, my definitions of 𝐷  and 𝐷 , the sample-averaged number of excitations that reach 

the doorway state in the asymmetric and symmetric models, respectively. These are restated as Equations 

6.16a and 6.16b, respectively 

𝐷 (𝑁)  =
1

𝑁
 

𝑍
𝑛

𝑘 + 𝑍
𝑛

. (6.16𝑎) 

𝐷 (𝑁)  =
0.5

𝑁
 

𝑍
𝑛

𝑘 + 𝑍
𝑛

+ 
0.5

𝑁
 

𝑍
𝑚

𝑘 + 𝑍
𝑚

 . (6.16𝑏) 

 In particular, observe that 𝐷  and 𝐷  are related, as in Equation 6.17 

𝐷 (𝑁) =
1

2
∗ {

1

𝑁
 

𝑍
𝑛

𝑘 + 𝑍
𝑛

+  
1

𝑁
 

𝑍
𝑚

𝑘 + 𝑍
𝑚

 }

=
1

2𝑁
 

𝑍
𝑛

𝑘 + 𝑍
2𝑛

 = 𝐷 (2𝑁). (6.17)
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 In words, 𝐷  is simply 𝐷  with double the sample size. The Central Limit Theorem, 

therefore, would predict that 𝜎 /𝜎  converges to √2 as the sample size, N increases. (Here, 

𝜎  is the standard deviation of the distribution of possible values for 𝐷 ). In Figure 6-9, I have 

used my model to calculate 𝐷  and 𝐷  1000 times for each value of N between 1 and 1000. Figure 

6-8 shows the ratio of , as a function of N. Because  is strictly greater than 1, the 

asymmetric model converges to the mean faster (i.e. at smaller sample sizes) than does the 

symmetric model. 

 

Figure 6-9: An illustration of the Central Limit Theorem for the D  and D  parameters considered 
in this chapter. For each data point, σ   is the standard deviation of 1000 different calculations of 

D  each using sample size, N, and likewise for σ . As the sample size increases, the ratio 

σ /σ  approaches √2 (dashed black line), as predicted by the Central Limit Theorem. 

 

 Thus far, I have discussed a simple model for doorway mediated transfer from a relatively bright 

B state to a relatively dark B” state. At steady state, this model determines the fraction of initially excited 
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state molecules that reach a doorway state, given a collisional random walk at rate 𝑍, and a fluorescence 

rate 𝑘 . I have labeled this fraction as the random variable, 𝐷. I imagine a single 𝑆  undergoing a series 

of N excitations, in which the distance between the initial excited state and the doorway state is chosen 

randomly for each excitation. The number of molecules that reach the doorway state, averaged over all N 

excitations is 𝐷. As N increases, every possible distance between the initial excitation and the doorway 

state is sampled, and 𝐷 approaches the ensemble average, < 𝐷 >. For the symmetric model and the 

asymmetric model, < 𝐷 > =< 𝐷 > . However, 𝐷 (𝑁) is, effectively, equal to a 𝐷  with 

double the samples (2N). Therefore, per the Central Limit Theorem, the asymmetric sample converges to 

the ensemble average at smaller sample size, N. It is this difference in convergence rate that, I 

hypothesize, generates the S-MIF signature in the rock record. 

6.7 Convergence rate, as a function of pressure 
 

 Before considering the weak perturbation model’s isotope effect as a function of atmospheric 

pressure. I must consider the effect that pressure has on the rate at which 𝐷 converges to < 𝐷 > (rate, in 

this context, means the number (N) of samples required for convergence). Recall that, for a randomly 

chosen distance between initial excitation and doorway, 𝑛, the probability distribution for D is as follows 

in Equation 6.18 

𝐷(𝑛 ) =  

𝑍
𝑛

𝑘 + 𝑍
𝑛

. (6.18) 

 For 1 atmosphere and 300 𝐾, the collision rate is approximately 𝑍 = 4.9 ∗ 10  𝑠  (see section 

4.4.). Figure 6-10 shows the 𝐷(𝑛 ) at several different atmospheric pressures.  
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Figure 6-10: The probability distribution for D (the fraction of excitations in which the excited state 
molecule reaches the doorway), as a function of n (the number of states between the initial excited state 
and the doorway), calculated at a variety of pressures at 300 K.  These different pressures correspond to 
different  

 Figure 6-10 shows that, as the pressure (i.e. the number of collisions) decreases, there are two 

important consequences. First, the distance, 𝑛, necessary for successful collisional transfer between the 

initial state and the doorway state becomes much smaller. This makes intuitive sense: if the number of 

collisions is decreased, the molecule explores smaller fraction of the total state space available to it. 

Second, as the number of collisions continues to decrease, the maximum fraction of molecules reaching 

the doorway correspondingly decreases. Intuitively, if 𝑘 > 𝑍, most molecules fluoresce before 

encountering a collision. 

 Consequently, I postulate the following: the state space sampled by an excited state molecule 

increases correspondingly as the pressure increases. Increasing the pressure, therefore, will decrease the 

number of repeated excitations, N, required to converge 𝐷 to  < 𝐷 >. 
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6.8 Introduction to the Weak Perturbation Model: 
 

 With this background, I now formally introduce the weak perturbation model. It is identical to the 

strong perturbation model with the following three changes: 

(1) Weak Perturbations: All perturbations (the alpha and beta parameters from Chapter 2) are set to 

1% of the values reported by Green and Western. This applies to both heterogeneous (ΔΩ = 0) 

and homogeneous (ΔΩ = 1) perturbations. 

(2) No predissociation for high rotational states of bound vibrational states: As I showed in 

Chapter 5, the predissociation mechanism creates a pseudo-mass-dependent isotope effect, which 

will make the weak perturbation analysis significantly more complicated. For this reason, I ignore 

the predissociation for 𝑣 ≤ 9, and 𝑣 " ≤ 21. A subtle point: the predissociation for the 𝑣 > 9 

and 𝑣 " > 21 levels is retained. Because all of these states are predissocating for all 

isotopologues, this does not introduce an isotope effect. However, it does simulate either a “real” 

situation where atmospheric 𝑆  is only in the atmosphere for a limited time because it is exposed 

to solar radiation and, eventually, photodissociates. Alternatively, this model can simulate a 

“laboratory” situation, where a finite amount of sulfur is exposed to broadband UV radiation, 

with some 𝑆  dissociating. Regardless, it gives me a finite time at which our “experiment” is 

over, i.e. eventually all sulfur that has not undergone excited state chemistry dissociates to 𝑆 + 𝑆. 

I must also note that I am only considering the possibility for isotope effects from reactions of 

excited state S2 to form S3 and S4, and, eventually, S8. Any fractionation caused by the creation of 

atomic sulfur is ignored.23 

(3) A uniform Franck-Condon distribution: To give every B~B” vibrational state crossing an 

equal weighting, I set the Franck-Condon factors for the transition from X, v = 0 to each of the 10 

                                                           
23 My analysis of the predissociating model from chapter 5 suggests that this is a plausible assumption, as 
it largely creates Mass Dependent Fractionation. 
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bound B state vibrational levels equal to 0.1 (i.e. 1 10). Similarly, I set the Franck-Condon 

factors for each of the 22 bound B” states equal to 0.046 (i.e. 1 22). This also simplifies my 

analysis, as the isotope effects will be related to the characteristics of the B/B” vibrational state 

crossings, and not weighted by the Franck-Condon distribution, making for easy comparisons. 

The Franck Condon distribution, as discussed in Chapter 5, affects the relative contribution of 

each vibrational level crossing. However, in this chapter we are interested in a statistical effect 

that affects all crossings.  

6.9 The Results of the Weak Perturbation Model 
 

Figure 6-11 shows the results of two different weak perturbation models. The first model is a control: all 

four isotopologues, 3232, 3233, 3234, and 3236, are calculated using symmetric nuclear permutation 

symmetry rules, i.e. all four isotopologues have half of their rotational levels missing. The second model 

calculates the three asymmetric isotopolgues using the asymmetric nuclear permutation symmetry rules, 

i.e. both a (+) and (-) parity manifold of states. 

 

Figure 6-11: A comparison of two different weak perturbation models. The independent axis is the 
pressure of the atmosphere (logarithmic scale). The dependent axis is the fraction of the S2 molecules that 
have undergone excited state chemistry. The left plot is calculated with all four of the isotopologues 
following symmetric nuclear permutation symmetry rules, i.e. half rotational states missing (dashed lines) 
It serves as a control for comparison to the right plot, which shows the three asymmetric isotopologues 
(3233, 3234, 3236) calculated with their standard (asymmetric) permutation symmetry rules. 
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 The control plot (left) indicates the following relationship at 1 atm: [33]/[33] > [34]/[34] >

[36]/[36] > [32]/[32]  (where the ratio [33]/[33] is the ratio of the amount of the S-33 entered into 

the rock record, relative to the natural abundance). The plot using the asymmetric symmetry rules (right), 

shows a different relationship at 1 atm: [34]/[34] ≈ [36]/[36] > [33]/[33] > [32]/[32] . This 

relationship is much closer to the Archean Reference Array: ([34]/[34] ≈ [36]/[36] ≈ [33]/[33] >

[32]/[32] . 

 Especially noteworthy: the three asymmetric isotopologues, begin behaving disparately, but then 

begin to converge as the pressure increases. This behavior, I hypothesize, occurs because the asymmetric 

isotopologues more completely sample all possible doorway states as the pressure increases. In the 

mathematical language of my simple model, 𝐷 (𝑝), 𝐷 (𝑝), and 𝐷 (𝑝) begin to converge, as a 

function of pressure, to a limiting, ensemble behavior, < 𝐷 > (𝑝). This convergence happens at lower 

pressures for the three asymmetric isotopologues than it does for the symmetric isotopologue, 3232, 

because the asymmetric isotopologues can sample two different rotational state manifolds, as 

opposed to one.  

 If this sampling hypothesis is correct, I should observe that the 3232 isotopologue converges to 

the other three, as the pressure continues to increase. Figure 6-12, therefore, shows the asymmetric 

isotopologue at pressures up to 10 𝑎𝑡𝑚. 
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This is, indeed, what I observe. 

6.10 Fractionation from the Weak Perturbation Model 
 

 Using this model, I now calculate the fractionation patterns that would be formed if only excited 

state S2 reacts to form the S8 aerosols that precipitate and become a part of the rock record. Figure 6-13 

plots the three lower case delta parameters, 𝛿 , 𝛿 , 𝛿  as a function of pressure (300 K). 

Recall that, for a rare isotope, x, the lowercase delta parameter, 𝛿  is given by Equation 6.19. 

𝛿 =

[𝑥]
[32]

[𝑥]
[32]

− 1, (6.19) 
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Figure 6-12: The asymmetric weak perturbation model from Figure 6-11 (right), beginning at 0.001 atm 
and continuing to 10 atm. This plot shows the convergence of 3232 to the other three as the pressure 
increases above 1 atm. 
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where 
[𝑥]

[32]  is the ratio of the rare isotope to 32 in the rock sample under consideration, while 

[𝑥]
[32] is the natural abundance ratio of the rare isotope to 32. The 𝛿  parameter is positive if the 

sample is enriched in the rare isotope, negative if depleted. The convergence of the 𝛿  parameters to a 

positive number with increasing pressure reflects the convergence of the three asymmetric isotopologues, 

relative to 3232 as seen in Figure 6-10. 

Recall from Chapter 1 that the capital delta Δ and  Δ  parameters are functions of the 𝛿  

parameters as in Equations 6.18a and 6.18b 

Δ =  𝛿 − 0.515𝛿  (6.18𝑎) 

Δ =  𝛿 − 1.9𝛿  . (6.18𝑏) 
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Figure 6-13: The three lowercase delta isotopic fractionation parameters, as a function of pressure, for the 
asymmetric model shown in Figure 6-11(right). 



 

173 

If we have 𝛿 ≈ 𝛿 ≈ 𝛿 > 0, as we do at 1 atm of pressure. Then we have Δ > 0, and Δ < 0 and, 

consequently, Δ /Δ < 0. These three trends match the Archean Reference Array in the rock record. 

Figure 6-13 shows the effect this asymmetric convergence has on the Δ /Δ  ratio. It is positive 

for most pressures, but, as the three 𝛿  values converge, the Δ /Δ  value becomes negative. The 

magnitude of this negative value does not match the rock record: We’d expect either =  −1.5, or 

=  −0.9, and we actually have only  =  −0.04. However, the sharp trend toward Δ > 0, Δ <

0, and Δ /Δ < 0 is extremely clear. 

This convergence behavior, where the three asymmetric isotopologues converge to a limiting 

behavior because they sample two rotational state manifolds, compared to the one manifold sampled by 

the symmetric isotopologue, is observed in the behavior of the weak perturbation model. However, this 

description is also somewhat incomplete. For example, the 3234 and 3236 isotopologues converge at 

approximately 0.01 atm, while 3233 doesn’t converge until 0.1-1 atm. Second, the convergence isn’t 

perfect; each of the four isotopolgues still exhibits some idiosyncratic behavior, even at high pressures. 

