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Abstract

In this thesis, I demonstrate that measurements of electronic-structure-induced split-
tings in the rotational spectrum of a vibrationally excited state can identify the
nature and extent of the distortion of the equilibrium electronic wavefunction and
thereby provide a measure of progress along a reaction coordinate. One-dimensional
models of the large amplitude bending reaction coordinates and their associated elec-
tronic signatures are constructed for two prototypical unimolecular isomerizations:
acetylene↔vinylidene (HCCH↔CCH2), and hydrogen cyanide↔hydrogen isocyanide
(HCN↔HNC). The nuclear quadrupole hyperfine structures of HCN and HNC are
distinct at their equilibrium geometries due to the dissimilar natures of bonding in the
vicinity of the 14N nucleus. High resolution rotational spectroscopy has been used to
determine the hyperfine coupling parameters for the ground and excited vibrational
levels of HCN and HNC, with up to ten quanta of bending excitation in HCN and
up to four quanta in HNC. These spectra reveal the evolution of electronic structure
along the isomerization path. Large amplitude local-bending vibrational eigenstates
of the X̃ 1Σ+

g state of acetylene are shown to be unique in that they possess sig-
nificant electric dipole moments as a result of the dynamical symmetry breaking in
the local-mode limit. Stimulated emission pumping (SEP), through Franck–Condon-
forbidden vibrational levels of the Ã 1Au state, has been employed to populate the
lowest few eigenstates that manifest large amplitude local-bending behavior. Locat-
ing appropriate SEP intermediate states has required thorough analysis of the Ã-state
level structure, particularly the overtones and combination levels involving the nearly
degenerate low frequency bending modes, ν ′4 and ν ′6, that are directly related to two
possible paths for trans–cis isomerization on the excited state surface. Recent de-
velopments in chirped-pulse rotational spectroscopy will enable identification of the
higher energy local-bending eigenstates, which approach the acetylene↔vinylidene
transition state, based on their predicted Stark coefficients.

Thesis Supervisor: Robert W. Field
Title: Haslam and Dewey Professor of Chemistry
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g transition

of C2H2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

A-4 CRD spectra of portions of the Q branches of the (a) V 0
0 K

1
0 , (b) V 1

0 K
1
0 ,

and (c) 21
0V

1
0 K

1
0 bands of acetylene . . . . . . . . . . . . . . . . . . . 256

14



List of Tables

3.1 Transition frequencies of H14N12C. . . . . . . . . . . . . . . . . . . . . 61

3.2 Transition frequencies of D14N12C. . . . . . . . . . . . . . . . . . . . . 62

3.3 Molecular constants of H14N12C for the ground vibrational state. . . . 64

3.4 Molecular constants of D14N12C for the ground vibrational state. . . . 65

4.1 Hyperfine-resolved J = 1−0 transition frequencies (in MHz) of ground-

state and bend-excited H12C14N, H14N12C, and D15N12C. . . . . . . . 75

4.2 Fitted hyperfine parameters for H12C14N, H14N12C, and D15N12C. . . 76

4.3 Experimental and ab initio (eQq)N values for H14N12C and H12C14N. 77

5.1 Rotational constants from least squares fitting of the B2 polyad of the
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Chapter 1

Introduction

1.1 Motivation

The vibrational spectra of molecules at high degrees of excitation are characterized

by extraordinary complexity due to the high density of vibrational states and the

strong mixing between states consistent with fast intramolecular vibrational redistri-

bution. Yet, vibrational spectroscopy persists as the most direct probe of the forces

acting between the atoms that make up a molecule. The relationship between the

vibrational spectrum and the shape of the underlying potential energy surface is rel-

atively straightforward for small displacements from the equilibrium geometry of the

molecule. The areas of the potentials in which this relationship is valid are, however,

those of least interest to the study of reaction dynamics. Chemical transformations

necessarily occur far from equilibrium and give rise to products determined by the

heights and shapes various reaction barriers. In order to approach the regions of the

surface where the bonds between atoms are broken and reformed, we require new ex-

perimental techniques and interpretive concepts to bridge the gap between the small

amplitude, normal-mode vibrations and large amplitude motions of chemical interest.

The primary difficulties in relating the spectra of vibrationally highly excited

molecules to the underlying features of the potential energy surface are those of ac-

cess and recognition. Spectroscopic selection rules generally favor small changes in

vibrational quantum numbers, making it difficult to populate selected highly ener-
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gized states. In the unusual situation where the design of an experiment permits

the observation of transitions into highly excited states, construction of any mech-

anistic model of the dynamics requires us to label the states with quantities (i.e.

vibrational quantum numbers) that describe that describe how the excited vibrations

cause the molecule to distort from its equilibrium geometry. Without such labels, an

explanation would be, at best, statistical.

Previous work on acetylene, and other small molecules, has demonstrated that

certain large amplitude motions remain relatively stable, even at high degrees of

excitation. Such a large amplitude motion is extremely valuable because it allows

us to reduce the dimensionality of the problem to one (or a few) relevant degrees of

freedom. This reduction means that the vast majority of the vibrational levels can

be discarded from the model, but how are we to know which levels are relevant to

the large amplitude motions?

In order to distinguish between large amplitude motion eigenstates and those

that embody “ergodic” behavior, we seek experimentally observable quantities that

are sensitive to both the class of motion as well as the magnitude of the vibra-

tion. By recognizing that large amplitude motions, particularly those directed along

chemically interesting internal coordinates, must cause significant distortions of the

electronic wavefunction, we choose to focus on electronic properties as reporters, or

spectroscopic signatures, of vibrational motion. The spectroscopic signatures are in-

formed by our intuition regarding the differences in the electronic structure of isomeric

species. Furthermore, quantitative determination of useful electronic properties en-

ables the experimenter to describe, in detail, the changes in electronic structure along

an isomerization path.

The prescription of our method for the analysis for highly vibrationally excited

states of systems capable of undergoing unimolecular isomerization, is as follows:

• We begin by examining the equilibrium electronic structure of the two iso-

mers, endpoints of the isomerization reaction, for qualitative differences. If the

isomerization takes place on a smoothly varying potential energy surface, the

evolution of the electronic structure should serve as a measuring stick for how
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far along the reaction coordinate the system has progressed.

• We choose an electronic property by which the two isomers may be distin-

guished, on the basis of their differing electronic structures. Such a property

may be either local, related only to the bonding characteristics of a single atom,

or global, describing some aspect of the complete electronic distribution. Prop-

erties of both classes will be used in this thesis, with the nuclear quadrupole

hyperfine structure reflecting the distribution of valence electrons associated

with a particular nucleus, and the electric dipole moment describing the global

asymmetry of the charge density.

• A spectroscopic technique, capable of probing the selected electronic property,

is identified. This is largely a question of experimental resolution, as minor

electronic effects induce small shifts or splittings in the spectrum. In order to

observe these minor, often overlooked, effects, we favor rotational spectroscopy

as a means to record high resolution spectra of vibrationally excited states.

• The highly vibrationally excited states must be populated before they can be

interrogated, and achieving this is often the most challenging aspect of the

process. In this work, we take advantage of accessible (low) barriers on excited

electronic surfaces in order to obtain access to the high barriers to bond-breaking

isomerization on the ground state surface.

• The electronic properties are determined for each target vibrational state, and

those whose properties indicate that they are unrelated to the desired large

amplitude motion are discarded. Developing survey techniques to sample the

electronic properties of many states simultaneously, or each state rapidly, will

become increasingly important in regions of high state density.

• The energies of the large amplitude motion eigenstates are fed back into the

construction of a low-dimension model for the reaction path.

This procedure is unique in that the standard spectroscopic picture dictates that

vibrational excitation should cause a small perturbation to the electronic wavefunc-
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tion. Therefore the electronic properties are typically viewed as weak functions of

the vibrational degrees of freedom. While such an argument is reasonable for small

amplitude vibrations, the nature of large amplitude motions dictate that they are

capable of strongly distorting the electron distribution.

This work was inspired by work on the HCN↔HNC isomerization system by Joel

Bowman and Alec Wodtke[1]. They demonstrated that electronic properties could be

exceedingly strong functions of vibrational excitation. Considering the electric dipole

moment of each vibrational level of HCN and HNC, they noted that “delocalized

states,” those vibrational wavefunction not localized in either well of the potential

energy surface, had dipole moments on the order of three times smaller than those of

localized vibrational levels. Here the interpretation is more physical that chemical:

the delocalized hydrogen atom orbits around the CN fragment causing the dipole

moments of the two equilibrium geometries to cancel one another. In this thesis,

we focus on properties that do not necessarily differentiate localized vs. delocalized

vibrational states, but rather properties that enable us to measure progress along the

isomerization path.

1.2 Thesis Outline

• In Chapter 2, we introduce experimental techniques of millimeter-wave spec-

troscopy and describe an absorption spectrometer constructed to observe the

rotational spectra of small molecules in the gas phase. We demonstrate the use

of several laser–millimeter-wave double-resonance techniques on the diatomic

molecule carbon monosulfide. Included here is a discussion of a novel double-

resonance method in which the polarization rotation of the millimeter-waves is

used to detect an optical transition.

• In Chapter 3, we describe modifications made to the millimeter-wave pulsed-

jet spectrometer to enable the recording of spectra with superior resolution to

that achievable in the conventional spectrometer geometry. The millimeter-

waves are propagated along the axis of the pulsed expansion with the effect
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of eliminating the contribution of the transverse velocity of the pulsed-source

to the linewidth of the observed transitions. The ∼30 kHz resolution of the

coaxial spectrometer is used to record, for the first time in the laboratory, a

hyperfine-resolved rotational spectrum of hydrogen isocyanide (HNC).

• In Chapter 4, we report high resolution millimeter-wave spectra of vibra-

tionally excited states of HCN and HNC. The evolution of the nuclear quadrupole

hyperfine structure along the isomerization coordinate is described in terms of

the underlying changes in electronic structure.

• In Chapters 5, 6 and 7, we describe new laser-induced fluorescence and IR-

UV double-resonance measurements of the vibrational level structure of the

first electronically excited singlet state of acetylene. First, in Chapter 5 we

describe the pure-bending polyads, which consist of levels excited in the two low

frequency bending modes, ν ′4 (torsion) and ν ′6 (in-plane cis-bend). Levels within

a polyad are strongly coupled by Coriolis interactions, previously described

in the analysis of the vibrational fundamentals[2], and by a newly described

Darling–Dennison interaction due, in large part, to the effects of vibrational

angular momentum. Importantly, an “extra” level first identified by Scherer

et al.[3] is assigned conclusively as a specific member of the B4 polyad, where

v′B = v′4 + v′6, and B4 implies v′B = 4.