This is indicative of non-statistical effects. The origins of these effects will be explored in Chapter 7. 

∆
3

6 /∆
3

3

Figure 6-14: The  ratio for the data from Figure 6-12. The increase that occurs between 10-4 and 10-3 

atm is due to the convergence of 𝛿  and 𝛿 . The sharp decline is due to the near convergence of 𝛿  
with 𝛿  and 𝛿  at approximately 10-1 atm.  
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Chapter 7 : Non-statistical Effects in the Weakly Perturbed B/B” system 
 

Abstract: In Chapter 6 I developed a statistical doorway model to explain sulfur mass-independent 
fractionation in a “weak perturbation model” where the B/B” perturbation matrix elements were set to 1% 
of their original values. This statistical model explained some of the fractionation behavior, but there was 
significant evidence of non-statistical behavior. To explore the mechanisms for non-statistical behavior, I 
consider in this chapter a “control model”, where all isotopologues have symmetric nuclear permutation 
symmetry restrictions, to eliminate the statistical factors from my analysis. The weakly-perturbed control 
model behaves quite differently to the strongly-perturbed system in Chapter 5. Specifically, the system 
behaves more globally, with all vibrational levels fractionated toward the same isotopologue, instead of 
more localized behavior. Here, I analyze three specific vibrational levels to highlight three important non-
statistical fractionation mechanisms. (1) Electronically inelastic transfer between a B and B” states that do 
not cross and are state-mixed less than 0.01%. (2)  Non-statistical doorway sampling, i.e. doorway 
sampling that is not entirely random, but contains some dependence on vibrational level shifts. (3) Non-
local effects where the local effect of one doorway is effectively “canceled out” by a larger, but more 
energetically remote doorway. Points (1) and (3) help explain the global behavior of this model, 
compared to its strongly-perturbed counterpart. Point (2) is important to the discussion in section 8.3. All 
three points show that there are a large range of level crossings potentially capable of generating 
fractionation relevant to the rock record. 

 

7.1. Introduction  
 

 Chapter 6 had two objectives. First, it developed a statistical doorway model for Sulfur Mass-

Dependent fractionation.  In this model, I postulated a limiting behavior, < 𝐷 > (𝑝), i.e. the ensemble 

averaged fraction of excited 𝑆   molecules that reach the doorway to a long-lived B” state, < 𝐷 >, as a 

function of pressure, 𝑝. I then argued that the asymmetric 𝑆  isotopologues, such as 32-33, 32-34, 32-36 

converged to this limiting behavior with fewer repeated excitations (i.e. smaller sample sizes) than did the 

symmetric S2 isotopologues. Second, I applied the statistical doorway model to a B/B” model where the 

perturbation matrix elements were set to 1% of their known values in Green and Western’s deperturbation 

model. These results are reproduced here as Figure 7-1. 
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Figure 7-1: Reproduced from Chapter 6, this figure shows the results of the weak perturbation model for 
two different sets of rules. The left is a control, where all isotopologues follow symmetric nuclear 
permutation symmetry rules. On the right, all isotopologues follow “normal” nuclear permutation 
symmetry rules. The independent axis is the pressure of the atmosphere on a logarithmic scale. The 
dependent axis is the quantity of each isotopologue that has entered the rock record, assuming an excited 
state reaction rate that is slow relative to the radiative and collisional transfer processes (i.e. steady state). 
The right plot shows evidence of the statistical doorway isotope effect discussed in Chapter 6. The left 
plot shows evidence of non-statistical Mass Independent Fractionation. 

 The right plot, where the isotopologues follow their “normal” nuclear permutation symmetry 

rules, was the focus of the discussion in Chapter 6. The asymmetric case (3233, 3234, 3236) shows clear 

evidence of faster convergence to a limiting behavior compared to the symmetric 3232 case. However, 

this statistical mechanism does not explain every aspect of the model. For example, the 3233 isotopologue 

does not converge to the limiting behavior as fast as the other two isotopologues do. The left plot, where 

all isotopologues have one half of their rotational levels missing, shows that 3233 also lags behind the 

other isotopologues as the pressure increases, before catching up.  

This indicates important “non-statistical” behavior. In the statistical doorway model, we assumed 

that the locations of the doorway are completely random. This is, of course, not entirely the case, so such 

behavior is to be expected. In this chapter, therefore, I consider the origins of the isotope fractionation in 

the control model, where all isotopologues follow the symmetric rules. Specifically, I use examples of 

three different B/B” interactions in the control model to show three different effects not considered in the 

statistical doorway model: 1) Electronically inelastic collisions between states that do not cross. 2) Mass-

dependent (non-random) doorway sampling. 3) Non-local effects where the local effect of one doorway is 

Control: All isotopologues follow symmetric rules “Normal” rules 
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effectively “canceled out” by a larger, but more energetically remote doorway. There are many reasons 

why an analysis of the control model is valuable. First, removing nuclear permutation symmetry from the 

model allows me to isolate the nonstatistical effects. This allows me to better understand these effects in 

the “normal”,non-control model. Second, while the S-MIF signature in the rock record can be primarily 

explained by differences in statistical behavior between asymmetric and symmetric isotopologues, it is 

not a perfect explanation. Specifically, for a rock sample enriched the same amount in the three rare 

isotopes, 33, 34, and 36, the  ratio would be −1.8. The actual rock record, however, has  = −1.5, 

and/or = −0.9. Therefore, there must be non-statistical effects that influence the Archean Reference 

Array. 

7.2. Initial Analysis of the “Control” Model 
 

 In the remainder of this chapter, I will consider the control model, in which all isotopologues 

follow symmetric nuclear permutation symmetry rules, at 1 atmosphere of pressure and 300 K. First, I 

establish that the control model generates a significant S-MIF signature. This is Figure 7-2. 
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 The linear regression in Figure 7-2 has a correlation coefficient of 1%, which is extremely small 

relative to the two pseudo mass dependent models discussed in Chapter 5. As a comparison, for the 

strong-perturbation, non-predissociating model, the correlation coefficient was 96%. For the large-

perturbation, predissociating model, the correlation coefficient was also 96%. Qualitatively, the 1 atm 

data that display the largest enrichment is that for 3233, while the smallest is for 3232. Also, as in Chapter 

5, I compare these two isotopologues by analyzing, for 3233 vs. 3232, which of the B/B” near degenerate 

pairsvibrational levels have more population at steady state. Figure 7-3 shows the results of the 

comparison between 3233 and 3232. 
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Figure 7-2: The control model data (black) at 1 atm, as a function of reduced mass, plotted alongside a 
linear regression (red dashed line). The relationship is very far from the mass-dependent limit, as 
evidenced by the correlation coefficient, 𝑅 = 1%. 
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Figure 7-3: A comparison of the isotope effects for the 3233 versus 3232 for the control model (1% 
perturbations and both isotopologues following symmetric nuclear permutation symmetry rules). Each bar 
represents the difference between the steady state vibrational population for 3233 and same vibrational 
population for 3232. Positive bars indicate more population for 3233, and negative bars represent more 
population for 3232. The arrows indicate the organization of the vibrational states, which are sorted by 
e/f-symmetry, then by electronic state (B or B”), then by spin-orbit component (Ω). Within each 
component, the vibrational states are rank-ordered from low vibrational quantum numbers (left) to high 
(right). 

 The most striking feature: the fractionation mechanism here appears to operate more much more 

globally than in the strong perturbation model shown in Figure 5-4 of Chapter 5. In other words, the 

strong perturbation model has some vibrational states that favor one isotopologue and some vibrational 

states that favor another. In this plot, nearly all the vibrational states, to varying degrees, favor the same 

isotopologue: 3233 over 3232 (in other words, an ensemble of  3233 vibronic states holds more excited 

state population). Furthermore, the strongest isotope effect appears to be for the 𝐵" Ω =  1 vibrational 

states, while the 𝐵" Ω =  0 vibrational states had the strongest isotope effect in the strong perturbation 

model. Third, it is noteworthy that the same vibrational states show the strongest isotope effect for all 

three spin-orbit components, and for both e/f-symmetries. Recall that, in the strong perturbation model, 

each spin-orbit component behaved differently, and there were large differences in behavior between e-

B” B” B” B” B” B” 
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symmetry and f-symmetry. The main purpose of this chapter remains to highlight three different 

examples of perturbation behavior that violate the assumptions of the statistical model presented in 

Chapter 6. However, the three mechanisms also provide a synthesized explanation for the more global, 

uniform fractionation behavior shown in Figure 7-3. I will return to this broader discussion in Section 7.6, 

at the end of this chapter. 

 The three B” vibrational states that will be highlighted in this chapter are shown in Figure 7-4. 

This figure is a zoomed-in version of Figure 7-3, focusing on the B”, Ω =1 states. The Ω =1 spin orbit 

component is chosen because it displays the strongest favoritism toward 3233. 

 

Figure 7-4: An enlarged version of Figure 4, showing the B” f symmetry, Ω = 1 states. The numbers 
display the vibrational quantum number of each level. The red, circled states will be the focus of the 
following analysis. Each represents a different, non-statistical fractionation mechanism. 

 

 The red, circled vibrational states, 𝑣 = 9, 𝑣 = 13, 𝑣 = 19, will be the focus of my analysis in this 

chapter. Note, in particular, that each of these three vibrational levels have, locally, the largest 
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fractionation. I begin with 𝑣 = 9, which demonstrates the importance of electronically inelastic transfer, 

even in very weakly state-mixed systems. 

7. 3. Electronically inelastic transfer in a weakly state-mixed system: B”, 𝜴 = 𝟏, 𝒗 =  𝟗: 
 

7.3.1 Introduction to the B”, 𝛱  𝛺 = 1, 𝑣 =  9 state: 
 

 The first example in our analysis of the B” Ω = 1 states is 𝒗 = 9, which will exhibit a non-

statistical, electronically inelastic transfer mechanism. As in Chapter 5, I begin my analysis of this B/B” 

interaction with a reduced term value plot, Figure 7-5. 

 

  

  

  

 

 

            

 

 This plot shows the rotational levels of B” 𝑣 =  9, which are flanked by two B vibrational states: 

𝑣 =  4 is below and 𝑣 =  5 is above. Recall that this energy level structure resembles the even 𝑣 states in 

the strong perturbation model from Chapter 5. In particular, the B” state never crosses a B state at any 

thermally relevant value of J. In the strong perturbation system, the even-𝑣 states produced essentially 

zero isotope effect. However, in this weakly state-mixed system, there is a strong isotope effect. To 

Figure 7-5: The reduced term value plot showing the interaction between the B” v =  9 state and the 
neighboring B v = 4 and v = 5 states. Note, in particular, that the B” state does not cross either of the B 
states, from J = 0, all the way up to J = 100. 
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further emphasize the weak state-mixing, consider Figure 7-6, which shows the B” mixing fraction, as a 

function of 𝐽(𝐽 + 1) for both the e-symmetry (left) and f-symmetry (right) states. 

 

 

 Although radiative lifetime is a strongly non-linear function of mixing fraction, this state-mixing 

is so weak that the B” lifetimes, in all cases, are very close to the unperturbed lifetime of the B” state 

(4200 𝑛𝑠). This is shown more clearly in Figure 7-7, which displays the lifetime as function of 𝐽(𝐽 + 1). 
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Figure 7-6: Fractional B” character, for the B”, Ω = 1 state, as a function of J(J + 1), for both 3232 and 
3233 in the control model. The e-symmetry states are on the left, the f-symmetry states are on the right. 
For these plots, note, in particular, the scale of the dependent axis. Neither the e-symmetry, nor f-
symmetry include states with greater than 0.01% B (bright) state character.  

Figure 7-7: The excited state lifetime as a function of J(J + 1), for both 3232 and 3233, as well as e-
symmetry (left) and f-symmetry (right). Note, again, the dependent axis. None of the lifetimes are below 
4160 ns. 
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 These two plots show extremely “dark” states, for which not a single rotational state has a 

lifetime shorter than 4100 ns. For the 3232 istopologue’s rotational state manifold, the shortest lifetime is 

4161 ns. For the 3233, the lifetimes are even longer, with a shortest lifetime of 4167. Therefore, at 

maximum, there is a difference of 0.1% between the lifetimes of the two isotopologues. This makes it far 

more difficult to invoke the “safe-zone” mechanism from Chapter 5. As a reminder, the differences in 

lifetime for the vibrational states in that chapter span a range larger than 30%. For this particular B/B” 

interaction, I hypothesize that another mechanism is responsible for the large fractionation: electronically 

inelastic transfer. 

7.3.2 The Electronically Inelastic Transfer Mechanism 
 

 In Appendix B, I derive a simple expression for the rate of collisions that transfer between B and 

B” states,𝑅 ↔ " , for weakly state-mixed systems like the one considered here. This expression is 

Equation 7.124  

𝑅 ↔ " = 𝑚𝑍. (7.1) 

Here, the quantity 𝑚 is the B/B” state-mixing fraction, and the quantity 𝑍 is, as before, 

 the total rate of collisions. To reiterate, this expression is only valid for electronically inelastic transfer in 

weakly perturbed systems (see Appendix B for more details). With Equation 7.1 it is easy to illustrate 

why the electronically inelastic mechanism is more pertinent to this system than the “safe zone” 

mechanism. If I take the mixing fractions of the most perturbed states, I obtain the following expression 

(Equation 7.2) 

𝑅 ↔ "(3232)

𝑅 ↔ "(3233)
=

7.1 ∗ 10

5.3 ∗ 10
= 1.34. (7.2) 

                                                           
24 You may have noticed that I seem to be ignoring an important result from Sections 3.7 and 3.8: in a two 
level system, the relative phases for the mixing coefficients would cause the predicted transfer rate 
between the B and B” states to be approximately zero. However, in practice, this is not a two level 
system. Therefore, the principle from 3.7 and 3.8 becomes more a propensity rule and not a selection rule. 
For more information, please see References [78, 85]. 
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That is, the rate of electronically inelastic transfer (i.e. the rate of leaking out of the long-lifetime B” state 

to the short-lifetime B state) is 34% larger for the 3232 isotopologue, compared to the 3233 isotopologue. 

This percent difference is comparable to the differences in fluorescence lifetime for the systems discussed 

in Chapter 5. This indicates that electronically inelastic transfer is a plausible mechanism for significant 

fractionation in weakly state-mixed systems. For more evidence of electronically inelastic transfer, I 

consider the following questions: (1) If electronically inelastic transfer can cause fractionation in a system 

with less than 0.01% state-mixing, what is the lower limit for the extent of state-mixing that can cause 

significant electronic state transfer? (2) Is there evidence of this lower limit in the Control Model 

analyzed in this Chapter? 

7.3.3. The Lower Limit for Electronically Inelastic Transfer 
 

The more definitive answer to this question is contained in Appendix B. Here, I simply present 

the results. The condition for electronically inelastic collisions to create a significant isotope effect is 

given as Equation 7.3: 

𝑚𝑍𝜏 > 1, (7.3) 

where 𝜏, here, is the lifetime of the B” state. As discussed in Appendix B, this condition is equivalent to 

the following expression (Equation 7.4): 

𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐𝑎𝑙𝑙𝑦 𝑖𝑛𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑟𝑎𝑡𝑒 𝑓𝑟𝑜𝑚 𝐵" 𝑡𝑜 𝐵

𝐵" 𝑓𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 𝑟𝑎𝑡𝑒
> 1. (7.4) 

In words, when the 𝑚𝑧𝜏 > 1 criterion is satisfied, there is more than one electronically inelastic collision 

within the characteristic lifetime of the 𝐵” state. 

 To answer the second question, I consider whether this 𝑚𝑧𝜏 > 1 criterion applies to all 22, B” 

Ω = 1, bound vibrational states. To do so, I plot the isotope effect (total population of 3233 minus total 
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population of 3232), as a function of the minimum B” state mixing fraction25 for each Ω = 1 B” 

vibrational state. This is Figure 7-8. 

 There are several notable features here. First, there is, in general, no strong correlation between 

the extent of B/B” state-mixing and isotope effect.  Second, even in this weak perturbation model, where 

the matrix elements are 1% of their actual standard values, there are still several vibrational levels where 

the state-mixing is on the order of 50-90%.  This is more evidence for the statistical doorway mechanism 

described in Chapter 6 (i.e.  there are some vibrational levels that coincidentally sample regions where the 

diabatic B” energy levels are nearly degenerate with those of the B state). I explore two of these more 

state-mixed systems in sections 7.4 and 7.5. Last, and most important for the current discussion, there is a 

set of vibrational states that does not exhibit fractionation. 

                                                           
25 In other words, the dependent axis of Figure 7-8 is the B” state mixing fraction of the rotational state 
that is the has maximum state-mixing 
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Figure 7-8: Isotope effect, as a function of minimum B” state-mixing fraction for each B”  Ω = 1 
vibrational state. Here, isotope effect is defined, for a given vibrational state, as the total population in 
3233 subtracted from the total population in 3232. 
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  To see these non-fractionating states more clearly, consider Figure 7.9, which has the same 

dependent axis as Figure 7-8, but zooms in on these very weakly perturbed states.  

 

 . 

 

 

 

 

 

 

 

 

 

 

In Figure 7-9, the red line is based on 1 atm of pressure, 300 K, and a lifetime of 4200 ns, and divides the 

graph into two sections. On the left side (𝑚 < 0.99998), the state-mixing is large enough, such that there 

is at least one electronically inelastic collision within the lifetime of the B” state. On the right side of the 

line (𝑚 > 0.99998), there is not at least one such collision. In the former case, there is significant 

fractionation, but in the latter case, the fractionation declines as the state-mixing fraction, m, continues 

toward unity. This is evidence that the 𝑚𝑧𝜏 > 1 criterion applies across all weakly state-mixed systems. 

7.3.4. Conclusion 
 This result is significant for two reasons. First, it could partially explain the delayed response of 

the 3233 isotopologue relative to the other two, asymmetric isotopologues (3234 and 3236), discussed in 

sections 6.10 and 7.1. As a reminder, the term “delayed response” describes a behavior where the 3234 

and 3236 isotopologues become enriched in the rock record, at lower atmospheric pressures; however,  
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Figure 7-9: A zoomed-in version of Figure 7-8, focusing on the region around the mzτ = 1 limit, which 
is drawn as a red line. The dependent (isotope effect) axis is on the same scale as Figure 7-8. 
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higher atmospheric pressures are required before 3233 also becomes enriched. From Equation 7.1, I can 

estimate the average number of inelastic collisions within the lifetime of the B” state. For 3232 I calculate 

1.46 collisions within that lifetime. For 3233, I calculate 1.06 collisions. If the pressure decreases by a 

factor of ten, there are, trivially, only 0.146 and 0.106 collisions, respectively. In other words, the full 

effect of these electronically inelastic collisions is only realized at these higher pressures. 

 Second, I must touch on the lifetime, 𝜏, dependence of the 𝑚𝑧𝜏 relation. If I was to consider 

transfer out of a much darker electronic state with a lifetime of 1 ms, the perturbations could be as small 

as 1e-10 and still undergo electronically inelastic collisions within the lifetime of the longer-lived 

lifetime. This greatly expands the range of potential electronic state interactions that can be considered for 

future studies, as sources for collisional mass-independent fractionation. 

7.4  Non-statistical doorway sampling in the 𝑩" 𝒗 = 𝟏𝟑, 𝜴 = 𝟏 state: 
 

 I now consider a B” vibrational state that has much stronger perturbations: the 𝑣 = 13, 𝛺 = 1 

state. We should expect, based on the discussions in Chapters 5 and 6, that the fractionation in this system 

is driven by rotationally inelastic collisions. In Chapter 6, we considered a model where a state-mixing 

doorway is sampled randomly. The B” vibrational state considered here is an example of non-statistical 

doorway sampling. 

 To begin, Figure 7-10 shows, for 3232, the reduced term value plot for the interaction between 

the B” 𝑣 = 13, Ω = 1  state and the B, 𝑣 = 7 state. 
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 This is a fairly typical B/B” interaction. The B” state approaches the B state from above because 

the B”-state rotational constant is smaller and the two manifolds overlap in energy around J = 40. What 

makes this interaction unique, in the context of the Control Model, is seen in Figure 7-11. This Figure 

displays the lifetimes of all four isotopologues (3232, 3233, 3234, and 3236), as a function of 𝐽(𝐽 + 1). 
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Figure 7-10: For 3232, a reduced term value plot, displays the interaction between the B, v = 7 state 
(blue circles) and the B", v =  13, Ω =  1 state (black squares). 

Figure 7-11: The radiative lifetimes of the v = 13, Ω = 1, f-states for all four isotopologues, as a function 
of J(J + 1). 
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 Figure 7-11 shows the doorway mechanism “in action”.26 In particular, note that the isotopologue 

that best samples this perturbation the best is 3232 and the isotopologue that samples it least is 3233. This 

explains the large fractionation observed in Figure 7-4, which showed much more population in this 

vibrational state for 3233, relative to 3232 (i.e. the 3233 state is less “leaky”). Moreover, the doorway 

region, where the B and B” states are more strongly state-mixed, is approximately only a single rotational 

level “wide”. That is, the doorway is large enough to be significantly sampled by at least one rotational 

state, but not much wider than that. Because of this, the sampling is not truly random. The 3232 samples 

best, while 3233 samples the worst because the mass-dependent level shifts moves those specific J = 47 

diabatic rotational states away from the J-value of near degeneracy. Recall that these level shifts cause the 

B and B” states to cross at lower rotational quantum numbers (Chapter 5). As the level-shift becomes still 

larger for 3234, the J = 46 diabatic states become more degenerate and sample the doorway region. Figure 

7-12 is a cartoon that illustrates this fractionation mechanism in more detail. This pattern of tuning into 

and out of degeneracy is not pseudo mass dependent, as it was for the larger doorway regions seen in 

Chapter 5, but it also is not truly random. I could hypothesize, therefore, that this B/B” interaction may 

represent an intermediate case. As the perturbations become even smaller than those considered in this 

Control Model, I hypothesize that they may become more “random”, and better approximated by the 

statistical doorway model from Chapter 6. I will examine this hypothesis a bit further in Chapter 8. 

                                                           
26 Note, however, that this is technically the opposite of the mechanism discussed in Chapter 6. 
Population moves from the B” state to the B state, rather than from the B state to the B” state.  
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7.5. Non-Local Effects in B”, 𝜴 = 𝟏, 𝒗 =  𝟏𝟗: 
7.5.1. Introduction 
 In every B/B” system considered thus far, the fractionation can be explained by careful  

consideration of one single interaction. By “single interaction”, I mean the B” vibronic state, and the B 

vibronic state it crosses (or, in the case of section 7.3, the B vibronic state it most closely approaches at 

thermally relevant values of J). The fractionation typically can be explained by the magnitude and J-

location of the local state-mixing, as well as a fundamental understanding of the collisional transfer 

Figure 7-12: A cartoon that illustrates the mechanism responsible for mass-independent fractionation. 
The independent axis is J(J + 1) and the dependent axis is the B/B” mixing fraction. For a curve crossing 
between a B and B” state, the mixing fractions roughly follow an inverse square law with energy. 
However, if the perturbation matrix element is small enough, this continuous function (green) is not 
completely sampled by the rotational quantum states (colored squares). For one isotopologue (top) the 
blue rotational state is strongly mixed, but for another isotopologue (middle) the level crossing shifts such 
that no states are strongly mixed. For an isotopologue where the curve crossing is shifted yet further, a 
different rotational state becomes mixed (bottom). 
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model. For the final example interaction discussed in this chapter, I consider the B”, Ω = 1, v =  19 

state, which cannot be explained by a single, local interaction. This example will force us to consider the 

larger B/B” system. It is worthwhile to do so, because the fractionation behavior is collective, as opposed 

to local. That is, nearly all the B” states are fractionated in favor of 32-33, relative to 32-32 (see Figure 

7.4). 

7.5.2 Fundamentals of the System 
 

 Figure 7-13 is the usual reduced term value plot, which shows the interaction between the B”, Ω =

1, v =  19 state (red), and the B, v =  9 state that it crosses at around J = 40 (blue). However, I 

highlight here that the B state rotational manifold also interacts with the B”  Ω = 0, v =  19  state (black) 

 

Figure 7-13: A reduced term value plot that describes the level crossing in detail between the B, v = 9 
(blue circles); the B", Ω =  1, v =  19 (red squares); and the B", Ω =  0, v =  19 (black squares). Note 
that, in the real system, energy levels above 35,999 cm , predissociate.  This figure documents the 
consequently unusual nature of the crossing. The B” states effectively cross the B state twice. This graph 
is for the 3232 isotopologue. 
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 One other feature to highlight: the two spin-orbit components of 𝑣 = 19 cross the B state in an 

unusual pattern. For example, the Ω = 1 spin-orbit component crosses both the 𝐹  and 𝐹  states in two 

separate J-locations. This odd interaction occurs because the states predissociate above 35,999 𝑐𝑚 . 

Therefore, Green and Western were only able to fit the rovibronic states below the predissociation limit. 

This makes it necessary to treat the states above the predissociaton limit by extrapolation, i.e. the energy 

level structure of the B/B” interaction here is not based completely on available spectroscopic data. 

However, despite the need for this extrapolation, investigation of this interaction will still yield general 

insight that will carry forward to our discussion of the B/B” system as a whole. 

 To continue with the analysis, I plot the B” 𝑣 = 19, 𝛺 = 1 rotational state lifetimes as a function 

of 𝐽(𝐽 + 1), for both the 3232 and 3233 isotopologues. I also do this for both f symmetry and e symmetry. 

This is Figure 7-14. 