• Then, in Chapter 6, we describe the observation of ν ′1, the last remaining

experimentally unobserved vibrational fundamental of the Ã 1Au state of acety-

lene. The observation of this level is made possible by the understanding of

the polyad level structures and by the use of population-labeling experiments

to assign the rotational quantum numbers in the absence of clear ground state

combination differences.

• In Chapter 7, we describe the vibrational levels of the S1 state that contain

excitation in the low frequency modes in combination with the Franck–Condon

active modes. These combination polyads reveal a large anharmonicity between
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the Franck–Condon active trans-bending mode, ν ′3, and the low frequency cis-

bending mode, ν ′6. This anharmonicity is associated with the low barrier to

trans–cis isomerization, which is calculated to proceed through a half-linear

transition state.

• In Chapter 8, we approach the question of how to experimentally measure

large amplitude motion along the acetylene↔vinylidene isomerization path. We

identify the electronic signature of this motion by considering the vibrationally

averaged electric dipole moments for local-bending wavefunctions in reduced-

and full-dimension ab initio calculations. The large electric dipole moments of

the local-bending states arise from dynamical symmetry breaking in the local

mode limit and the large distortion of the electronic wavefunction that is char-

acteristic of large amplitude motion along an isomerization path. We report

the experimental observation, by SEP from the Franck–Condon-forbidden vi-

brational levels of the Ã state, of the lowest energy eigenstate that manifests

local-bending behavior. Tentative assignment is provided for the second such

eigenstate, but we argue that to continue to higher energy it will be necessary to

implement the new experimental schemes to recognize the electronic signatures

of these levels. Chirped-pulse millimeter-wave spectroscopy, a promising new

technique for the rapid collection of rotational spectra of small molecules, is

introduced, and we advocate its use in detecting electronic signatures of large

amplitude vibrations at high resolution.

• In Chapter 9, we present ongoing research into the spectroscopic signatures of

trans–cis isomerization on the S1 surface of acetylene.
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Chapter 2

Millimeter-wave spectroscopy of

pulsed-jet sources

This chapter details the construction and use of a millimeter-wave spectrometer de-
signed to interface with a pulsed-jet source. The second half of this chapter, dealing
with millimeter-wave–optical double resonance techniques, has been published in the
Journal of Chemical Physics (Ref. [4]), with the exception of section 2.3.4.

2.1 Introduction

Rotational spectroscopy may seem like an odd topic with which to begin a dissertation

on large amplitude vibrational dynamics and isomerization. By far the most familiar

use of rotational spectroscopy is the precise determination of equilibrium molecu-

lar geometries by establishing the three principal moments of inertia for isolated

molecules or molecular complexes. However, the richness of detailed data obtainable

in a “rotational” spectrum can hardly be overstated. The information encoded about

the mass distribution is complemented by fine and hyperfine structure that report on

the local and global electronic structure of the molecule. Intuitive chemical concepts

such as ionic vs. covalent bonding character can be addressed by interpretation of

the interaction of the electron distribution with the rotational motion of the molecule

[5, 6].
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Strategies to describe bonding character by the determination of fine and hyper-

fine properties are equally applicable to molecules in (highly) vibrationally excited

states. Here, the determined quantities may not describe the equilibrium electronic

structure, but rather that of the distorted nuclear configuration, where the bonds may

be strained near the point of breaking. In addition, the onset of rapid intramolecular

vibrational redistribution (IVR) in excited vibrational levels offers new possibilities

for experimentation such as dynamic rotational spectroscopy [7, 8]. In contrast to

the extensive body of knowledge accumulated on the rotational spectra of molecules

in their ground electronic state, far fewer examples of spectra of vibrationally or elec-

tronically excited molecules are present in the literature. The recording of rotational

spectra of molecules at high vibration has often relied on complicated experiments

that require several lasers to shift the detection of the microwave transition into the

optical regime (e.g. H2CO[9]). Such a strategy is only viable for molecules with

known, accessible electronically excited states. Deriving new, general methods for

the accumulation of vibration-specific rotational spectra has been one of the goals of

this work.

Rotational spectra of the type of molecules of we wish to investigate (small poly-

atomics, with at least one hydrogen atom) have their lowest frequency transitions

in the millimeter-wave region of the electromagnetic spectrum, between 30 and 300

GHz. Unlike in the lower-frequency microwave region with the Balle–Flygare fourier-

transform microwave spectrometer [10, 11], there is no single standard instrument

design that dominates spectroscopy in the millimeter-wave region. Some modern

spectrometers that promise extremely high data rate (Fast scan submillimeter spec-

troscopy technique, FASSST[12]) or extraordinary sensitivity (intracavity jet orotron

[13]) have been described in the literature but are not discussed further here. In this

chapter, we describe a a general purpose millimeter-wave spectrometer of extreme

simplicity, designed to interface easily with laser excitation schemes. The ultimate
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purpose of the spectrometer is the recording of rotational spectra of electronically or

vibrationally excited states in order to assess how these excitations alter the electronic

structure of the molecule. We seek to use the rotational spectra of vibrationally ex-

cited molecules to take snapshots of the electronic structure as the molecule traverses

the barriers and valleys along the chemical reaction coordinate.

2.2 Pulsed-jet millimeter-wave absorption

spectrometer

A pulsed jet millimeter-wave spectrometer was constructed with the goal of observing

the rotational spectra of small polyatomic molecules at high resolution.1 A schematic

of the experiment is shown in Figure 2-1. The design of the spectrometer is similar to

that of a robust free-space absorption instrument in use by several groups [14, 15, 16]

to record the millimeter-wave spectra of a wide array of unstable molecules. This

design has been subsequently extended to operate in conjunction with pulsed free

jet sources, often with the particular aim of observing the spectra of van der Waals

complexes [17, 18]. In addition, spectra of other classes of transient species such

as molecular ions [19] and radicals have been investigated. Of particular note is

one experiment [20] that has revealed the ground state proton tunneling splitting of

the vinyl radical generated by ultraviolet photolysis in a supersonic jet environment,

thereby demonstrating that the high resolution afforded by millimeter-wave rotational

spectroscopy enables the experimenter to sample properties that report on the aspects

of the potential energy surface most relevant to intramolecular isomerization.

Other possible designs for the geometry of jet millimeter-wave spectrometers exist

in the literature. One alternative is the use of a parallel-plate waveguide, which can

1In fact, the original goal of the spectrometer was more humble. It was intended to serve in an
analytical function, as a monitor for the production of HNC via discharge, pyrolysis, or photolysis
in a pulsed-jet environment for subsequent laser spectroscopic investigation.
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extend the region of interaction between the molecular beam and the millimeter-wave

probe with the effect of narrowing the observed linewidths considerably. Such a design

has been demonstrated by Huiszoon[21]. However, we favor the free-space design due

to its flexible nature, in particular the ability to introduce one or more lasers into

the interaction region, which enables (among other experiments) the recording of

laser–millimeter-wave double-resonance spectra.

2.2.1 Millimeter-wave source: Phase-locked Gunn oscillator

The first generation of our microwave spectrometer is based on a Gunn oscillator,

which, relative to earlier frequency sources such as Klystrons, is characterized by

superior frequency agility (i.e. a larger tuning range) but lower output power. The

Gunn oscillator has a voltage-tuning characteristic that allows for continuous adjust-

ment of the output frequency over a range of several hundreds of MHz. In addition,

the oscillator can be mechanically tuned to provide coverage of nearly the entire W

band.

The Gunn oscillator employed here (J.E. Carlstrom Co., H129) has been previ-

ously used as the frequency source for an electric resonance optothermal spectrometer

employed in studies of the van der Waals complexes Ar-HCN[22] and He-HCN[23].

Useful output power is available from 73 to 106 GHz,2 with a peak output of 90 mW

at 78 GHz.

Frequency stability is achieved by phase locking the Gunn oscillator to a harmonic

of the output of a microwave synthesizer (HP 8672A or 8673E) using a commercial

phase-lock module (XL microwave 800A/801). The phase lock loop (PLL) requires

two inputs, a low frequency stable reference, and an ‘intermediate’ frequency (IF).

The stable reference frequency for the early experiments described in this chapter

2The nominal frequency range associated with the W band is 75–110 GHz. This frequency band
is associated with a waveguide size denoted WR-10, where ‘10’ refers to the longer interior dimension
of the waveguide in hundredths of an inch.
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was provided by the output of a crystal oscillator at 35 MHz. The IF is generated by

mixing a portion of the Gunn oscillator output (separated from the primary output by

a directional coupler) with the output of the microwave synthesizer in a subharmonic

mixer (Pacific Millimeter Products WM). The low frequency components of the mixer

output are separated by a diplexer and routed to the PLL input. By adjusting the

bias voltage to the Gunn oscillator, the PLL circuitry seeks to match the frequency

(and phase) of the IF with that of the stable reference signal. Stated differently, the

phase-lock condition is met when the frequency of the Gunn oscillator (Fosc) is offset

from the frequency of a harmonic of the microwave synethsizer (N×F0) by an amount

equal to the reference frequency (FREF).

FIF = (Fosc −N × F0) = FREF (2.1)

The Gunn frequency can be tuned by adjusting the frequency of either the ref-

erence source or that of the microwave synthesizer. In the applications described

in this chapter, the microwave synthesizer is tuned via GPIB interface to scan the

frequency of the Gunn oscillator. However, it is sometimes desirable to adjust the

low frequency reference, and such a scenario will be described in Chapter 3. When

locked, the uncertainty in the mm-wave frequency is better than 5 kHz, which is

significantly less than the width of the narrowest lines observed with our instrument.

The quality of the lock is monitored by displaying the IF on a spectrum analyzer.

Successful phase-locking, apparent on the spectrum analyzer due to suppression of

power at undesired frequencies near the lock reference, is achieved by optimizing the

power input to the subharmonic mixer by both the Gunn oscillator and microwave

synthesizer, in addition to adjusting the loop gain (Vlg) on the phase lock control

module.