 For both e and f symmetries, it is the 3233 isotopologue that samples the more strongly perturbed 

regions than the 3232. This observation is not consistent with my previous analysis, in both Chapter 5 and 

in sections 7.3 and 7.4. In general, we would expect the isotopologue that is the “leakiest”, i.e. the one 

with the shortest average lifetime, would contain the least population. However, it is the leaker 

isotopologue, 3233, that is more populated. 
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Figure 7-14: The lifetime of the 3232 and 3233 isotopologues, as a function of J(J + 1) for the f 
symmetry v = 19, Ω = 1 states (left), and the e symmetry states (right). 
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7.5.3 Finding a Fractionation Mechanism 
 It would be possible, here, to make a similar argument to that in Chapter 6. I could take the 

perspective of the B, v = 9 state, and argue that because 3233 isotopologue is more state-mixed, it acts as 

a better doorway, and the B state is better able to move population into the long-lifetime. There are 

several potential problems with this interpretation: 

(1) In Chapter 6, the principal factor in the discussion was the rate of convergence to an 

equilibrium behavior. That is, the rate at which 𝐷 converges to the equilibrium behavior, <

𝐷 > (𝑝), was different because asymmetric isotopologues had twice the number of states, 

compared to the symmetric ones.  However, in this control model, all isotopologues are 

treated as having the same number of states.  

(2) The B” states have a greater impact on the isotope fractionation than do the B states. This, of 

course, is evident from Figure 7.3. But it also follows from the analysis given in sections 

5.3.3. and 5.3.4. To summarize, steady state between a ground state and an excited state is 

established at a characteristic rate 𝑘 + 𝑘  ≈ 𝑘 . Here, 𝑘  is the fluorescence rate and 

𝑘  is the absorption rate. The sum approximately equals the fluorescence rate because 

𝑘 ≫ 𝑘 . This makes the B” state much more important in determining the differences in 

lifetime, electronic state transfer, etc. A molecule occupying a primarily B” state has more 

time to fully explore its rotational state manifold than a molecule occupying a primarily B 

state. This means that a localized doorway (region with large state mixing) has a much larger 

impact for a molecule occupying a level of the B” state than one occupying a level of the B 

state.27 

                                                           
27 The reader may recall that a similar argument was made in Chapter 6. The more collisions a molecule 
experiences, the more likely it is to find a doorway. In this case, a molecule that occupies a B” state has 
more time to find a doorway than one occupying a B state.   
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(3) Following a similar line of reasoning, the 𝑣 = 19, 𝛺 = 1 state crosses a B” state at a 

relatively high value of J (around J = 40). To see this more clearly, consider Figure 7-15. This 

figure shows, for the e-symmetry state, the location of the perturbed regions, juxtaposed with 

on the Boltzmann population distribution for 𝑣 =  19.  

This plot shows that, while the perturbation around J = 40 is significantly sampled, it is still 

located around 20 rotational states above the maximum of the Boltzmann distribution. 

These observation lead me to propose an alternative mechanism by which the 𝑣 = 19, 𝛺 = 1  

may store more population for the 3233 isotopologue than the 3232 isotopologue. This mechanism 

involves the  B” 𝛺 = 0 state. To begin, consider Figure 7-16, which is identical to Figure 7-15, except it 

displays the 𝛺 = 0 state, instead of 𝛺 = 1. 

 

 

  

Figure 7-15: A lifetime versus J(J+1) plot for the e-symmetry, v = 19, Ω = 1 states (for 3232 and 3233) 
This time, it is displayed with the Boltzmann population distribution, shown in purple.  
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  In this plot, note that there is a very large difference (~1400%) in lifetime between isotopologues 

at the perturbation closest to the maximum of the Boltzmann distribution. Note also that this 3233-

favoring perturbation lies closer to the maximum of the distribution than the 3232-favoring perturbation 

for the omega = 0 states. 

 Finally, I must consider the mechanism by which the strongly fractionated 𝛺 =  0 states can 

influence the 𝛺 =  1 states. Here, I propose electronically inelastic collisions, introduced in section 7.3. 

The B” 𝛺 =  1 and 𝛺 =  0 states are mixed by the rotational part of the effective Hamiltonian (see section 

2.5). For these 𝑣 = 19 states, at J = 35, the mixing fraction, 𝑚, is 0.035. If I use the 𝑚𝑍𝜏 relation (section 

7.3.3. and Appendix B) and assume a lifetime of 4200 ns, I calculate that there are approximately 700 

collisions that exchange population between the 𝛺 =  0 and 𝛺 =  1 states within the B” state lifetime. 

 This proposed Ω = 1 fractionation mechanism is illustrated in Figure 7-17. Population is excited 

into the Ω = 1 manifold, and is transferred back and forth to the Ω = 0 spin-orbit component several 

hundred times over the course of the B” state lifetime. Over the course of these exchanges, and in 

combination with random walks in the respective rotational state manifolds, the molecule is exposed to 

Figure 7-16: The J(J+1) vs lifetime plots (e symmetry) for the omega = 0 states.  
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two different perturbations. The first perturbation, in Ω = 1, affects both the 3233 and 3232 

isotopologues, but favors 3232 because it has a 2x larger excited state lifetime than its 3233 counterpart.  

For the second perturbation, in Ω =0, the difference in lifetimes is far greater (14x), and favors 3233. 

Intuitively, we can think of the population “flowing” in the direction of the largest leak, as in Figure 3-7 

from Section 3.5. 

Of course, the population is not literally flowing; it is undergoing a random walk. However, if we 

consider the trajectory of a single molecule that occupies the B” manifold, the most likely final state is the 

shortest-lifetime state. Likewise, the rotational states adjacent to the perturbation are likely candidates for 

the second-to-last state occupied, and so on. If I was to average over a large number of random 

trajectories, the most likely trajectory would manifest a tendency to “flow” in the direction of the leak. 

 7.6 Applying These Three Examples to the Broader B/B” system 
 

Figure 7-17: A cartoon that depicts the most important loss mechanisms for population that originates 
around the maximum of the Boltzmann distribution in the 𝛺 = 1, 𝑣 = 19 state (blue circle). For 3232 
(left plot), there is a very large “leak” in the 𝛺 = 0 manifold. Therefore, the most important loss process, 
for the purposes of explaining the fractionation, is electronically inelastic transfer to the 𝛺 = 0 manifold, 
followed by rotational transfer to the leak. This transfer process is depicted by purple arrows. This loss 
process is important for the proposed fractionation mechanism because it does not occur in the 3233 
isotopologue (right plot). For the 3233 isotopologue, the most accessible leak is the one in the  𝛺 = 1 
manifold. While this  𝛺 = 1 leak is larger for the 3233 isotopologue than for the 3232 isotopologue, the 
magnitude of the discrepancy is not nearly so large as for the 𝛺 =  0 case. I hypothesize that this 𝛺 =  0 
leak is responsible for the fractionation in the 𝛺 = 1 state. 
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  I return now to the questions posed in Section 7.2. (1) Why do the three Ω components of the 

Control Model behave have similar fractionation patterns? (2) Why do the e/f symmetry components also 

have similar fractionation patterns? 

 The first question is the easiest to answer: long-distance, electronically inelastic collisions. As 

demonstrated in section 7.5, the rotational perturbations that slightly state-mix the B” spin-orbit 

components generally satisfy the 𝑚𝑍𝜏 criterion. Note, in particular, Figure 7-17, where the “jump” from 

the Ω = 1 state to the Ω = 0 state has a Δ𝐸 larger than 20 𝑐𝑚 . These long-range interactions, where 

population is rapidly transferred back and forth among all three spin orbit components likely homogenizes 

their fractionation patterns. 

 The second question requires a more complex explanation. Recall from Section 3.4 that e/f-

symmetry changing collisions are generally forbidden in a Π   state because they involve a change in 

spin-eigenfunctions (Σ =  −1 ↔  +1,). There is one exception, however, and that is the Ω = 1 

component, which has Σ = 0. Therefore, e/f-changing collisions are allowed in this particular spin-orbit 

component. Evidence of this  “special” property of the Ω = 1 levels can be seen in Figure 7-4. While all 

three B” spin-orbit components have the same pattern (i.e. they all hold more population for the 3233 

isotopologue than for the 3232 isotopologue), the Ω = 1 component has the largest magnitudes. Now, 

recall Section 7.5. In that section, I explored the concept of non-local behavior, where a localized 

perturbation was, in effect, overridden by a larger perturbation in a neighboring spin-orbit component. (Or 

to use different terminology, the excited state population tends to “flow” toward the largest leak.) Viewed 

in this context, the e/f breaking collisions expand the total state space available to the Ω = 1 states. In 

other words, if there is an especially strong perturbation, the e/f breaking collisions increase the number 

of states that can easily access it. Put still differently, the e-f breaking collisions allow population to 

“flow” more easily. If we combine the conclusions from sections 7.3. and 7.5, we arrive at a plausible 

explanation for the “global behavior” observed in Figure 7-4: The Ω = 1 component acts as a “bridge” 

between the e-symmetry and f-symmetry states, and the effects of this bridge extend into the other two 
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spin-orbit components because population can exchange between them via an electronically inelastic 

mechanism. 

 The most important aspect of these results is that the weak state-mixings are able to generate 

significant fractionation, even in the absense of the statistical effects, due to the extremely large number 

of collisions at 300 K and 1 atm of pressure (on the order of 10  collisions per second). As seen in the 

previous sections, the Control Model is perhaps best thought of as a large network of states, a large space 

for an excited 𝑆  molecule to “explore”. The space is so large because weakly interacting states that are 

10’s of wavenumbers apart in the diabatic picture can still exchange population because there are a large 

number of collisions within the B” state lifetime.  This is the essence of the 𝑚𝑍𝜏 > 1 criterion. 

 Recall from section 7.3 that, assuming a 4200 ns lifetime for the B” state, the minimum value of 

𝑚 = 0.002 %. If I were to consider an excited state with a lifetime of 4.2 ms, the minimum value of 𝑚 

drops to 0.000002%. This does not guarantee that state-mixings this small will generate interesting or 

significant isotope effects. For example, if off-diagonal matrix elements become too small, accidental 

degeneracies between the diabatic curves may become too rare. However, the results from Chapter 6 and 

Chapter 7 show that weakly perturbing systems may be key to understanding isotope effects in excited 

states of S2, as well as in other molecules. I will address this question, in a preliminary manner, in Chapter 

8. 
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Chapter 8 : Can Statistical Isotope Effects be the Origin of S-MIF in the 
Archean Reference Array? Next Steps and Concluding Remarks 
 

8.1 Introduction:  
In the preceding three chapters, I have drawn a number of conclusions regarding excited state 

collisional transfer as a mechanism for sulfur mass-independent fractionation (S-MIF). In chapter 5, I 

concluded that, for the B/B”-X system neither a mechanism that involved predissociation, nor one that 

involved only bound states, was a likely source of S-MIF in the rock record. Instead, the observed 

fractionation approximated a mass-dependent pattern. And, in particular, the weakly state-mixed 

vibrational levels of the long-lifetime B” state were responsible for generating the largest amount of this 

pseudo-mass-dependent fractionation. 

This analysis led to a hypothesis that small perturbation matrix elements and/or weak state-

mixings may be more effective than the B/B”-X at generating S-MIF. I demonstrated this in Chapters 6 

and 7 by artificially changing the perturbation matrix elements to be 1% of their empirically determined 

values. These isotope effects were observed to have both statistical (Chapter 6) and non-statistical 

(Chapter 7) elements. In particular, I observed in Chapter 7 that electronically inelastic collisions can 

generate fractionation at very small state-mixings (approximately 0.002%).28 

The primary scope of this work has been to characterize mechanisms by which collisional transfer 

can induce isotope fractionation. In this final chapter, I begin to expand the scope and consider the 

following question: what are the ideal conditions for generation of the statistical S-MIF signature 

described in Chapter 6? This question is of particular interest because that pattern best approximates the 

Archean Reference Array. The answer is likely a complicated function of a variety of parameters: the 

vibrational levels of the two electronic states, their rotational constants, their relative lifetimes, the size of 

the off-diagonal matrix elements that connect them, etc. 

                                                           
28 This is the 𝑚𝑧𝜏 criterion, described in section 7.3. 
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In section 8.2, therefore, I consider a single parameter: the size of the perturbation matrix 

elements and begin to determine whether there is an optimal value to produce a prominent statistical 

isotope effect. In section 8.3, I consider the robustness of the predicted fractionation with changing 

temperatures and other adjustable parameters. In section 8.4, I consider the effect of a total +/- parity 

changing collisions on the fractionation of the three asymmetric isotopologues. 

The analyses in this chapter will be shorter and somewhat more speculative, compared to the 

more extensive discussions in the preceding chapters. Their purpose is to take an initial few steps down 

several suggested routes for further study. In sections 8.5 and 8.6, I conclude this thesis and attempt to 

place these results in a wider context. 

8.2. Statistical Isotope Effects and Perturbation Matrix Element Size 
 

 In this section, I use a model very similar to that considered in Chapter 6. That is, I use the B/B” 

system described and fitted by Green and Western, with a few modificiations: uniform Franck Condon 

factors and no predissociation for high rotational states of vibrational states bound at 𝐽 = 0. For the 

complete details, see section 6.8. Here, however, I vary the size of the perturbation matrix elements on a 

logarithmic scale from 0% percent to 10% of those reported by Green and Western. 

 Figure 8-1 shows the usual pressure versus quantity-reacted plots, for the lowest three matrix 

element sizes, 0%, 0.001%, and 0.01%. The first, 0% perturbation plot serves as a control; there is no 

change in the quantity reacted into the rock record, as a function of pressure. This is in agreement with 

our understanding of the collisional transfer mechanism, as no doorways between the B and B” states 

exist for this 0 % control model. The next two plots show very weakly perturbed systems. In the middle 

plot, 0.001%, there is no apparent change in fractionation with pressure. This, of course, implies a lower 

limit, i.e. perturbations can be too small to generate any significant isotope effect. We begin to observe a 

small amount of fractionation with the third and final plot, though it only appears at pressures around 1 

atm. This could be interpreted in terms of the doorway mechanism. As the size of the matrix elements 
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increase, the ability of an excited B state molecule to find a doorway to a B” state correspondingly 

increases. 

 

 Next, Figure 8-2 shows similar plots, but with larger perturbation matrix elements 

(0.1%, 0.3%, 0.75%, 10%).  

Figure 8-1: Quantity of each isotope entering the rock record, as a function of pressure, for the smallest 
perturbation matrix elements (0%, top; 0.001% middle, and 0.01% bottom of the values reported iby 
Green and Western). In these plots, the blue solid line represents 3236; the purple solid line, 3234; the 
orange solid line, 3233, and the green dashed line, 3232. 
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Figure 8-2: Quantity of each isotopologue entering the rock record, as a function of pressure, for the 
moderately-sized perturbation matrix elements. The percentages indicate the size of the perturbation 
matrix elements, relative to the values reported in Green and Western. The insets highlight the 0.3 and 1 
atm data points. In these plots, the blue solid line represents 3236; the purple solid line, 3234; the orange 
solid line, 3233, and the green dashed line, 3232. 
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 In these plots, we should first note that the fractionation begins at lower pressure as the state-

mixing increases, as is expected. Second, the top two plots (0.1% and 0.3%), show an isotope effect that 

strongly favors 3236. This is even more clearly visible in the insets. As the matrix elements increase in 

size, the other two asymmetric isotopologues (3233 and 3234) converge in behavior to 3236, while 3232 

becomes the least reactive. This is especially true for the 0.75% case, and the 1 % case (which we, of 

course, explored in Chapters 6 and 7). 

 Figure 8-3 shows the three cases with the largest state-mixings, 3%, 7.5%, and 10%. 

Figure 8-3: Quantity of each isotopologue entering the rock record, as a function of pressure, for the 
largest perturbation matrix elements, 3%, 7.5%, and 10% of those determined by Green and Western. 
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For these plots, the 3232 isotopologue switches from the least reactive to the most (see the 0.3 and 1 atm 

insets).  

 A speculative interpretation of these patterns is as follows: for the 0.1% and 0.3% plots, shown in 

Figure 8-2, sulfur mass-independent fractionation is observed. However, this is not the more statistical 

pattern (where the three asymmetric isotopologues are enriched relative to 3232) observed in the rock 

record. Instead, 3236 is enriched relative to all other isotopologues. Doorways may exist for 3236 that do 

not exist for the other three isotopologues.29 This would occur because the accidental degeneracies are too 

rare, due to the small matrix elements (recall Figure 6-1 from section 6.1). Therefore, even with the large 

number of collisions at one atmosphere of pressure, the behavior of the three asymmetric isotopologues 

does not converge.30 

 For the 0.75% and 0.1% plots, statistical convergence behavior is observed. In fact, the 

convergence behavior is even more pronounced for the 0.75% plot than it is for the 1% plot that was 

analyzed in Chapters 6 and 7. 

 For the final three plots, 3%, 7.5%, and 10%, the isotopolouges begin to separate according to 

their reduced masses. Note, in particular, the 10% inset, where we have the 3232 > 3233 > 3234 > 3236 

pattern that we first observed in the non-predissociating model from Chapter 5. That is, when the 

perturbations become large enough, the doorway is always sampled. Therefore, the energy level structure 

                                                           
29 Alternatively, this could indicate that doorways exist for three of the four other isotopologues that do 
not exist for 3236.  
 
30 Recall from Chapter 6, that D is a random variable that represents the fraction of excited state 
molecules that reach a doorway. This variable is sampled by the various state-crossings in the B/B” 
system. In the case of the 0.1% and 0.3%, where the perturbation matrix elements are very small, the 
variance of D is very large. That is, it is unlikely that a single crossing will result in a coincidental 
degeneracy. Therefore, even with a large number, N, of state crossings, the sample average, 𝐷 still has a 
large standard deviation. Per the Central Limit Theorem, because 𝜎 for D is so large, 𝜎/√𝑁 for 𝐷 remains 
large. 
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of the B/B” system becomes more important, and the fractionation behavior reflects the systemic, pseudo-

mass-dependent behavior that is described in detail in sections 5.3 and 5.4. 

 These observations, taken together, may indicate a type of “Goldilocks” behavior. If the state-

mixings are too large the behavior becomes, pseudo-mass-dependent. If the state-mixings are too small, 

the odds of sampling a doorway are too small, and we observe more erratic fractionation behavior, if any 

at all. This behavior, while technically mass-independent, does not show the statistical convergence 

required to explain the Archean Reference Array. The 0.75% and 1% plots shows a possible regime 

where the perturbations are “just right”, i.e. neither too large nor too small. 

 As a summary of this behavior, consider Figure 8-4, which uses the 1 atm data for all of the plots 

shown in Figures 8-1 through 8-3. This plot shows the difference between the symmetric 3232 

isotopologue and an average of the three asymmetric isotopologues, as a function of the perturbation 

matrix element size. 

Figure 8-4: For the 1 atm data points from the previous three figures (8-1, 8-2, and 8-3), the difference 
between the average of the three asymmetric isotopologues and the symmetric 3232. The two 
“Goldilocks” perturbations, those that produce the convergent behavior described in Chapter 6, are circled 
in red. 
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 This plot does not provide a complete picture of the behavior. For example, the 0.3% data point 

favors the asymmetric isotopologues strongly but does not display the convergent behavior that the 0.75 

and 1% data points do. However, the behavior shown by this graph matches the interpretation presented 

in this chapter. The three data points with the smallest perturbations show erratic behavior, while the three 

data points with the largest show the system shifting toward the pseudo-mass-dependent behavior, which 

favors the lightest isotopologue, 3232. 

 Finally, I plot Δ  and Δ , as a function of perturbation matrix element size. This is Figure 8-5. 

The two “Goldilocks” states are the only two that display Δ > 0 and Δ < 0, as in the Archean 

Reference Array. 

 

 

Figure 8-5: Δ  and Δ , as a function of perturbation matrix element size. 
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8.3 The Robustness of the S-MIF isotope effect. 
 

 In this thesis, I have not yet explored the effects of two adjustable parameters on the S-MIF 

signature produced by the master equation model. The first of these two parameters was introduced in 

Chapter 3. Recall the Power Gap (PG) Law from Chapter 3, reproduced here as Equation 8.1. 

𝑘 → = 𝑎|
∆𝐸

𝐵
| (8.1) 

In this equation, 𝑎 is a proportionality constant. I can solve for 𝑎 easily, if I assume that all collisions are 

rotationally inelastic (see: Equations 4.8 and 4.9). The parameter ∆𝐸 is the difference in energy between 

the initial and final rotational states (see: Chapter 2), and 𝐵 is the rotational constant. This leaves 𝛼, 

which we have, until this point, assumed to be equal to 1.2. Recall from Chapter 3 that fif an internuclear 

potential, V(r), is given by Equation 8.2 

V(r) =  𝑟 , (8.2) 

where 𝑟 is the internuclear distance between the S2 molecule and its inert collision partner. The parameter 

𝛾 is related to the parameter 𝑛 as follows (Equation 8.3) [65] . 

𝛼 =  
𝑛

𝑛 − 1
 (8.3) 

Therefore, the choice of 𝛾 =  1.2 corresponds to 𝑛 = 6, i.e. a van der Waals interaction. 

The power gap law has been fit to a wide variety of experimental data. In these studies, the fitted values 

of  𝛼 have varied from approximately 1.0 to 1.4. This is the first adjustable parameter that will be 

analyzed in this section. 

 The second is the temperature, 𝑇. Recall from Chapter 4 that the rotationally inelastic collisions 

are weighted by a Boltzmann factor that is, itself, a function of temperature. I reproduce this expression 

here as Equation 8.4 
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𝑘 →

𝑘 →
=  

(2𝐽 + 1)

(2𝐽 + 1)
𝑒 , (8.4) 

where 𝑘 →  is the rate constant for a transfer from eigenstate 1 to eigenstate 2, and vice versa for 𝑘 → . 𝐽  

and 𝐽  are the rotational quantum numbers for their respective eigenstate, Δ𝐸 is the difference in energy 

between the respective eigenstates, 𝑘  is Boltzmann’s constant, and 𝑇 is the temperature. Recall that, by 

enforcing the constraint given in Equation 8.4, the rotational state distribution within a given vibronic 

state will converge toward a Boltzmann distribution as the number of collisions increases. Most factors in 

this expression are determined by the choice of states 1 and  2. The exception is the temperature, 𝑇. For 

most of this thesis, I have assumed the temperature to be constant at 300 K. The one exception was the 

temperature profile that was included in the isotope effect versus altitude described in section 5.5. In this 

section, the temperature is the second adjustable parameter. In simple terms, the temperature affects the 

“broadness” of the Boltzmann distribution, i.e. a higher-temperature system samples a wider range of 

rotational states, and also the maximum of that distribution, i.e. the higher the temperature the smaller the 

maximum of the probability distribution. 

 The goal for this section is to analyze the robustness of the fractionation produced by the S-MIF 

model. Or, in other words, I explore the extent to which uncertainty in the values of these adjustable 

parameters creates uncertainty in the predicted S-MIF. In this section I use the weak perturbation model, 

from Chapter 6, Section 6.8., because it produces larger S-MIF than the strong perturbation models from 

Chapter 5. 

 To begin, 𝛼 will be varied from 1.0 to 1.6. Figure 8-6 shows the three 𝛿  parameters: 𝛿 , 𝛿 , 

𝛿  as a function of 𝛼, for the weak perturbation model at 300 K and 1 atm. Likewise, Figure 8-7 shows 

the two Δ  parameters, Δ  and Δ . The dependent-axis scale is identical for both plots. 
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Figure 8-6: The δ  parameters for the 33, 34, and 36 isotopes, as a function of the alpha,α, parameter 
from the power gap law shown in Equation 8.1. 

Figure 8-7: Δ  and Δ parameters, calculated from the δ  parameters shown in Figure 8-6, as a function 
of α. 
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 These plots, taken together, show that variation of the 𝛼 parameter does not have a large effect on 

the predicted fractionation. The Δ  parameter does not change significantly. The 𝛿  parameter 

decreases relative to the 𝛿  and 𝛿   parameters for the values 𝛾 =  1.4 and 1.6. This corresponds to a 

46% difference in the magnitude of the Δ  parameter. However, the signs of both parameters remain the 

same. 

 Figures 8-8 and 8-9 display the effect of temperature on both the lower-case and capital delta 

parameters. Here, the temperature varies from 200 K to 350 K, with 𝛾 = 1.2. To facilitate comparison, 

the dependent axis scale remains the same as in the previous two figures. 

 

Figure 8-8: The three δ values, plotted as a function of temperature for the weak perturbation model. 
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Figure 8-9: The  Δ  and Δ parameters, calculated from the δ  parameters from Figure 3, as a function 
of temperature. 

 

These figures show that temperature has a larger effect on the S-MIF signature than does 𝛼.The 

first plot, Figure 3 , shows that the 𝛿  parameter exchanges with the 𝛿  parameter as the temperature 

increases, 𝛿 >  𝛿  to 𝛿 >  𝛿 . Consequently, the magnitude of the Δ  parameter decreases by 

about a factor of 4. 

Taken together, these four plots support two important conclusions. 

(1) The temperature has a more substantial effect on the predicted S-MIF than does the 𝜶 

parameter from the rotational power gap law. This conclusion makes intuitive sense when 

considering Equation 8.1 in conjunction with Equation 8.4. Equation 8.1 tells us that, as 𝛼 

increases, smaller changes in energy are preferred over larger ones. This is the cause of small 

differences in fractionation patterns observed in the first two figures (1 and 2). However, 

varying  𝛼 does not affect the Boltzmann constraint given by Equation 8.4. That is, at long 

times the rotational probability distribution will still converge to a Boltzmann distribution at 
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300 K. Recall from Section 7.3 that, at 1 atm, an S2 molecule will undergo approximately 

20,000 collisions within the lifetime of the B” state, which well exceeds the minimum 

required for such a convergence. Therefore, the molecule, despite different 𝛼 values, will still 

display identical long-term behavior. The long-term behavior can only be changed by 

changing the temperature. Therefore, uncertainty in the temperature creates more uncertainty 

in the predicted S-MIF than does the exact form of the rotationally inelastic collision model. 