The output of the Gunn oscillator can be extended to shorter submillimeter wave-

lengths by the use of frequency multipliers. Specifically, the instrument can be
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equipped with either a planar GaAs Schottky diode-based frequency doubler (Vir-

ginia Diodes WR5.1x2) or tripler (WR3.4x3) to extend the range of the spectrometer

to 146–206 or 219–309 GHz. These modern multipliers are extremely convenient in

comparison to whisker diode multipliers in that they require neither external bias nor

any tuning mechanism. Their emergence in extending the techniques of millimeter-

wave spectroscopy to the terahertz region has been reviewed in a recent paper[24].

In fact, direct multiplication of low-frequency microwave synthesizers has be-

come an excellent alternative to millimeter-wave sources such as Gunn oscillators.

This technology is used, among others, by our collaborator, Prof. Liam Duffy, in

millimeter-wave experiments similar to our own[25]. The primary benefits of these

alternative sources is that one does not need to phase lock the source at a relatively

high frequency and that the tuning ranges can be extremely large, allowing nearly

full-band scans without any adjustments to the apparatus. We have recently acquired

broadband multipliers operating in the region previously accessible with the Gunn

oscillator. The use of these multipliers is described briefly in Chapter 8.

2.2.2 Millimeter-wave detection

The second critical component of an absorption spectrometer is the detector of ra-

diation. In the millimeter-to-submillimeter range, the most popular technology for

the detection of broadband radiation is the Indium antimonide (InSb) hot-electron

bolometer. This detector operates on the principle that absorption of millimeter-wave

radiation by free carriers in a semiconductor leads to increased electron mobility, as-

sociated with a change in conductivity of the material [26]. In the millimeter-wave

region, the detector is cooled to liquid-helium temperatures (∼ 4.2 K) so that the en-

ergy absorbed from the incident millimeter-waves is not swamped by thermal noise.

In the experiment, the bolometer serves as a sensitive, linear power detector for

millimeter-waves in the µW regime. As such, the bolometer enables straightforward
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Beer’s-law measurements of absorbance by a sample. In practice, the bolometer used

in these experiments is equipped with a sensitive preamplifier (Cochise Instruments,

WBLN 3) that filters out frequencies below 5 Hz. In order to measure to measure

the power incident on the detector and, therefore, establish a value for baseline inten-

sity, (I0), the millimeter-wave beam must be modulated. A square-wave modulation

can be imposed on the millimeter-wave power using an optical chopper (Stanford

Research System, SR540) with a large-aperture slotted blade. The amplitude of the

square-wave signal output by the bolometer is proportional to the input power, up

to the point where the preamplifier response begins to saturate (Vout ∼16 V). When

observing transient signals, such as those due to a pulsed-jet of molecules passing

through the millimeter-wave beam, the amplitude of the millimeter-waves need not

be externally modulated or chopped, as the decrease in the power due to molecular

absorption is on the appropriate timescale to be passed by the preamplifier. The

transient bolometer voltage is related, in a direct way, to the power absorbed by the

molecular sample. It should be noted here that the bolometer output signal is in-

verted, such that a transient decrease in power incident on the bolometer leads to a

positive output voltage.

2.2.3 Propagation of millimeter-wave radiation

The millimeter-wave beam is propagated using free-space quasioptical techniques that

more closely resemble those for routing optical beams than they do the electrical and

waveguide techniques typically used in microwave spectroscopy. The optical design

follows the example of previous spectrometers (e.g. Ref. [14]), ignoring the complex

radiation pattern output by a pyramidal gain horn. Optical elements, such as lenses,

are typically fabricated from polymeric materials like polyethylene and polytetraflu-

oroethylene (PTFE, Teflon R©), which are characterized by good transparency and

relatively flat refractive index in the millimeter-wave region.
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2.2.4 Characterization of mm-wave spectrometer

As an initial test, we recorded the millimeter-wave absorption spectrum of a sample

of 1% OCS in Ne in the region of the OCS J = 8← 7 transition near 97.3 GHz. The

first, unoptimized spectrum recorded with our jet spectrometer is shown in Figure

2-2. On resonance, the absorption is readily observable above the noise level of the

bolometer in a single gas pulse.

Figure 2-2: Initial spectrum of the OCS J = 8 − 7 transition recorded with the
pulsed-jet millimeter-wave spectrometer. Each point is the average of 40 gas pulses.

It is apparent that the recorded lineshape suffers from significant asymmetry. This

asymmetry persists, in the same sense, when scanning the spectrum in either direc-

tion, low frequency to high frequency, or vice versa. However, the degree and sense

of the asymmetry are found to depend on the millimeter-wave alignment. Similar

observations were made by Hepp et al.[17], who describe how such an asymmetry can

be thought of as the admixture of absorptive and dispersive lineshapes that arises

when a portion of the millimeter-wave probe does not intersect the absorbing sample.

The asymmetry of the lines is detrimental to precise determination of the transition

frequencies. Fitting our initial OCS spectrum to a simple gaussian shape results in
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a center frequency that deviates from the best measurement of this transition by

just over 5 kHz. In order to achieve the most accurate measurements, care is taken

to align the spectrometer to minimize the effects of dispersion on the experimental

lineshapes.

The ability to record much weaker signals is demonstrated in Figure 2-3, which

shows an optimized spectrum of the same 16O12C32S transition as in Figure 2-2 and

the analogous transitions in two of the less abundant isotopologues, 16O12C34S (∼4%

natural abundance) and 16O13C32S (∼1%). In these spectra, the asymmetry is much

less pronounced due to optimization of the alignment. The observed lineshapes are

primarily gaussian, with a 280 kHz linewidth (FWHM). This is consistent with the

Doppler effect serving as the dominant line-broadening mechanism, in contrast to tra-

ditional (non-jet) millimeter-wave spectroscopy where, in the typical range of pres-

sures employed in spectroscopic experiments, pressure broadening typically domi-

nates, leading to Lorentzian lineshapes. Transit-time effects, as well as power broad-

ening, may also have an effect on our observed lineshapes. These mechanisms will be

considered further in Chapter 3.

In Figure 2-3, the absorption spectra are shown with corresponding traces recorded

using frequency modulation of the millimeter-wave source. In principal, there are a

number of different ways in which the frequency may be modulated. The simplest

implementation is the use the frequency modulation capability of the microwave syn-

thesizer. The instantaneous frequency of the synthesizer is swept around the carrier

frequency, ωc, at a modulation rate, ωm. This has the effect of adding sidebands

to the carrier frequency, separated from it by ωm. In the absence of an absorbing

species, the power reaching the detector is constant. Near a resonance, the upper

and lower sidebands will be differentially absorbed, and this difference will result in

a time-dependent signal modulated at ωm. Demodulation of the detector output at

ωm by a lock-in amplifier produces a derivative lineshape. This condition has some
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Figure 2-3: Rotational spectra
of OCS isotopologues, recorded
with the pulsed-jet millimeter-wave
spectrometer. The sample is a 1%
mixture of OCS in Ne, expanded
from a backing pressure of 25 psi.
The weaker isotopes are present
at their natural abundance. The
output of the Gunn oscillator is
attenuated -21 dB in order to
prevent saturation of the bolometer
response. The Gunn frequency is
stepped in 20 kHz increments. Each
point is the average of 60 gas pulses
for the traces recorded in absorption
mode and 5 gas pulses for the
spectra recorded using frequency
modulation (derivative lineshape).
As a result of shifting the detection
frequency to higher frequencies,
where the impact of technical noise
is less, the signal-to-noise ratio
for the FM spectra are superior
to the absorption-detected spectra
by approximately one order of
magnitude. Taking into account
the increased averaging time for
the absorption-detected spectra,
frequency modulation provides a
sensitivity enhancement in the
range of 10–30.
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benefits, primarily that the line center can be identified with the zero-crossing point

in the spectrum.

As is clear from the spectra of the less abundant isotopologues, the signal-to-noise

ratio for the frequency modulated spectra is superior to that of the unmodulated

absorption spectra. The advantage of this technique lies in the fact that the detection

frequency is shifted away from DC into a frequency region where there is less technical

noise. Isolation of the signal at the detection frequency is particularly effective when

the signal can be demodulated with a long time constant, corresponding to a very

narrow detection bandwidth. A further advantage is that the FM signal is related to

the differential absorption of multiple frequency components of the probe beam. As a

result, the experiment has an internal reference to compensate for power fluctuations

of the source and does not require a dual-beam setup for maximum sensitivity.

In our pulsed-jet experiments, there is also a second modulation frequency present,

that of the pulsed nozzle source, typically 10 or 20 Hz. This frequency of the molecular

beam is not demodulated with a second lock-in but rather, due to the very low

duty cycle of the pulsed expansion, gated in software to give the final plotted signal.

This is accomplished by routing the output of the lock-in to a digital oscilliscope,

which digitizes each averaged transient and transfers it to a personal computer for

analysis. The second modulation may be termed “source modulation,” since it is the

presence of the molecular absorbers that varies in time. However, in more typical

usage, source modulation usually refers to the time-varying production of transient

molecules by application of a modulated voltage to the electrodes in a discharge

apparatus. Modulation techniques are often used in combination, in order to further

isolate the desired signal from disparate sources of noise, and the resulting techniques

are referred to as “double modulation.”

As is demonstrated above for the case of the OCS isotopologues, frequency mod-

ulation can provide significantly enhanced sensitivity over unmodulated absorption.
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However, FM will not be used significantly in the remainder of this thesis. The pri-

mary reason for this is that FM detection necessarily requires convolving the detector

response with some time constant because the lock-in must demodulate the signal

over several periods of the modulation frequency, therefore reducing the range of

dynamical timescales observable. This is a particular disadvantage for signals with

durations shorter than tens of microseconds, including laser–mm-wave multiple reso-

nance signals and absorption by transiently produced molecules.

2.3 Millimeter-wave–optical double resonance and

millimeter-wave–detected, millimeter-wave–optical

polarization spectroscopy

2.3.1 Motivation for millimeter-wave–optical double resonance

Because the frequencies of pure rotational transitions are easily calculated with high

precision, the < 1 MHz resolution of microwave sources makes rotational transitions

straightforward to resolve and assign even in complex chemical environments, such as

discharges, where spectral congestion can hinder assignments of optical transitions.