(2) The magnitude of the fractionation can change appreciably (especially with 

temperature) but the qualitative pattern remains the same. In other words, when allowing 

𝛼 and T to vary over essentially all physically reasonable values, the signs of Δ  and Δ  do 

not change. This is especially true for 𝛼, but it remains true for T as well. This conclusion 

matches the analysis from the previous three chapters: it is the energy level patterns of the B 

and B” states, as well as the magnitudes and locations of their perturbations, that determines 

the qualitative fractionation pattern.  A change in temperature will change the probability of 

sampling a given level crossing somewhat, but the overall structure of the rotational state 

space does not change. 

Overall, of the two adjustable parameters considered here, temperature has a much stronger 

influence on the overall behavior. However, the qualitative behavior is much more strongly determined by 

spectroscopic patterns more than the specific choice of these two parameters. 

8.4 The Inclusion of +/- parity Breaking Collisions 
 

 In every model considered thus far, I have excluded the possibility of total parity changing 

collisions, i.e. collisions that move population from a (+) parity state to a (-) parity state. In this section, I 

include the total parity conserving collisions as usual, but include (+) ⟷ (−) collisions as follows in 

Equation 8.5,  

𝑘 ( / )  →  ( / )  = 0.1 ∗ 𝑎|
∆𝐸

𝐵
| (8.5) 
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 That is, the cross sections for parity changing collisions are set to be 10% as large as the power 

gap model would otherwise predict. This applies to only the asymmetric isotopologues, as the symmetric 

isotopologues have only a (-) parity manifold. 10% is also certainly an overestimate (see section 3.3.). 

However, such an overestimate is useful because it allows us to view the resulting isotope effects more 

clearly. Note that the sum of the inelastic rate constants into a given eigenstate are still normalized to the 

total collision rate, as in Section 4.4. That is, there are net zero additional collisions created by including 

Equation 8.5 into the Master Equation model. In this section, results are presented for both the “strong 

perturbation model” (section 5.1) and the “weak perturbation model” (section 6.8) at 300 K.   

 First, I show the results of the strong perturbation model, including the additional collisions given 

by Equation 8.5 (Figure 8-10). 

 

Figure 8-10: Results from the strong perturbation model with the 10% parity breaking collisions 
described in Equation 8.5. The independent axis is the pressure of the atmosphere at 300 K. The 
dependent axis is the quantity reacted. 

Next, I show , calculated for the data given in Figure 8-10. This is Figure 8-11. 
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Figures 8-12 and 8-13 are identical to Figures 8-10 and 8-11, but are based on the weak perturbation 

model. 

 

 

 

 

 

 

 

 

 

 

Figure 8-11: shows , calculated for the data shown in Figure 8-10. The red line and the blue line show 

the two  values observed in the rock record. 
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Figure 8-13: shows , calculated for the data shown in Figure 8-12. The red line and the blue line show 

the two  values observed in the rock record. 
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Figure 8-12: Results from the weak perturbation model when the 10% parity breaking collisions. The 
independent axis is the pressure of the atmosphere at 300 K. The dependent axis is the quantity reacted 
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Note that, in general, the additional collisions cause the yields of the three asymmetric isotopologues to 

decrease relative to the symmetric 32-32. This occurs because the major fractionation mechanism, as seen 

in Chapters 5 and 7, is collisional transfer from the long-lived B” state to the short-lived (“leaky”) B state. 

The additional (+)/(-) exchanging collisions increases the population “flow” rate (see the discussion in 

Section 7.4). That is, the molecules occupying a long-lived B” state have a higher probability of 

collisional transfer to the short-lived B state. 

 In a comparison of the strong perturbation model to the weak perturbation model, this same 

general effect has the opposite consequences. Recall from Chapter 5 that the strong perturbation model 

produces a largely mass-dependent effect. In Figures 5 and 6, however, we see that the (+) ↔ (−), parity 

changing collisions destroy the mass-dependent relationship. The three asymmetric isotopolouges 

decrease relative to 32-32. At 0.1 to 1 atm, this generates a  value very comparable to the values of -0.5 

and -0.9 (red and blue lines in Figure 8-12, respectively) observed in the rock record. For the weak 

perturbation model, recall that the original model from Chapter 6 produced < 0 at high pressures. 

This occurred because the three asymmetric isotopologues had larger excited state population than did the 

32-32 isotopologue. In this case, however, the (+) ↔ (−), parity changing collisions, which still decrease 

the reaction yield, create an S-MIF signature with > 0, very different than the -0.5 and -0.9 values 

from the Archean Reference Array. 

 In summary, the additional, parity changing collisions may help differentiate the three 

asymmetric isotopologues from 32-32, but only in particular cases. The strong perturbation model 

generated the correct S-MIF pattern because the asymmetric isotopologues had smaller excited 

populations without the parity changing collisions. In other words allowing, parity changing collisions 

exaggerates an effect that is already present. For the weak perturbation model, the parity changing 

collisions counteract the original pattern. 



 

217 

8.5 Major Conclusions from This Work 
 

In this section, I simply summarize six major results from this study 

1) The level structure of the two perturbing states plays a key role in determining 

fractionation behavior. This principle was observed at a number of points throughout this work. 

For example, in section 5.3.4, I discussed B/B” level crossings where the B” state crossed the B 

state “from above”, i.e. at low J, the B” states were higher in energy than the B states, and at high 

J, this pattern was reversed. This created an isotope effect that favored ligher isotopologues 

reacting over heavier ones. This mass-dependent pattern is reversed in a predissociating system, 

where the predissociation limit is approached from above. This applies in a wide variety of 

circumstances including the very weakly perturbed system analyzed in 7.3. This principle was 

perhaps most apparent in section 8.3, where a change in the temperature or the 𝛾 parameter 

affected the magnitude of the fractionation somewhat, but did not affect the qualitative behavior. 

The qualitative behavior is determined by the energy level and perturbation patterns. 

2) Weak state-mixings, in general, generate much larger fractionation than do strong state-

mixings. For example, in section 5.3, I compared the f-symmetry versus e-symmetry 

fractionation behavior. The f-symmetry states were more fractionated because they were subject 

to weaker state-mixing. Therefore, there was a greater discrepancy in excited state lifetime 

between the states near the level crossings and those farther away. In section 7.3, this concept was 

developed further. Here, we observed that collisional transfer can occur as long as the rate of 

electronically inelastic transfer is greater than the fluorescence rate. (This was the 𝑚𝑍𝜏 > 1 

criterion). As long as this criterion is satisfied, there can be fractionation. For the B”, state, with 

a lifetime of 4200 ns, fractionation, the 𝒎𝒁𝝉 criterion is satisfied for state-mixing as small as 

0.002%. This may greatly expand the range of electronic state interactions that should  be 

analyzed for potential fractionation. 
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3)  The additional rotational states in 32-36, 32-34, and 32-33 relative to 32-32, can create 

statistical S-MIF, but only in certain circumstances. In Chapter 6, I presented evidence that a 

statistical model, where asymmetric S2 converges to a limiting behavior faster than does 

symmetric S2, can explain a sizable amount of the fractionation behavior. This analysis, however, 

only applies for the weak perturbation model presented in Chapter 6 and not the strong-

perturbation model presented in Chapter 5. This statistical behavior occurs for small doorway 

regions because there is a significant chance that the symmetric isotopologue will not sample the 

doorway.  However, I also concluded that there was also evidence of non-statistical behavior, 

which was explored in Chapter 7. In section 8.2, I discussed the possibility for “Goldilocks 

perturbations”. If perturbation matrix elements were too small, I argued, the probability of 

sampling a doorway was too small to be treated statistically. That is, the sample of B/B” vibronic 

level crossings was not large enough to observe statistical behavior. If the perturbation matrix 

elements are too large, the doorway is always sampled and the behavior is more systematic and 

mass-dependent, as in chapter 5. If the perturbations are “just right”, however, statistical effects 

are observed. Finally, in section 8.4, we discussed the possibility of +/- parity changing collisions. 

A small percentage of these parity changing collisions may contribute to the statistical isotope 

effects, as well. 

4) Transfer from the long lifetime B” state to the short lifetime B state causes more 

fractionation than the reverse process. This is simply because equilibrium between the excited 

state and the ground state is reestablished much more quickly in the B state than in the B” state 

(see section 5.3.4). This principle can be seen in both Chapter 5 (section 5.2), and Chapter 7 

(section 7.2), where the B” states show fractionation behavior but the B states largely do not. 

Intuitively, the B state is the “leaky” state, and the fractionation behavior of the B” state is the  

5) Fewer restrictions on collisional transfer allows population to “flow” to find the largest 

“leak”, which generates larger fractionation. The most prominent example of this is seen in 

section 7.5, where major fractionation mechanism is electronically inelastic transfer from an Ω =
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1 spin orbit component to an Ω = 0 spin orbit component with a very large “leak”. Likewise, we 

observed in chapter 7 that the Ω = 1 components of the B” state tend to have the large 

fractionations, because e/f symmetry changing collisions are allowed. 

6) The B/B”-X system is likely not the origin of S-MIF in the rock record, but we have 

identified a number of mechanisms that may help narrow the search. 

8.6. Proposing a New S-MIF Mechanism 
  

Conclusion 6 from the previous section raises an important question: if the B/B”-X system in S2 

is not the origin of the S-MIF signature in the rock record, could another electronic state interaction be? 

In this section, I propose one interaction as a candidate, justifying this choice using the conclusions from 

the previous section (8.5). It is worth emphasizing here, though, that this is only a single possibility. 

Figure 8-14 shows a Born-Oppenheimer potential energy curve plot of excited states of S2 [43]. 

  

Figure 8-14: The Born-Oppenheimer potential energy curves of the various electronic states of S2.  
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Any two pair of states that overlap in energy could be the origin of the S-MIF. And, indeed, conclusion 2 

tells us that even very weakly interacting states may cause significant fractionation. Alternatively, it may 

be a combination of different interactions. 

 Here, however, I would like to propose one particular electronic state that we have not considered 

thus far: the 𝑐 Σ  state. Note in Figure 8-14 that it extensively overlaps with both the B state and the B” 

state. Moreover, its potential energy curve is quite different from that of the B or B” state. This would 

cause the vibrational overlap integral, the Franck Condon factor quite small (see: section 2.8). And, 

therefore, the perturbations between the c state and either the B or B” states would be correspondingly 

small. This would make collisional transfer between either the B or B” and the c state more likely to 

exhibit the statistical behavior discussed in Conclusion 3. 

 Conclusions 4 and 5 tell us that, in an ideal system (for matching the Archean Reference Array), 

the fractionation mechanism is a transfer from a short-lifetime state to a long-lifetime state that stores the 

population long enough for the molecule to react. In the B/B” system, the opposite was true. The primary 

fractionation mechanism, as seen in Chapters 5 and 7, was a transfer from the long-lived B” state to a 

short-lived B state. Therefore, the statistical effects discussed in Chapters 6 and 8 (section 8.4, in 

particular) would serve to deplete rare isotopes in the rock record, when they ought to be enriched. The 

𝑐 Σ  state provides a method of storing excited state population. Note from Figure 8-14 that the upper 

vibrational states of 𝑐 Σ  overlap with the more strongly absorbing B/B” states, but the majority of the 

vibrational states would not. Therefore, vibrationally inelastic collisions could transfer population from 

more the state-mixed states to the unperturbed states. In this sense, the 𝑐 state is the “leaky state”, 

compared to the B/B” states. Therefore, the superior ability of asymmetric isotopologues to “flow” to the 

leak creates a larger excited state population for the three rare isotopes, potentially matching the rock 

record. Although vibrationally inelastic collisions have a collisional cross section approximately three 

orders of magnitude less than rotationally inelastic collisions, there will still be many vibrationally 

inelastic collisions within the lifetime of the B and B” states (see the discussion in section 8.3). 
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Appendix A: The Relative Phases of the Probability Amplitudes for 
Rotationally Inelastic Collisions 
A.1. Introduction 
 This discussion is a supplement to Chapter 3, where I derived matrix elements of the scattering 

matrix, 𝑽. Recall that, for any two quantum states of the B/B” system, 1 and 2, the probability of 

collisional transfer from 1 to 2 (𝑃 → ) is given by Equation A.1, 

𝑃 → = |< 1|𝑽|2 > | . (𝐴. 1) 

Therefore, the matrix elements of 𝑽 are not probabilities, but probability amplitudes (𝑃 / ′𝑠). We derived 

an expression for 𝑃 / , for rotationally inelastic collisions within a vibronic basis state, 𝐴 (i.e. from 

|𝐴, 𝐽 > to |𝐴, 𝐽 >). This expression is reproduced as Equation A.2, with the addition of an arbitrary 

phase, 𝜑 

𝑃 , → = 𝑒 𝑎 |
𝐸(𝐽 ) − 𝐸(𝐽 )

𝐵
| . (𝐴. 2) 

Where 𝜑 ∈  ℝ. Note, of course, that this expression for the probability amplitude still results in the usual 

PG expression, because 𝑃 , → =  |𝑃 , → | . 