As a consequence, microwave transitions have been measured and tabulated [27, 28]

for a vast number of transient species, many of which have unknown optical transi-

tions. Microwave-detected, microwave–optical double-resonance (MODR) techniques

[29, 30, 31, 32, 33], which monitor resonant changes in the microwave signal induced by

optical pumping out of the lower or upper state of the rotational transition, are a con-

venient method of identifying optical transitions in these molecules. By labeling the

molecule and the lower rotational level of the optical transition, microwave-detected

MODR schemes provide a “rotational handle” to simplify tremendously the spectrum,

allowing easier assignments and species identification. Moreover, microwave-detected
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MODR techniques are widely applicable; they can be applied to weak vibrational and

electronic transitions and to transitions that have poor fluorescence quantum yields

arising from nonradiative processes, such as collisional quenching, predissociation,

intersystem crossing, or internal conversion. Once optical transitions are identified,

microwave-detected MODR can then be used to measure the pure rotational spec-

tra of optically populated vibrationally and electronically excited molecules, with the

resolution limited only by the radiative decay rate. Then, by monitoring the excited

state rotational transition, additional optical transitions from this state can be iden-

tified. Thus, microwave-detected MODR not only provides a rotational handle for

identifying optical transitions, but it can also be used to map out the energy-level

structure of the molecule by systematically bootstrapping through different vibra-

tional and electronic transitions, with each vibronic level unambiguously labeled by

its characteristic pure rotational transition.

The following section describes a new microwave-detected MODR technique appli-

cable to the millimeter-wave frequency region called millimeter-wave-detected, millimeter-

wave optical polarization spectroscopy (mmOPS). mmOPs is analogous to optical

polarization spectroscopy[34], polarization labeling [35], and microwave-optical polar-

ization spectroscopy (MOPS)[36, 37, 38], in which the polarization of a probe beam is

rotated by the angular anisotropy (unequal population in MJ sublevels) created by a

polarized pump beam. Unlike previously reported polarization-detected techniques,

however, in the current implementation of mmOPS the polarization rotation is in

the millimeter-wave beam, rather than in an optical beam. We apply mmOPS to

the well-known A 1Π − X 1Σ+ electronic band system[39] of the diatomic molecule

carbon monosulfide, CS, which is produced in a pulsed discharge supersonic nozzle.

We find that the near-zero background of mmOPS makes it more sensitive than the

millimeter-wave-detected, millimeter-wave optical double-resonance (mmODR) tech-

nique, [31] especially when using a liquid-helium-cooled InSb detector.
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Figure 2-4: Schematic of the mmOPS apparatus. In the mmODR and mmOPS exper-
iments, a pulsed laser interacts with the molecules while they are being probed by the
always-on millimeter-waves. In the mmOPS experiment, the laser-induced polariza-
tion rotation of the millimeter-waves is detected with nominally crossed freestanding
wire-grid polarizers.

2.3.2 Experimental details

Figure 2-4 is a schematic of the mmOPS apparatus. The experiment is performed

in a 12 × 12 × 12 in.3 vacuum chamber, which is evacuated by a 6 in. diffusion

pump (Diffstak 160, Edwards) backed by a rotary mechanical pump. CS is generated

in a supersonic expansion by passing a mixture of 1% CS2 in Ar through a pulsed

discharge nozzle (1-mm.-diameter orifice) that is similar to the design of Sanz et

al.[40] The optimal conditions for detection of the CS X 1Σ+(v = 0, J = 2 − 1)

rotational transition are backing pressure (3 atm), nozzle pulse duration (350 µs),

negative discharge voltage (1.4 kV), and discharge pulse duration (1 ms).

The millimeter-wave radiation is produced by a W-band (75-110 GHz) Gunn oscil-

lator (J.E. Carlstrom Co.) that is phase-locked (XL Microwave 800A) to a harmonic

of a microwave synthesizer (8672A) and coupled through waveguide components to

a calibrated attenuator (Hitachi W9513). The radiation is emitted into free space

through a standard gain horn (TRG Control Data, 15 dB) with a linear polarization

of 45◦ relative to the pump-laser polarization and focused by a pair of PTFE lenses

(f1 = 40 cm, f2 = 30 cm) to a spot size of ∼ 1 cm diameter at the point of inter-
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section with the molecular beam, ∼2 cm downstream from the nozzle. After exiting

the chamber, the millimeter-wave beam is refocused by a second pair of PTFE lenses

(f3 = 30 cm, f4 = 40 cm) onto a liquid-helium-cooled InSb hot-electron bolometer

(Cochise Instruments). The bolometer output is digitized with a 500 MHz oscillo-

scope (Lecroy LC334A) and transferred to a computer for storage. In the mmOPS

version of the experiment, the rotation of the millimeter-wave polarization is detected

by a pair of nearly crossed, freestanding, wire-grid polarizers. The polarizing grids

are composed of 25-µm-diameter gold-plated tungsten wire with center-to-center wire

spacings of 100 µm[41]. When perfectly crossed, the polarizers have an extinction ra-

tio of ∼10−3.

The ultraviolet radiation is produced by frequency doubling the output of a

Nd3+:YAG-pumped dye laser (Quanta Ray DCR-3/Lambda Physik 3002) in a β-

barium borate (β-BBO) crystal. The doubled radiation (∼1−1.5 mJ/pulse) is scanned

∼10 cm−1 by pressure tuning the etalon-narrowed oscillator cavity and is calibrated

to ±0.02 cm−1 using a small amount of the residual fundamental to record an I2 flu-

orescence spectrum[42]. As shown in Figure 2-4, the vertically polarized ultraviolet

radiation enters the vacuum chamber in a direction orthogonal to both millimeter-

wave and molecular beams. The overlap of the optical field with the millimeter-wave

radiation is optimized by expanding the optical beam to ∼ 2 cm in diameter in the

overlap region.

2.3.3 mmODR and mmOPS of carbon monosulfide

In the mmODR technique, the millimeter-wave frequency is locked onto a ground-

state rotational transition—here the CS X 1Σ+ (v′′ = 0, J ′′ = 2− 1) transition—and

the absorption of the millimeter-wave radiation is monitored while the laser frequency

is scanned. When the lower state of the optical transition is one of the two levels

connected by the millimeter-wave transition, the sudden change in the ground-state
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population induced by the laser pulse creates a millimeter-wave transient nutation

signal [29, 30, 31].

If the optical transition is out of the upper millimeter-wave connected level, then

the transient nutation signal is absorptive (positive), whereas if the optical transition

is out of the lower state, the transient nutation signal is emissive (negative)[see Figure

2-5].
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Figure 2-5: (a) In the mmODR experiment, the gas pulse passes through the
millimeter-wave interaction region, resulting in an increase in the absorption sig-
nal between the -200 and +200 µs. The laser interaction occurs near t = 0, resulting
in a transient disruption of the equilibrium population difference. (b) The signal
is recorded by gating the laser-induced feature and comparing it to the background
absorption signal, usually after fitting a portion of the background to a polynomial
curve in order to remove the effects of the varying absorption due to the temporal
profile of the gas pulse. The disruption of the population difference is so large that
the millimeter-wave beam is transiently amplified.

Figure 2-6 shows selected rotational transitions from the CSA 1Π−X 1Σ+ (1− 0)

vibrational band, obtained using mm-wave–detected mmODR (upper trace) and

mmOPS (lower trace) techniques. In addition to the five expected optical transi-

tions originating from J ′′ = 1[Q(1), R(1)] and J ′′ = 2[P (2), Q(2), R(2)], the spectrum

in Figure 2-6(a) contains a negative-going transition at the expected position of the

R(0) line. The sign of the extra signal indicates that the optical transition out of

J ′′ = 0 causes a preferential depopulation of the J ′′ = 1 level relative to the J ′′ = 2,

which is most likely due to collisional (J ′′ = 0 hole filling from J ′′ = 1) population
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transfer following optical excitation. The optical pumping can significantly alter the

thermal population difference between the J ′′ = 2 and J ′′ = 1 levels because the CS

A 1Π − X 1Σ+ (1 − 0) transition is fully allowed and the Franck-Condon factor is

0.14 [39]. As a consequence, both negative and positive mmODR signals are observed

that are considerably larger than the original absorption signal in the absence of op-

tical pumping. The signal displayed in Fig. 2-5, the largest observed to date, dips

below the 0 V baseline that represents the power transmitted to the detector when no

molecules are present. That is, the equilibrium population is disrupted to the extent

that the population is inverted and the millimeter-wave probe beam experiences some

small gain.

Figure 2-6: Comparison of (a) the millimeter-wave–detected mmODR technique with
(b) the millimeter-wave–detected mmOPS technique. The spectra are obtained by
scanning a laser over the A 1Π − X 1Σ+ (1 − 0) band, while the millimeter-wave
frequency is locked to the CS X 1Σ+ (v′′ = 0, J ′′ = 2− 1) rotational transition. The
laser was scanned at the same rate for both spectra and each point is an average of
20 laser shots. The expanded baselines in the region of 39 829 cm−1 indicate that the
baseline noise is improved by a factor of 4 for mmOPS relative to mmODR.
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The sensitivity of the mmODR experiments is limited primarily by the large and

fluctuating CS absorption background caused by instabilities in the CS number den-

sity produced in the pulsed-discharge supersonic expansion. This CS production noise

can be largely removed by using the mmOPS technique. When the vertically polar-

ized pump laser is resonant with a CS electronic transition, it creates an anisotropic

sample of CS molecules by preferentially pumping certain MJ states. If one of the

levels of the millimeter-wave transition is in common with the pump-laser transi-

tion, then the vertical and horizontal components of the millimeter-wave probe are

differentially absorbed, causing a polarization rotation of the millimeter-waves. By

using a pair of crossed polarizers, the unrotated millimeter-wave radiation can be

blocked, while only the rotated millimeter-wave radiation strikes the detector. Thus,

the polarization-detected experiment can have a background level that is limited only

by the imperfect extinction of the polarizers and the birefringence of the millimeter-

wave transmission optics.

When the polarizers are perfectly crossed, all mmOPS signals should have the

same sign because millimeter-wave radiation strikes the detector only when the op-

tical pump transition originates from one of the linked levels of the millimeter-wave

transition. The signal levels in this case are often too small to be observed above

the noise level of the current detector. As in optical-polarization–based experiments

[43], however, the signal-to-background ratio can be improved by imperfectly crossing

the polarizers to heterodyne the weak polarization-rotated signal field with the much

stronger nonrotated field. Here, the spectra are collected at relatively large uncrossing

angles (∼5◦) to obtain the best signal-to-noise ratio. Although the background level

at 5◦ is approximately twice the background level when the polarizers are perfectly

crossed, the cross-term between the signal and carrier millimeter-wave electric fields

is much larger, which ultimately increases the signal-to-background ratio. The het-

erodyne term leads to both positive and negative feature in the mmOPS spectrum.
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In contrast to the mmODR spectra, however, the sign and intensity of the observed

features contain information about the rotational branch excited by the optical field,

rather than simply the lower state of the optical transition. The spectra in Figure

2-6 have been normalized so that the strongest transition in each spectrum has the

same peak intensity. The baseline in the region of 39 829 cm−1 is expanded to show

that baseline noise is suppressed by a factor of 4 for mmOPS relative to mmODR.

The enhancement in sensitivity (signal-to-background ratio) afforded by the mmOPS

technique has enabled us to record nominally spin-forbidden transitions into triplet

states of CS, as shown in Figure 2-7. Although the sensitivity enhancement of mmOPS

is largely due to the reduction of the CS production noise present in the CS ground-

state mmODR signal, it is also improved because the millimeter-wave power incident

on the molecular beam can be increased without saturating the millimeter-wave de-

tector. In the absorption-detected technique the power of the Gunn oscillator is

attenuated by approximately 15 dB to 600 µW to avoid saturation of the detec-

tor/preamplifier, while in the polarization-detected technique the full power of the

oscillator (nominally 18 mW at 98 GHz) is incident on the molecular beam, but is

attenuated by the crossed polarizers to <1 mW on the detector.

Use of these higher mm-wave powers is somewhat problematic in that the charac-

teristic transient nutation signals become evident, and, by varying line to line, cause

difficulties in recording a spectrum with a uniform time gate.3 The ideal mm-wave

power for the detection of one transient may cause the transient induced by another

optical transition to oscillate one or more times, resulting in partial cancellation of

the gated signal. Use of such a non-ideal gate (chosen to optimize gated signal for

3mmODR without polarization is largely immune to these factors, as all lines generally give
rise to a similar transient profile. The exception is collisionally-induced lines, which have maxima
occurring at later times due to the delay in transmitting the population hole in one state to its
neighboring states via collisions. Unexplained transients are observed in mmODR, primarily when
there is incomplete overlap of the laser and the mm-wave beam. However, once the anomalous
time-dependent behavior is corrected for one optical transition, transient mm-wave signals for all
transitions become well-behaved.
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Figure 2-7: mmOPS spectra of nominally spin-forbidden electronic transitions to
triplet states of CS, which borrow their intensity via spin-orbit interactions with the
A 1Π state. The millimeter-wave frequency is locked to the CS X 1Σ+ (v′′ = 0, J ′′ =
2− 1) rotational transition and the laser is scanned over the (a) e 3Σ−X 1Σ+ (2− 0)
and the (b) d 3∆−X 1Σ+ (6− 0) bands. The e 3Σ− (v′ = 2) and the d 3∆ (v′ = 6)
states have 17% and 1% nominal A 1Π character, respectively for the rotational levels
accessed. Each point is an average of 20 laser shots.
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the Q(2) line) is the likely cause of the non-observation (or strange linsehape) of the

R(1) line in the spectra shown in Figure 2-7(b).

2.3.4 mmODR of vibrationally excited states

We have shown in the previous section that mmODR techniques provide an alternative

to traditional methods of electronic spectroscopy, such as laser induced fluorescence or

multiphoton ionization, and provide the species- and rotational-selectivity character-

istic of multiple resonance experiments. In general, mmODR techniques may provide

advantages for the spectroscopy of states that undergo non-radiative processes, ren-

dering them dark in emission. Another class of states, vibrationally excited levels of

ground electronic states, which are effectively dark in emission due to their long ra-

diative lifetimes and the relative insensitivity of typical detectors to infrared photons

as compared to visible photons, should benefit from study by mmODR techniques.

This is especially true for vibrationally excited states of molecules that resist charac-

terization by other means, particularly those which do not have a known or accessible

electronic spectrum. One significant molecule lacking such a spectrum is hydrogen

isocyanide (HNC), which will be discussed in great detail in Chapters 3 and 4. The

vibrational spectrum of HNC has been obtained by other means [44, 45, 46, 47],

but HNC is used here as an example of a transient molecule that is often present in

complex mixtures and may therefore benefit from the selectivity of double resonance

spectroscopy.

The ground state J = 1 − 0 rotational transition of HNC, produced in a pulsed

discharge of acetonitrile (CH3CN) in Ar, is readily observed in our millimeter-wave

jet spectrometer (see Chapter 3). A digitized transient, similar to that shown in

Fig. 2-5 for CS, is given in Fig. 2-8(a). Here the background absorption due to the

HNC rotational transition is much weaker than in the CS experiments, however, the

sensitivity of the mmODR experiment is sufficient to record spectra as shown in Fig.
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2-8(b). The spectrum shown is recorded by pumping the R(0) line of the 2ν3 band

of HNC. Similar mmODR spectra have been recorded of the ν1 and ν1 + ν2 bands of

HNC (not shown).
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Figure 2-8: mmODR signal for vibrational excitation of the 2ν3 band of HNC near
4026 cm−1. (a) The digitized absorption transient from the bolometer output for the
HNC J = 1− 0 transition. The small dip near the center of the absorption envelope
is due to laser excitation of the 2ν3 band (R(0) line) of HNC. The IR laser radiation
is generated by difference frequency mixing in lithium niobate of the output of a dye
laser operating with LDS 751 and the 1064 nm fundamental output of an injection-
seeded Nd:YAG laser. The power is approximately 1.5 mJ/pulse. (b) Uncalibrated
laser scan over the R(0) line, demonstrating that the dip in (a) is a resonant feature
associated with a relatively weak vibrational overtone transition.

2.3.5 Rotational spectroscopy of laser-excited states

To demonstrate further the capabilities of the mmODR and mmOPS techniques, we

have measured a pure rotational transition in one of the optically populated triplet

states of CS. Figure 2-9 shows the mmOPS spectrum recorded with the laser popu-

lating the J ′ = 1, N ′ = 1 level of the e 3Σ− (v′ = 2) state. The trace is the average

of four scans, each recorded by stepping the Gunn oscillator output in 50 kHz steps

and averaging the bolometer output for ten laser shots at each frequency. The center

frequency of the triplet rotational transition J ′ = 2, N ′ = 2 ← J ′ = 1, N ′ = 1 is
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determined to be 76 229.027(20) MHz.4 The measured linewidth is 1.3 MHz, which

is significantly broader than the ground-state linewidth [∼240 kHz full width at half

maxiumum (FWHM)]. We attribute the additional linewidth to the radiative lifetime

of the triplet state, which is expected to be ∼1.2 µs, assuming that the lifetime is

dominated by the ∼17% singlet character [39] of the populated nominal triplet level

and the 198 ns lifetime for the A 1Π (v = 1) state [48].

Figure 2-9: Pure rotational mmOPS spectrum of an excited triplet electronic state.
The laser frequency is fixed to populate the J ′ = 1, N ′ = 1 ← J ′′ = 1 transition
of the e 3Σ− − X 1Σ+ (2 − 0) vibrational band. The center frequency of the pure
rotational transition J ′ = 2, N ′ = 2 ← J ′ = 1, N ′ = 1 in the electronically excited
state is 76 229.027(20) MHz.

In contrast to millimeter-wave transitions in the CS ground state, measurements

of mmODR signals in the excited state are not compromised by fluctuations in the

background absorption of ground-state CS molecules. Rather, the main contributor

to the baseline noise is the millimeter-wave detector noise, which is larger than the

amplitude noise of the millimeter-wave source. Because the most significant advantage

4Recent measurement of this transition with a chirped-pulse mm-wave spectrometer, described
briefly in Chapter 8, has revealed that this measurement may be in error. In that experiment,
the millimeter-wave transition is observed at a frequency almost exactly 35 MHz away from that
observed in the bolometer-detected experiment. This 35 MHz frequency offset is likely caused by
improper locking of the Gunn oscillator to a harmonic of the 35 MHz low-frequency reference. The
experiment has not yet been repeated in bolometer-detected mode to confirm this hypothesis.
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of the polarization-detected technique with the current millimeter-wave detector is the

suppression of the CS source noise, the excited-state mmODR and mmOPS spectra

are nearly identical in quality. In addition to detector noise, both the mmODR

and mmOPS techniques are artificially limited by the bandwidth (5 Hz–500 kHz) of

the millimeter-wave detector. This limitation attenuates transient nutation signals

with periods shorter than 2 µs and is particularly disadvantageous for the mmOPS

technique, which would otherwise use the full power of the millimeter-wave source to

induce the fastest possible transient nutation signals.

We have demonstrated that millimeter-wave-detected mmOPS is capable of being

used to record selected rotational lines of an electronic transition with high sensitivity

and to detect pure rotational transitions in electronically excited states, with reso-

lution limited by the radiative decay rate. In addition, the development of sensitive

new techniques such as millimeter-wave-deteced mmOPS makes it possible to observe

and identify optical transitions in complex environments, such as discharges, where

traditional one-color measurements can be limited by spectral congestion.

As is briefly discussed in the introduction to this chapter, measurements of ro-

tational spectra are often of particular value due to the fact that they can reveal

details of molecular electronic structure. One property that is accessible in high-

resolution rotational spectra, the nuclear quadrupole hyperfine splitting, is described

in the following chapter. The hyperfine splitting is apparent in field-free spectra,

but many other electronic properties are most readily measured by recording the ab-

sorption spectra in the presence of an external (DC) electric or magnetic field. The

millimeter-wave techniques described in this chapter are capable of being extended to

measure electric and magnetic moments of electronic and highly vibrationally excited

states with Stark and Zeeman spectroscopy.