 In Chapter 3, I ignored this arbitrary 𝑒  phase factor. In this Appendix, I justify this choice. This 

justification proceeds in three parts. The first part is a proof that the coefficients of the eigenvectors of the 

B/B” Hamiltonian can be chosen to be exclusively real. This proof requires basic knowledge of linear 

algebra theory. The second part uses part 1 to show that: all of the phase factors of 𝑃 , →
/  and 

𝑃 , →
/  for any pair of vibronic states 𝐶 and 𝐷 must be either completely in-phase or 180o out-of-

phase. The third part shows that the out-of-phase choice leads to obviously nonphysical collisional 

transfer rates, and the relative phase of any arbitrary 𝑃 , →
/  and 𝑃 →

/  therefore can be ignored. 

A.2. First Part: Proof that the B/B” Hamiltonian can have Exclusively Real Eigenvectors 
 As shown in Chapter 2, the B/B” Hamiltonian is both real and symmetric. A symmetric 

Hamiltonian satisfies the criterion that  𝐻 = 𝐻 , where T is the transpose operation, which switches the 



 

222 

row and column indices of every element in the matrix (i.e. 𝐻 , =  𝐻 , ). The time-independent 

Schrodinger Equation requires that every eigenstate satisfy Equation A.3 

 𝐻|𝜓 > = 𝐸|𝜓 >. (𝐴. 3) 

Equation A.3 leads directly to Equation A.4 

𝐻 − 𝐸𝐼 |𝜓 > = 0. (𝐴. 4) 

Where 𝐼 is the identity matrix. I seek to prove the following: for any eigenvector | 𝜓 > = [𝑐 , 𝑐 , 𝑐 … ] 

that satisfies Equations A3 and A4, I can choose31 the 𝑐 , 𝑐 , 𝑐 … such that all coefficients are real. 

Because 𝐻 and 𝐼 are real, then it is sufficient to show that E is also real.32 

 Consider a wavefunction |𝜓 > that satisfies Equations A.3-A.4. Now consider < 𝜓𝐻|𝐻𝜓 >. The 

proof that the 𝐸’s are real proceeds as follows: 

< 𝜓𝐻|𝐻𝜓 > 

=  𝜓 𝐻 𝐻𝜓 

=  𝜓 𝐻 𝜓 

=  𝜓 𝐸 𝜓 

=  𝐸 𝜓 𝜓 

=  𝐸 . 

                                                           
31 Mathematically, if |𝜓 > is an eigenvector, then 𝑖|𝜓 > is also an eigenvector, with eigenvalue 𝑖𝐸. 
Physically, however, energies cannot be imaginary, so I can ignore this possibility. 
 
32 If 𝐻, 𝐼, and E are real then the columns of the matrix 𝐻 − 𝐸𝐼  form a subspace of ℝ , where n is the 
number of rows/columns of this square matrix. The solutions to Equation A.4, must, therefore, also form 
a subspace of ℝ  (called the nullspace of 𝐻 − 𝐸𝐼). Consequently, all coefficients of 𝜓 can be chosen to 
be real. 
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Because < 𝜓𝐻|𝐻𝜓 > must be real, and 𝐸 = < 𝜓𝐻|𝐻𝜓 >, 𝐸 must therefore also be real. 

A.3. Second Part: The Relative Phases of the 𝑷
𝟏

𝟐′𝒔: 
 To begin, consider two eigenstates that are both linear combinations of two diabatic electronic 

states, C and D (Equations A.5a and A.5b) 

|1 𝐽 > =  𝑐 |𝐶, 𝐽 >  + 𝑑 |𝐷, 𝐽 > (𝐴. 5𝑎) 

|2 𝐽 > =  𝑐 |𝐶, 𝐽 >  + 𝑑 |𝐷, 𝐽 >. (𝐴. 5𝑏) 

Note that, as derived in the previous part, the coefficients 𝑐 , 𝑑 , 𝑐 , and 𝑑  are real. 

The probability of transfer from state 1 to state 2 is given by Equation A.6 

𝑃 → = | < 2 𝐽 | 𝑽|1 𝐽 > |𝟐. (𝐴. 6) 

The Gelbart-Freed expansion of Equation A.6 is given by Equation A.7 

𝑃 → = |𝑐 𝑐 𝑃 , → + 𝑑 𝑑 𝑃 , → |𝟐. (𝐴. 7) 

I now factor out the phases from the 𝑃 ’s, yielding Equation A.8 

𝑃 → = |𝑐 𝑐 𝑒 𝑃 , → + 𝑑 𝑑 𝑒 𝑃 , → |𝟐. (𝐴. 8) 

Where I do not assume that 𝜙 = 𝜙 . The + notation in the 𝑃
/

’s indicates that the phase factor has 

been factored out (so the 𝑃 ’s are real). Expanding Equation A.8, we obtain Equation A.9 

𝑃 → = |𝑐 𝑐 | 𝑃 , → + |𝑑 𝑑 | 𝑃 , → +  𝒆 𝒊𝝓𝑪𝒆𝒊𝝓𝑫𝑐 𝑐 𝑑 𝑑 𝑃 , → 𝑃 , →

+𝒆𝒊𝝓𝑪𝒆 𝒊𝝓𝑫𝑐 𝑐 𝑑 𝑑 𝑃 , → 𝑃 , → . (𝐴. 9)

 

 The probability (𝑃 → )  must be positive and real. The only portions of Equation A.9, not 

guaranteed to be real are highlighted in red. These factors are both real if and only if the condition in 

Equation A.10 is satisfied: 
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|𝜙 − 𝜙 | = 𝑛𝜋.        𝑛 𝜖 ℤ (𝐴. 10) 

for any integer 𝑛. For even 𝑛, 𝑒 𝑒 =  𝑒 𝑒 = 1. For odd n, 𝑒 𝑒 =  𝑒 𝑒 = −1. 

 This proof can easily be extended to an arbitrary number of diabatic electronic basis states, 𝐸 . In 

this case, we require that for every pair of 𝜙 , 𝜙 , we have 𝜙 − 𝜙 = 𝑛𝜋, for some value of 𝑛. 

A.4. Third Part: The choice of 𝒆𝒊𝝓𝑪𝒆 𝒊𝝓𝑫 = −𝟏 leads to non-physical rate constants 
 

 In this section, as in the end of chapter 3, we consider collisional transfer in the B state of S2. In 

the B state, which follows the Hund’s case (b) coupling scheme, the Ω = 0 (𝑒) and Ω = 1 (𝑒) states are 

mixed by the S-uncoupling portion of the rotational Hamiltonian. Here, we consider a 4x4 Hamiltonian 

with basis states: |Ω = 0,  𝐽 , 𝑒 >, |Ω = 1,  𝐽 , 𝑒 >, |Ω = 0,  𝐽 , 𝑒 >, |Ω = 1,  𝐽 , 𝑒 >. 

𝐻 =

⎣
⎢
⎢
⎡
𝐸 (𝐽 ) 𝐻 0           0
𝐻 𝐸 (𝐽 ) 0           0

0
0

0
0

𝐸 (𝐽 ) 𝐻

𝐻 𝐸 (𝐽 )⎦
⎥
⎥
⎤

 (𝐴. 11) 

In the case (b) coupling scheme we have |𝐻 | ≫ |E − E |. Therefore, we can simplify the 

mathematics by assuming E ≈ E . The four eigenvectors and eigenvalues are given by Equations 

𝐴. 12𝑎 − 𝑑. 

|𝐹 , 𝐽 > =
1

√2

1
−1
0
0

                    𝐸 , =  𝐸(𝐽 ) − 𝐻 (𝐴. 12𝑎) 

|𝐹 , 𝐽 > =
1

√2

1
1
0
0

                       𝐸 , =  𝐸(𝐽 ) + 𝐻 (𝐴. 12𝑏) 

|𝐹 , 𝐽 > =
1

√2

0
0
1

−1

                     𝐸 , =  𝐸(𝐽 ) − 𝐻 (𝐴. 12𝑐) 
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|𝐹 , 𝐽 > =
1

√2

0
0
1
1

                        𝐸 , =  𝐸(𝐽 ) + 𝐻 (𝐴. 12𝑑) 

The 𝐹 , as in Chapter 3, indicate as the state with the lower eigenenergy. The 𝐹 , conversely, indicates the 

higher eigenenergy. Now let us consider the probability of ∆𝐽 = 2 collisional transfer from |𝐹 , 𝐽 > to 

|𝐹 , 𝐽 >. This time, however, we will allow for 𝑃 /  and 𝑃 /  to have different phases. The complete 

expression for the transfer probability is given by Equation A.13 

𝑃 → =
1

4
[𝑃 , → + 𝑃 , → + 𝒆 𝒊𝝓𝟎𝒆𝒊𝝓𝟏𝑃 , → 𝑃 , →

+𝒆𝒊𝝓𝟎𝒆 𝒊𝝓𝟏𝑃 , → 𝑃 , → ]. (𝐴. 13)

 

 If we make the reasonable assumption (see: Chapter 3) that 𝑃 , → ≈ 𝑃 , → ≡ 𝑃, we 

obtain Equation A.14. 

𝑃 → =
1

4
[2 +  𝒆 𝒊𝝓𝟎𝒆𝒊𝝓𝟏

+𝒆𝒊𝝓𝟎𝒆 𝒊𝝓𝟏]𝑃 (𝐴. 14)
 

If we choose 𝑒 𝑒 =  𝑒 𝑒 = −1. Then 𝑃 → = 0. Conversely, if we consider the probability 

of  ∆𝐽 = 2 collisional transfer from |𝐹 , 𝐽 > to |𝐹 , 𝐽 >, we obtain Equation A.15. 

𝑃 → =
1

4
[2 −  𝒆 𝒊𝝓𝟎𝒆𝒊𝝓𝟏

−𝒆𝒊𝝓𝟎𝒆 𝒊𝝓𝟏]𝑃 (𝐴. 15)
 

Choosing 𝑒 𝑒 =  𝑒 𝑒 = −1 now gives 𝑃 → = 𝑃. 

 Because we made several approximations in deriving these formulas, these are not strict selection 

rules. However, the choice of 𝑒 𝑒 =  𝑒 𝑒 = −1 clearly leads to a propensity rule against 

𝐹 ⟷ 𝐹  transfer and in favor of 𝐹 ⟷ 𝐹  transfer. This directly contradicts empirically observed 

propensity rules in the B state of S2. Also, intuitively, we would expect that (barring a symmetry-derived 

selection rule) collisional transfer rates should be larger for transfer between states with smaller energy 
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gaps between them. At 𝐽 = 20 in the B state, the 𝐹 ⟷ 𝐹  ∆𝐽 = 2 transfer has Δ𝐸 ≈ 10 𝑐𝑚 , whereas 

the 𝐹 ⟷ 𝐹  ∆𝐽 = 2 transfer has Δ𝐸 ≈ 30 𝑐𝑚 . This proof can be extended to other examples, such as 

B/B” transfer (where the mixing between the two states is not necessarily 50-50). Therefore, I take 

𝑒 𝑒 = 1. 
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Appendix B: Derivation of a Lower State-Mixing Limit for Isotopic 
Fractionation 
 

B.1. Introduction 
 

 This Appendix is a supplement to Chapter 7. In that Chapter, I explore electronically inelastic 

collisions, which can cause fractionation in systems that are too weakly state-mixed for rotationally 

inelastic collisions. The example in Section 7.3 describes a system with a maximum state-mixing less 

than 0.01% that still exhibits significant fractionation. This naturally leads to a question: How weak is too 

weak to observe fractionation? In this Appendix, I derive a criterion for the minimum state-mixing 

required to observe electronically inelastic transfer from a bright state to a dark state, as a function of 

inelastic collision rate and dark state lifetime. 

B.2. Preliminaries from the Gelbart-Freed Model  
 

To begin, I postulate two different rovibronic states that are eigenvectors of my modified version 

of Green and Western’s effective Hamiltonian. These eigenstates are Equations B.1a and B.1b: 

|1, 𝐽 > =  𝛼 |𝐵, 𝐽 >  + 𝛽 |𝐵", 𝐽 >  (𝐵. 1𝑎) 

 

|2, 𝐽 > =  𝛼 |𝐵, 𝐽 >  + 𝛽 |𝐵", 𝐽 >  (𝐵. 1𝑏) 

As in Chapter 3, I introduce a scattering matrix,  𝑽, which is used to calculate the probability of a 

collision transferring between two states. Specifically, the probability that a given collision induces 

transfer from state A to state B (𝑃 → ) is Equation B.2 

𝑃 →  = 𝑍|< 𝐵|𝑽|𝐴 > |  (𝐵. 2) 

In this example, I want to evaluate Equation B.3: 

𝑃 →  = 𝑍|< 2, 𝐽 |𝑽|1, 𝐽 > |  (𝐵. 3) 

This is because the rate constant for transfer between eigenstate 1 and eigenstate 2, 𝑘 → , is written in 

terms of 𝑃 →  , as in Equation B.4 
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𝑘 →  = 𝑍𝑃 → . (𝐵. 4) 

In Equation B.4, 𝑍 is the total collision rate. 