The chief advantage of making these measurements in the microwave/mm-wave

regime lies in the inherently high resolution of the spectroscopic techniques used at
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these frequencies. In order to measure the response of a system to a static external

field (neglecting alternative strategies involving quantum beats), the field must be of

sufficient intensity to shift or split an observed transition by an amount greater than

the experimental resolution. In optical/ultraviolet experiments a typical resolution

is 0.06 cm−1 (∼ 2 GHz), determined by either the resolution of an etalon-narrowed

pulsed dye laser or the residual Doppler-width (at 200 nm) of an unskimmed free-jet

expansion. The observed lines in the spectra must be shifted by an amount larger

than 2 GHz in order to extract a meaningful value for the electronic property sampled

by the experiment. For a small molecule, with a typical dipole moment of 1 Debye,

a Stark shift of several GHz will require an electric field of 10–100 kV/cm (see Ref.

[49] for an example of a pulsed-laser optical Stark effect measurement), depending on

whether the Stark effect is in a linear or quadratic regime. Maintaining such large

fields is exceedingly problematic, and requires careful experimental design in order to

prevent arcing and discharge. In contrast, the millimeter-wave experiments demon-

strated in this chapter have typical linewidths on the order of 300 kHz, nearly 104

times smaller than those in pulsed optical experiments. Similar transitions will thus

require fields on the order of 102 − 104 times smaller than those required for optical

Stark measurements, on the order of only 10-100 V/cm. The experimental tradeoff is

that, in order to maintain a high resolution, the applied field must be very homoge-

nous as to not broaden the transitions. Relatively low field Stark measurements are

common in FTMW spectroscopy, and several designs for electrodes to produce a ho-

mogenous field of large spatial extent exist in the literature [50]. It will be possible to

adapt the strategies from the microwave region designs to our pulsed-jet millimeter-

wave spectrometer, enabling the measurement of electronic properties of laser-excited

states.
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Chapter 3

Laboratory measurements of the

hyperfine structure of H14N12C and

D14N12C

The work in this chapter resulted from a collaborative effort between myself and Dr.
Hans A. Bechtel. The majority of the results in this chapter have been published in
Astrophysical Journal Letters (Ref. [51]).

3.1 Introduction

In the analysis of the vibrational spectra of small organic molecules, the details of

electronic structure are typically ignored. The simple reason for this is that the

effects of the electronic structure (e.g. hyperfine splittings, electric dipole moments,

etc.) in these molecules generally do not manifest themselves as observable splittings

in a vibrational spectrum recorded at Doppler-limited resolution.1 Such a situation

is in stark contrast to that of radicals and transition-metal-containing molecules, the

spectra of which are often littered with fine and hyperfine structure associated with

1The electronic structure does, of course, determine the shape of the potential energy surface
and, therefore, the frequencies of vibration.
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unpaired or otherwise reactive electrons. The majority of stable organic molecules

have a singlet Σ (in general totally symmetric) ground electronic state, i.e. S = 0,Λ =

0, and, as such, have no fine structure and exceedingly weak magnetic effects due to

quenched electronic angular momentum. It is only at the level of nuclear quadrupolar

hyperfine structure that the rovibronic levels of many small, stable molecules are split

by interactions between the non-spherical charge distribution of some I 6= 0 nuclei

and the anisotropic nature of the electric field at these nuclei.

Quadrupolar hyperfine splittings are rarely large enough to be directly observed

in a Doppler-limited infrared or visible spectrum. However, by virtue of the rela-

tively low frequencies used in rotational spectroscopy, even Doppler-limited spectra

are often of sufficient resolution (< 1 MHz) to resolve hyperfine structure of many

molecules. The spectra of one such molecule, hydrogen cyanide (HCN), is illustrated

in Figure 3-1(a). The corresponding splitting in molecules with smaller hyperfine

interactions may still remain unresolved, as is illustrated for the isomeric species hy-

drogen isocyanide (HNC) in Figure 3-1(b).2 It is therefore often desirable to push the

already high resolution of mm-wave spectroscopies into the sub-Doppler regime.

In this chapter, high-resolution (∼50 kHz) is achieved by a spectrometer design

in which the mm-waves are propagated coaxially with respect to the supersonic ex-

pansion. The enhanced resolution, relative to the conventional geometry described in

Chapter 2, results from reduced contributions to the width from Doppler and transit-

time broadening and enables resolution of the hyperfine structure of HNC, which is

1
20

th the size of that in HCN.

2The reason for the qualitative difference between the spectra of these two isomeric species is
discussed in the following chapter.
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Figure 3-1: (a) J = 1 − 0 rotational tran-
sition of HCN, recorded with the spectro-
meter design described in Chapter 2. The
transition is split into several components
by the nuclear quadrupolar hyperfine in-
teractions due to the 14N nucleus. (b) The
analogous structure in the J = 1−0 transi-
tion of HNC is not resolved in the conven-
tional spectrometer geometry due to the
much smaller splitting.

3.2 Origin of nuclear quadrupole hyperfine splitting

The distribution of charge in the nucleus of an atom may be non-spherical. It is

quite reasonable, then, that the energy of the system will depend on the orientation

of the nucleus relative to all of the extra-nuclear charges. While no nuclei have yet

been observed to possess an electric dipole, all nuclei with nuclear spin I ≥ 1 posses

an electric quadrupole moment. A quadrupole moment represents a deviation from

spherical shape by flattening or elongating the charge distribution preferentially along

one axis.

Following Gordy & Cook[6], the classical electromagnetic interaction energy be-

tween the nuclear charge distribution, ρn, and the electric field at the nucleus, V ,

that results from extra-nuclear charges, is given by

E =

∫
ρnV dτn. (3.1)

Expansion of the field as a Taylor series about the center of charge results in the
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quadrupole interaction energy

EQ =
1

4

(
∂2V

∂z2

)
0

∫
ρn(3z2

n − r2
n) dτn. (3.2)

For a given atom, the nuclear charge distribution is constant, so Eq. 3.2 is rewritten

as

EQ =
1

4

(
∂2V

∂z2

)
0

eQ∗, (3.3)

where the intrinsic quadrupole moment, Q∗, is taken as

Q∗ =
1

e

∫
ρn(3z2

n − r2
n) dτn. (3.4)

While this quantity is constant for a given atom, it is variable across different isotopes

of the same element. Nuclear charge distribution can vary both quantitatively and

qualitatively, istotope to isotope. In fact, those elements for which the most abundant

isotope has I ≥ 1 (i.e. has a non-zero electric quadrupole moment), it is common

that another stable isotope will exist with I < 1 (i.e. Q∗ = 0). For the current study,

the most important quadrupolar nucleus is 14N, which has I = 1. The other stable

isotope of nitrogen, 15N, has I = 1
2
, and therefore will give rise to no quadrupole

coupling in a spectrum.

In order to calculate the effects of the quadrupole on the energy levels of a

molecule, the expression for the classical quadrupole energy must be expressed in

a quantum mechanical form, and the rotation-dependence of the field gradient at

the coupling nucleus must be taken into account. The resulting quantum mechanical

Hamiltonian for the quadrupole, originally derived by Casimir [52], is

HQ =
(eQqJ)

2I(2I − 1)(2J − 1)(2J + 3)
×
[
3(I · J)2 + 3

2
(I · J)− I2J2

]
(3.5)

where qJ depends on the form of the rotational wavefunction, and therefore on whether
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the molecule is a linear, symmetric, or asymmetric top. Only linear molecules will be

considered in this work, and for these

qJ = − qJ

2J + 3
. (3.6)

From hyperfine-resolved measurements of rotational transitions, it is possible to

derive a value for eQq and, therefore, the gradient of the electric field at the cou-

pling nucleus, q. Because the electric field gradient is determined by the distribution

of charged species, it reports on the electronic wavefunction of the molecule. The

chemical interpretation of the field gradient is left for the following chapter.

3.3 Implications for astrochemistry

The 1971 discovery [53] of the U90.7 interstellar millimeter-wave emission line, which

was later assigned to the J = 1 − 0 rotational transition of H14N12C [54, 55, 56]

(see Figure 3-1b), stimulated considerable interest in the astronomical community.

Subsequent measurements of [HNC]/[HCN] and [DNC]/[HNC] abundance ratios have

provided insights into the astrochemistry of dark clouds. In particular, measurements

of the [HNC]/[HCN] abundance ratio imply that the abundance of HNC in some re-

gions is comparable to that of HCN [57, 58, 59, 60, 61, 62, 63], which is unexpected

based on thermodynamics alone (HNC is 0.62 eV less stable than HCN). Those mea-

surements suggest that the HCNH+ + e− dissociative recombination reaction is a

major source of HNC, although a decisive explanation for the relative overabundance

of HNC remains to be established. The [DNC]/[HNC] abundance ratio is also signif-

icant: in dark cloud cores, [DNC]/[HNC] abundance ratios range from 0.008 to 0.122

[64, 65, 66, 67], which is considerably higher than the cosmic [D]/[H] abundance ratio

of about 10−5 [68]. Deuterium fractionation into various molecules has been shown to

be sensitive to a variety of physical conditions, including temperature and the degree
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of ionization.

Accurate measurements of abundance ratios require precise rest frequencies for

observed transitions. Indeed, Turner [67] has shown that neglect of hyperfine struc-

ture can lead to significant errors in astronomical observations of abundance ratios.

Although precise rest frequencies are typically obtained in the laboratory, laboratory

measurements on the chemically unstable HNC molecule are challenging. In 1963,

Milligan and Jacox [44] observed HNC in an argon matrix, but it was not until 1975

that Arrington and Ogryzlo [45] observed a laboratory gas phase spectrum. Since

then, numerous groups have recorded microwave [69, 54, 55, 70, 71, 56, 72] and in-

frared spectra [73, 47, 74, 75, 46, 76] of HNC. The laboratory measurements, however,

are not nearly as comprehensive as those for the more stable HCN isomer, and in none

of them is the HNC hyperfine structure resolved.

3.4 Coaxial jet mm-wave spectrometer

These measurements are performed in a coaxial mm-wave pulsed discharge jet spectro-

meter, which provides better resolution than the conventional orthogonal geometry,

described in Chapter 2, by minimizing Doppler and transit time broadening. A

schematic of the spectrometer is given in Figure 3-2. The design is similar to that

of Walker and McKellar[77] and McElmurry et al.[78] with the addition of a pulsed

discharge nozzle, which extends the capabilities of the coaxial mm-wave jet spectro-

meter to rotationally cold transient species. An analogous spectrometer design is pop-

ular in the microwave region, referred to there as COBRA (coaxial beam-resonator

arrangement)[79].

In our experiments, HNC (DNC) is generated with a mixture of 2% CH3CN

(CD3CN) in Ne. The pulsed valve operates at 10 Hz with a backing pressure of 3

atm, a pulse duration of approximately 300 µs, a negative discharge voltage of 1.5 kV,
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Figure 3-2: Schematic of the coaxial mm-wave jet spectrometer. The mm-wave radia-
tion entering the chamber is polarized 45◦ relative to the vertical axis of the chamber.
The returning polarization is rotated 90◦ by the rooftop reflector, causing it to be
selectively routed to the bolometer for detection.

Figure 3-3: Side-on view of the
rooftop reflector mounted onto the
discharge nozzle.

and a discharge pulse length of 200 µs centered on the gas pulse. Shown in Figure 3-3,

the discharge nozzle is mounted at the rear of an aluminum rooftop reflector that has

a small hole (∼ 4 mm diameter) at the center to permit the passage of the molecular

beam.

As in the experiments using the orthogonal geometry, the mm-wave radiation is

produced by a W-band (72–106 GHz) Gunn oscillator that is phase-locked to the

tenth harmonic of a microwave synthesizer (HP 8673E) and coupled through wave-

guide components to a calibrated attenuator (Hitachi W9513). Higher frequencies
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are generated by doubling (144–212 GHz) and tripling (216–318 GHz) the output of

the Gunn oscillator in Schottky diode multipliers (Virginia Diodes). The radiation is

emitted into free space through a standard gain pyramidal horn and passed through

a wire-grid polarizer oriented to pass the linearly polarized mm-wave radiation. A

PTFE lens (f = 30 cm) is used to roughly collimate the mm-wave radiation, which is

counterpropagated with the molecular beam and directed onto the rooftop reflector

oriented at 45◦ with respect to the polarization of the mm-waves. The rooftop re-

flector rotates the mm-wave polarization by 90◦ and reflects the mm-wave radiation

back onto itself, making a second pass of the vacuum chamber. The mm-wave radia-

tion is focused by the PTFE lens, and finally reflected by the polarizer onto a liquid

helium-cooled InSb hot electron bolometer. The bolometer output is digitized with a

500 MHz oscilloscope (Lecroy LC334A) and transferred to a computer for storage.

Unlike in the earlier experiments, it is necessary in the high-resolution case to

scan the low-frequnecy phase-lock reference rather than the local oscillator to tune

the frequency of the mm-wave source. The high-frequency synthesizer used as the

LO has a (frequency-dependent) minimum step-size of 4 kHz, corresponding to a

minimum Gunn oscillator step-size of 40 kHz (as the Gunn is typically locked to

the 10th harmonic of the synthesizer), which is larger than the resolution of the

experiment. Such undersampling is undesirable, so the high-resolution spectra are

recorded by scanning the phase-lock loop reference (HP 3336B) in 2 kHz steps around

a center frequency of 35 MHz. In addition, spectra recorded at the powers used in the

conventional spectrometer geometry appear to be power broadened. The attenuation

is increased by an additional 10 dB to a power of ∼50µW, at which point the spectra

do not get narrower with further attenuation.

The coaxial geometry of the mm-wave radiation and the molecular beam results

in two Doppler-split peaks, the frequencies of which are averaged to determine the

rest frequency. The separation of the peaks (∼540 kHz at 90 GHz) indicates that
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Figure 3-4: Comparison of (a) or-
thogonal (upper trace) and (b) co-
axial (lower trace) spectrometer geo-
metries for the J = 1 − 0 transition
of HNC. The resolution of the spec-
tra recorded in the coaxial geometry
is superior by one order of magni-
tude, revealing nuclear quadrupolar
hyperfine structure due to the 14N
nucleus.

the molecular beam speed is about 890 m/s for a beam composed primarily of neon.

The lighter gas neon is used here, rather than argon, in order to create a large

enough separation such that the hyperfine components of the associated with co- and

counterpropagating molecules do not overlap.3

The spectrometer was calibrated by measuring several rotational transitions of

OCS and HCN [28]. The uncertainty in the absolute frequencies for the measured

transitions is ± 5 kHz for the J = 1− 0 transitions and ± 10 kHz for the J = 2− 1

and J = 3 − 2 transitions, whereas the uncertainty of the hyperfine splitting in a

single rotational transition is ± 2 kHz.

3.5 Analysis of the hyperfine-resolved spectra

The hyperfine structure in H14N12C is dominated by the interaction of the valence

shell electrons with the electric quadrupole moment of the 14N (IN=1) nucleus. Al-

though generally much smaller, the nuclear spin-rotation interaction, which is caused

3Using helium as the carrier gas for the expansion would again increase the separation, but we
find that helium creates a very poor and unstable discharge at the voltages used.
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Figure 3-5: Energy-level diagram
for the J = 1 − 0 rotational
transition of a molecule with a
single quadrupolar nucleus with
I = 1. The energetic ordering of
the |J, F 〉 levels is appropriate for
a molecule with a positive value
for eQq, as is the case for HNC.
The size of the arrowheads is pro-
portional to the transition inten-
sity. The ticks on the vertical axis
represent the quadrupole-free en-
ergies for J = 0 and 1.

E
n
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gy
by the interaction of rotating charged particles (electrons and nuclei) with the mag-

netic moment of the 14N atom, also contributes to the hyperfine structure. These

interactions cause the lowest rotational transition J = 1 − 0 of H14N12C to be split

into three components and the higher rotational transitions to be split into six com-

ponents. An energy level diagram is given in Figure 3-5.

The hyperfine structure of D14N12C, on the other hand, is substantially more

complicated because of the additional coupling of the D (ID=1) nucleus. This coupling

gives rise to a septet in the J = 1−0 transition and over 40 incompletely resolved lines

in the higher J rotational transitions. The Hamiltonian for the hyperfine structure

of D14N12C is

Hhfs =
(eQq)N

2IN(2IN − 1)(2J − 1)(2J + 3)
(3.7)

×
[
3(IN · J)2 + (3/2)(IN · J)− IN

2J2
]

+ CN(IN · J)

+
(eQq)D

2ID(2ID − 1)(2J − 1)(2J + 3)

×
[
3(ID · J)2 + (3/2)(ID · J)− ID

2J2
]

+ CD(ID · J),

where (eQq)N and (eQq)D are the nuclear quadrupole coupling constants and CN
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and CD are the spin-rotation constants of nitrogen and deuterium, respectively. Al-

though analytical expressions for hyperfine energy levels are well known for molecules

containing a single coupling (I ≥ 1) nucleus [6], such as H14N12C, the full secular de-

terminant must be solved for molecules containing multiple I ≥ 1 nuclei, particularly

when the values of the quadrupole coupling constants are comparable in magnitude,

as in D14N12C [80, 81]. Here, we have used the SPFIT program [82] to perform a

global fit of the rotational transitions of H14N12C and D14N12C. In this global fit, we

used the data obtained from the present work, which includes resolved and partially

resolved hyperfine lines up to 275 GHz. For the H14N12C rotational transitions above

275 GHz, we used the hyperfine free data of Okabayashi and Tanimoto[70] for the

J = 4−3 transition, the data of Amano and Zellinger[69] for the J = 7−6 transition,

and the data of Thorwirth et al.[72] for the J = 5−4, J = 6−5, J = 8−7, J = 9−8,

J = 10 − 9, and J = 22 − 21 transitions. For the D14N12C transitions above 275

GHz, we used the data of Brünken et al.[83]. The experimental transition frequencies

from the present work are shown in Tables 3.1 and 3.2, and the derived spectroscopic

constants are shown in Tables 3.3 and 3.4 along with previously published values. In

analogy to the hyperfine assignments of D12C14N [84], we have used the sequential

spin-coupling scheme to label the D14N12C transitions:

J + IN = FN (3.8)

FN + ID = F. (3.9)

The experimental data were not sufficient to accurately determine CD. Previous

measurements of CD in D12C14N [84] have shown that it is small (-0.6 ± 0.3 kHz),

and we do not expect it to change significantly in D14N12C. As a consequence, we

have omitted it from the fit. The omission of CD did not affect the quality of the fit.

Figure 3-6a shows the experimental mm-wave spectrum of H14N12C (J = 1 − 0)
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HNC (J=1-0)
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Figure 3-6: (a) H14N12C (J = 1−0) and (b) D14N12C (J = 1−0) experimental spectra
(circles). The coaxial geometry results in two Doppler-split peaks, the frequencies
of which are averaged to determine the rest frequency. The stick spectrum and
simulation (solid line) are based on the molecular constants determined from the fit,
assuming Lorentzian line shapes of 50 kHz and a molecular beam speed of 890 m/s.
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Table 3.1: Transition frequencies of H14N12C.

J ′ − J ′′ F ′ − F ′′ Obs. Obs.-Calc.

1− 0 0− 1 90663.417 0.000
2− 1 90663.556 −0.002
1− 1 90663.622 −0.001

2− 1 1− 1 181324.585 −0.001
2− 1 181324.729* −0.005
3− 2 181324.729* −0.005
1− 0 181324.792* −0.002
2− 2 181324.792* −0.002

3− 2 3− 2 271981.111* −0.003
4− 3 271981.111* −0.003
2− 1 271981.111* −0.003

*Unresolved feature

and a simulation based on the molecular constants determined from the fit. Positive

and negative Doppler shifts, corresponding to a molecular beam speed of 890 m/s,

are added to the calculated line positions, and the doubled lines are convoluted with

a Lorentzian lineshape of 50 kHz width. The experimental resolution is sufficient

to resolve all three hyperfine components in the H14N12C (J = 1 − 0) rotational

transition. However, the hyperfine transitions of the J = 2−1 and J = 3−2 rotational

transitions, shown in Figure 3-7, are not fully resolved. This failure to resolve fully

all of the hyperfine components is due in part to the decreased separation between

hyperfine lines in higher rotational levels and the presence of six lines rather than

three. The primary reason, however, is the degradation of experimental resolution

caused by the linear frequency dependence of the Doppler linewidth. Thus, at 90

GHz, the experimental lineshapes are nearly Lorentzian with linewidths of about 50

kHz, whereas at 180 GHz and 270 GHz, the lineshapes are predominantly Gaussian

with linewidths of about 100 kHz and about 180 kHz, respectively (see Figure 3-7).