 I now plug Equation B.3 into Equation B.4 and expand to yield Equation B.5 

𝑘 →  = 𝑍|𝛼 𝛼 < 𝐵, 𝐽 |𝑽|𝐵, 𝐽 > +  𝛼 𝛽 < 𝐵", 𝐽 |𝑽|𝐵, 𝐽 > +𝛽 𝛼 < 𝐵, 𝐽 |𝑽|𝐵", 𝐽 >

+𝛽 𝛽 < 𝐵", 𝐽 |𝑽|𝐵", 𝐽 > |  . (𝐵. 5)
 

At this point, I use the crucial assumption from the Gelbart-Freed model: the cross terms  

< 𝐵", 𝐽 |𝑽|𝐵, 𝐽 > and < 𝐵, 𝐽 |𝑽|𝐵", 𝐽 > are negligible compared to < 𝐵, 𝐽 |𝑽|𝐵, 𝐽 > and  

< 𝐵,J2|V|B, 𝐽 >, i.e. collisions do not directly induce transitions  from the |𝐵 > basis state to the |𝐵” > 

basis state. This leaves Equation B.6 

𝑘 →  = 𝑍|𝛼 𝛼 < 𝐵, 𝐽 |𝑽|𝐵, 𝐽 > + 𝛽 𝛽 < 𝐵", 𝐽 |𝑽|𝐵", 𝐽 > | . (𝐵. 6) 

I can expand this further to give Equation B.7 

𝑘 →  = 𝑍{|𝛼 𝛼 | | < 𝐵, 𝐽 |𝑽|𝐵, 𝐽 > | + |𝛽 𝛽 | | < 𝐵", 𝐽 |𝑽|𝐵", 𝐽 > |

+ 2𝛼 𝛼 𝛽 𝛽 < 𝐵,J2|V|B, 𝐽 >< 𝐵", 𝐽 |𝑽|𝐵", 𝐽 >}. (𝐵. 7)
 

The terms < 𝐵,J2|V|B, 𝐽 > and < 𝐵", 𝐽 |𝑽|𝐵", 𝐽 > can be determined from my modified version of 

Pritchard’s model. A detailed derivation of these matrix elements is given in Chapter 3 and supplemented 

Appendix 1.  

 Similar to Gelbart and Freed’s original model, I define | < 𝐵,J2|V|B, 𝐽 > | = 𝑃  and | <

𝐵",J2|V|B", 𝐽 > | = 𝑃 ", which represent the probability of an electronically elastic collision in the 𝐵 

and the 𝐵" states, respectively. I can rewrite Equation B.7, now, as follows (Equation B.8) 

𝑘 →  = 𝑍{|𝛼 𝛼 | 𝑃  + |𝛽 𝛽 | 𝑃 "  + 2𝛼 𝛼 𝛽 𝛽 𝑃 𝑃 "} (𝐵. 8) 

If we are considering purely rotational transfer, then 𝑃  ≈ 𝑃 "  (see Chapter 3). However, I must also 

account for fluorescence from the B and B” states, which can introduce a significant disparity. I will 

model the fluorescence (i.e. leaks) out of the B and B” states by assuming that a certain number of 
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collisions are, in fact, inelastic. That is I write, 𝑃 = 1 − 𝑃 , , and 𝑃 " = 1 − 𝑃 ", , where 𝑃 ,  and  

𝑃 ", , are, formally, the probability that a molecule will have fluoresced in the time in between collisions. 

𝑃 ,  and 𝑃 ",  are not trivial to calculate. For example, they depend on the collision rate, Z. As Z 

increases 𝑃 , and 𝑃 ",  trend toward zero, as Z decreases, they tend toward one. However, there is also 

an intermediate case, were the collision rate Z is similar to the fluorescence rates. In this case, we have 

𝑃 , ≫ 𝑃 ",  because the rate of fluorescence is greater from the B state to the B state. 

B.3. Constraints on the Mixing Coefficients 
 

 Until this point, the derivation has been rigorous within the framework of the Gelbart-Freed 

model. However, in the interest of deriving a simple expression, I will only consider fluorescence from 

the B state. In this scenario, 𝑃 " = 1. This is not a baseless assumption, as the fluorescence lifetime for 

the B state is two orders of magnitude smaller than that for the B” state. However, I must revisit this 

assumption at the end of this derivation. Equation B.8 becomes Equation B.9 

𝑘 →  = 𝑍{|𝛼 𝛼 | (1 − 𝑃 , ) + |𝛽 𝛽 |  + 2𝛼 𝛼 𝛽 𝛽 1 − 𝑃 ,  } (𝐵. 9) 

 I now consider the four coefficients 𝛼 , 𝛼 , 𝛽 , 𝛽 . To proceed further, I make the following 

assumptions relevant to the B” Ω = 1, 𝑣 = 9 state: 

(1) State |1, 𝐽 >, which is primarily B” in character, is state-mixed with  |1′, 𝐽 >, which is primarily 

B  in character. 

(2) State |2, 𝐽 >, which is primarily B in character, is state-mixed by  |2′, 𝐽 >, which is primarily 

B” in character. The transition from 1 to 2, therefore, represents an electronically inelastic 

transition from B to B”. 

(3) Because J is a rigorously good quantum number, the effective Hamiltonian 𝐻 for the complete, 

four state system is block diagonal, with the two 2x2 blocks designated 𝐻  and 𝐻 . The states 



 

230 

|1, 𝐽 > and |1′, 𝐽 > are eigenstates of 𝐻 , while |2, 𝐽 > and |2′, 𝐽 > are eigenstates of 𝐻 . I 

assume that 𝐻  = 𝐻 . 

These assumptions are valid for B and B” vibronic states that weakly state-mix and do not cross, where 

the off-diagonal, perturbing matrix element is not strongly a function of J. This describes the B” Ω =

1, 𝑣 = 9 state from Section 7.3. 

 I express |1, 𝐽 > and |1′, 𝐽 > as linear combinations of |𝐵, 𝐽 > and |𝐵", 𝐽 >, as follows 

(Equations B.10a and B.10b). 

|1, 𝐽 > =  𝛼 |𝐵, 𝐽 >  + 𝛽 |𝐵", 𝐽 >  (𝐵. 10𝑎) 

|1′, 𝐽 > =  𝛼 ′|𝐵, 𝐽 >  + 𝛽 ′|𝐵", 𝐽 >  (𝐵. 10𝑏) 

Due to the orthonormality of the two eigenstates of this 2x2 matrix, 𝐻 , I have three constraints on the 

four coefficients 𝛼 , 𝛼 ′, 𝛽 , 𝛽 ′. I list these constraints as Equations B.11a-c 

𝛼 + 𝛽 = 1 (𝐵. 11𝑎) 

𝛼 ′ + 𝛽 ′ = 1 (𝐵. 11𝑏) 

𝛼 𝛼 + 𝛽 𝛽 ′ = 0 (𝐵. 11𝑐) 

Using these constraints, I can algebraically list the other three coefficients in terms of 𝛼 . These results 

are Equations B.12a-c 

𝛽 = 𝑓 1 − 𝛼  (𝐵. 12𝑎) 

𝛼 ′ = 𝑓 1 − 𝛼  (𝐵. 12𝑏) 

𝛽 ′ = 𝑓 𝛼 (𝐵. 12𝑐) 
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Here, the 𝑓 , 𝑓  𝑓  represent a +/- phase (i.e. real) factor.33 It is possible to derive relationships 

between these factors. However, these relationships are not relevant to this derivation. 

 Finally, I use the postulate that the state 1 is primarily B” in character, and the postulate that state 

1’ is primarily B in character. Therefore, I define 𝐸 " as the eigenvalue of 𝐻  associated with 

|1, 𝐽 > =  𝛼 |𝐵, 𝐽 >  + 𝑓 1 − 𝛼  |𝐵", 𝐽 >, and I define 𝐸  as the eigenvalue of 𝐻  associated with 

 |1′, 𝐽 > = 𝑓 1 − 𝛽 |𝐵, 𝐽 >  + 𝑓 𝛼 |𝐵", 𝐽 >. 

 Similarly, I can express  |2, 𝐽 > and |2′, 𝐽 > as linear combinations of |𝐵, 𝐽 > and |𝐵", 𝐽 > 

(Equations B.13a and B.13b) 

|2, 𝐽 > =  𝛼 |𝐵, 𝐽 >  + 𝛽 |𝐵", 𝐽 >  (𝐵. 13𝑎) 

|2′, 𝐽 > =  𝛼 ′|𝐵, 𝐽 >  + 𝛽 ′|𝐵", 𝐽 >. (𝐵. 13𝑏) 

I now use the postulate that the |2, 𝐽 > is primarily B” in character. Because 𝐻  = 𝐻 , I must have the 

condition given by Equation B.14  

|2, 𝐽 >= 𝑓 𝑓 1 − 𝛽 |𝐵, 𝐽 >  + 𝑓 𝑓 𝛼 |𝐵", 𝐽 >. (𝐵. 14) 

That is, the 𝐽  eigenstate with primarily B state character (|2, 𝐽 >) is equal to the 𝐽  eigenstate with 

primarily B state character (|1 , 𝐽 >)to within an arbitrary +/- phase factor, 𝑓 . This is true because they 

must have the same eigenvalue, EB. This gives the expression for in Equation B.15 

|2, 𝐽 >= 𝑓  |1′, , 𝐽 > = 𝑓  𝑓 1 − 𝛽 |𝐵, 𝐽 >  + 𝑓  𝑓 𝛼 |𝐵", 𝐽 >. (𝐵. 15) 

This then gives the following two relations (Equations B.16a and B.16b) 

                                                           
33 Because the Hamiltonian is real and symmetric, the phase factors can be chosen to be all real. 
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𝛼 =  𝑓  𝑓 1 − 𝛼  (𝐵. 16𝑎) 

 𝛽 =  𝑓  𝑓 𝛼 . (𝐵. 16𝑏) 

Again, I could derive relationships between the phase factors but they are not necessary. 

B.4. Final Steps  
 

 I now proceed by substitution of the expressions in 12a, 16a, and 16b into the expression for 

𝑘 →  . This is Equation B.17 

𝑘 →  = 𝑍{|𝑓  𝑓 𝛼 1 − 𝛼 | 1 − 𝑃 , + 𝑓 𝑓 𝑓 𝛼 1 − 𝛼

+ 𝑓  𝑓 𝑓 𝛼 (1 − 𝛼 ) 1 − 𝑃 ,  }.  (𝐵. 17)
 

It can be rigorously shown that 𝑓  𝑓 𝑓  = -1.34  Equation 17 then factors into Equation B.18 

𝑘 →  = 𝑍{𝛼 (1 − 𝛼 )}(1 + 1 − 𝑃 , − 1 − 𝑃 , ).  (𝐵. 18) 

 In this derivation I am concerned with the perturbation at which the rate electronically inelastic 

transfer from the B state to the B” state stops being competitive with the B” fluorescence rate. This 

threshold is approximated by Equation B.19 

𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐𝑎𝑙𝑙𝑦 𝑖𝑛𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑟𝑎𝑡𝑒 𝑓𝑟𝑜𝑚 𝐵" 𝑡𝑜 𝐵

𝐵" 𝑓𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 𝑟𝑎𝑡𝑒
= 1. (𝐵. 19) 

 Recall that the term 𝑃 ,  is the probability that a pure B state will have fluoresced in between 

collisions. At the threshold in Equation B.19, because the B fluorescence is very fast relative to B” 

fluorescence it is reasonable to assume that 𝑃 , = 1. This simplifies Equation B.19 to Equation B.20 

                                                           
34 There are two ways to show this. The first is to track the signs while solving Equations B.11a-c. The 
second is a proof by contradiction. If the sign of 𝑓  𝑓 𝑓  is positive, then the rates of electronically 
inelastic transfer are far greater than those for the electronically elastic case, which cannot be the case. 
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𝑘 →  = 𝑍{𝛼 (1 − 𝛼 )}. (𝐵. 20) 

I have expressed 𝛼 , 𝛽 , 𝛽   in terms of 𝛼 . Therefore I make the substitution 𝑚 = 𝛼 , where 𝑚 is the 

state-mixing between the weakly perturbing 1 and 2 states.   This is Equation B.21 

𝑘 →  = 𝑍{𝑚 − 𝑚 } ≈ 𝑍𝑚. (𝐵. 21) 

The reduction to 𝑍𝑚 is valid when 𝑚 is small. Noting that the rate constant for B” fluorescence 𝑘 , " =

 1 𝜏 "
. The criterion in Equation B.19 becomes Equation B.22.  

𝒎𝒛𝝉𝑩" = 𝟏 (𝐵. 22) 
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