The experimental mm-wave spectrum of D14N12C (J = 1−0) and the correspond-

ing simulation is shown in Figure 3-6b. As noted above, the nuclear spin of deuterium
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causes additional splitting, resulting in seven lines instead of three for the J = 1− 0

rotational transition. Although the experimental resolution is not sufficient to fully

resolve all members of the FN = 1−1 triplet, the remaining lines can be distinguished.

For the J = 2 − 1 and J = 3 − 2 transitions, the increased Doppler broadening at

higher frequencies conceals all deuterium splitting effects and the profiles of the higher

rotational transitions are similar to those of H14N12C.

Table 3.2: Transition frequencies of D14N12C.

J ′ − J ′′ F ′N − F ′′N F ′ − F ′′ Obs. Obs.-Calc.

1− 0 0− 1 1− 0, 1, 2 76305.511 0.000
2− 1 1− 0, 1, 2 76305.630 0.000
2− 1 3− 2 76305.678 0.001
2− 1 2− 1, 2 76305.717 0.000
1− 1 1− 0, 1, 2 76305.790* -0.002
1− 1 2− 1, 2 76305.790* -0.002
1− 1 0− 1 76305.836 0.002

2− 1 1− 1 2− 2 152609.569* 0.005
1− 1 2− 1 152609.569* 0.005
1− 1 1− 2 152609.569* 0.005
1− 1 1− 1 152609.569* 0.005
2− 1 3− 2 152609.746* -0.002
3− 2 4− 3 152609.746* -0.002
3− 2 2− 1 152609.746* -0.002
3− 2 3− 2 152609.746* -0.002
2− 1 2− 2 152609.746* -0.002
2− 1 2− 1 152609.746* -0.002
1− 0 1− 1 152609.845* -0.003
2− 2 3− 3 152609.845* -0.003
1− 0 1− 1 152609.845* -0.003
2− 2 1− 1 152609.845* -0.003

3− 2 3− 2 2− 1 228910.481* 0.001
3− 2 4− 3 228910.481* 0.001
4− 3 5− 4 228910.481* 0.001
4− 3 3− 2 228910.481* 0.001
4− 3 4− 3 228910.481* 0.001
3− 2 3− 2 228910.481* 0.001
2− 1 3− 2 228910.481* 0.001

*Unresolved feature
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Figure 3-7: Higher-J rotational transitions for HNC (left) and DNC (right). The
spectra shown here have twice the frequency width as those shown in Figure 3-6.
As a consequence of the linear dependence of the Doppler effect on frequency, the
splitting between the peaks due to the co- and counter-propagating components of the
mm-wave beam increases from the lower-J to higher-J transitions. Additionally, the
Doppler width of each hyperfine component increases, while the intensity distribution
associated with the hyperfine structure becomes more compressed. Therefore, the
determination of the hyperfine parameters is best made at the lowest possible value
of J .
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3.6 Comparison of laboratory and astronomical

measurements of hyperfine coupling constants

The nuclear quadrupole constant of H14N12C (v = 0), as measured in this work,

is (eQq)N = 264.5 ± 4.6 kHz. It has the opposite sign and is considerably smaller

than the nuclear quadrupole constant of the more stable H12C14N isomer (v = 0),

(eQq)N = −4709.03 ± 1.62 kHz [85]. The small value of (eQq)N for H14N12C arises

from the decreased electric field gradient at the central 14N nucleus and is typical

of other isonitriles, such as CH3NC and HCCNC, which have nuclear quadrupole

constants of 489.4 ± 0.4 kHz [86] and 946.4 ± 1.9 kHz [87], respectively. Recent ab

initio calculations [88] on H14N12C also predict a small nuclear quadrupole coupling

constant, −313 ≥ (eQq)N ≥ −288 kHz, but of the wrong sign.

Table 3.3: Molecular constants of H14N12C for the ground vibrational state.

H14N12C H14N12C H14N13C
Parameter Present Work Hyperfine Free (Ref. [67])

B (MHz) 45331.98160(52) 45331.98415(79) -
D (kHz) 99.8097(45) 99.8286(63) -
H (Hz) 0.1458(57) 0.1682(78) -
(eQq)N (kHz) 264.5(46) - 276(21)
CN (kHz) 7.15(109) - 10.5(43)

Values in parentheses represent one standard deviation (1σ) in the units of the last digit.
The uncertainties produced by the SPFIT program were converted to standard errors using
the PFORM program from http://info.ifpan.edu.pl/∼kiesel/prospe.htm.

Although the hyperfine structure of H14N12C has not until now been resolved in

the laboratory, partially resolved hyperfine structure has been observed in millimeter

emission measurements of H14N12C in interstellar dark clouds. Snyder et al.[89] first

estimated the quadrupole coupling constant of H14N12C from those observations, but

self-absorption [90] of the strongest component, F = 2 − 1, led to incorrect assign-

ments of the hyperfine structure and a quadrupole coupling constant with the wrong
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Table 3.4: Molecular constants of D14N12C for the ground vibrational state.

D14N12C D14N12C D14N12C
Parameter Present Work Ref. [83] (Ref. [67])

B (MHz) 38152.98807(36) 38152.98692(156) -
D (kHz) 68.97119(281) 68.9649(87) -
H (Hz) 0.1984(37) 0.1925(82) -
(eQq)N (kHz) 294.7(131) - 378.7(260)
CN (kHz) 5.02(99) - -
(eQq)D (kHz) 261.9(145) - 111(154)

Values in parentheses represent one standard deviation (1σ) in the units of the last digit.
The uncertainties produced by the SPFIT program were converted to standard errors using
the PFORM program from http://info.ifpan.edu.pl/∼kiesel/prospe.htm.

sign. Later, Frerking et al.[91] gave improved estimates of the hyperfine transition

frequencies and the nuclear quadrupole constant of H14N12C and H14N13C. Those

estimates have been updated by the more recent measurements of Turner[67], which

are shown in Table 3.3. Although the H14N13C astronomical value for (eQq)N is in

good agreement with our laboratory measurements, the D14N12C astronomical values

for both (eQq)N and (eQq)D are not (Table 3.4). The discrepancy is most likely a

consequence of insufficient resolution in the astronomical spectra, which prevents an

accurate determination of the nuclear quadrupole constants.

Also shown in Tables 3.3 and 3.4 are the H14N12C and D14N12C molecular con-

stants determined from the most precise hyperfine-free data in the literature. A

comparison of the B, D, and H rotational constants indicate that the D14N12C con-

stants from the present work agree within 1σ with the values obtained by Brünken

et al.[83]. The rotational constants of H14N12C, however, lie just outside of the 1σ

ranges of the fit to the hyperfine free data set. The discrepancy arises primarily from

the difference between our value of the J = 3−2 rotational transition and that of Ok-

abayashi and Tanimoto[70], as well as the increased weighting of the lower rotational

transitions in the fit that reflect the reduced uncertainty in our measurements.

The improved resolution of the coaxial mm-wave discharge jet spectrometer has
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permitted the hyperfine structure of H14N12C and D14N12C to be resolved for the

first time in the laboratory. The updated rest frequencies should aid astronomi-

cal measurements of [HCN]/[HNC] and [DNC]/[HNC] abundance ratios, particularly

when the observed hyperfine structure is incompletely resolved or is distorted by

self-absorption.

Measurement of the nuclear quadrupole hyperfine structure provides a direct mea-

surement of the electronic structure in the vicinity of the coupling nucleus. The

chemical interpretation of the field gradient provides insight into local bonding and

hybridization that is complementary to that offered by measurement of the molecular

electric dipole moment. Such interpretation is provided in the following chapter.
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Chapter 4

Evolution of electronic structure

during HCN↔HNC isomerization

revealed though nuclear

quadrupole hyperfine structure

The work in this chapter resulted from a collaborative effort between myself and
Dr. Hans A. Bechtel, with ab initio calculations performed by Bryan Wong. The
majority of the results in this chapter have been published in Angewandte Chemie
International Edition (Ref. [92]), with the exception of the stretch-excited spectrum
in section 4.6.

4.1 Introduction

The making and breaking of bonds in chemical reactions necessarily involve changes

in electronic structure. Therefore, measurements of a carefully chosen electronic prop-

erty can serve as a marker of progress along a reaction coordinate and provide detailed

mechanistic information about the reaction. In this chapter, we demonstrate through

high-resolution spectroscopic measurements and ab initio calculations that nuclear
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quadrupole hyperfine structure, an indicator of electronic structure near the nitrogen

nucleus, is highly sensitive to the extent of bending excitation in the prototypical

HCN↔HNC isomerization system. Thus, measurements of hyperfine structure show

how the nature of a chemical bond is altered when a large amplitude vibration that

is coupled to the isomerization reaction coordinate is excited.

As described in the previous chapter, nuclear quadrupole hyperfine structure arises

from the interaction of the electric quadrupole moment of a nucleus with the gradient

of the electric field at that nucleus. This interaction causes rotational levels to split

into multiple hyperfine components. The magnitude of the splitting is determined by

eQq, in which e is the proton charge, Q is the quadrupole moment of the nucleus, and q

is the gradient of the electric field (∂2V/∂z2) at the nucleus. The electric quadrupole

moment, Q, is a measure of the departure of the nuclear charge distribution from

spherical symmetry and is nonzero for I ≥ 1 nuclear spins. Although Q is constant

for a particular nucleus, q can (and generally does) vary in different molecules. These

values of q, and hence eQq, report on the local electronic environment of the nucleus,

in contrast to Stark effect measurements of the electric dipole moment [1], which

report on the global electron distribution within the molecule.

The HCN↔HNC isomerization is a prototypical system for high-barrier, bond-

breaking isomerization, a process fundamental to many areas of chemistry, including

combustion. As described in the previous chapter, the hyperfine structure of HCN and

HNC are qualitatively different, reflecting the different electronic environments of the

nitrogen atom in the two isomeric structures. Therefore, the evolution of the hyperfine

structure as the molecule is excited along the isomerization coordinate should reveal

how the bonding motif in the vicinity of the nitrogen changes during the chemical

transformation. In this chapter, we present the first laboratory measurements of HNC

hyperfine structure in vibrationally excited states and extend the measurements of

HCN hyperfine structure to higher vibrational levels.
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4.2 Experimental: Photolysis-jet spectrometer

The goal of the experiments described in the current chapter is to record pure rota-

tional spectra of highly vibrationally excited states of the HCN/HNC system. It is

therefore necessary to produce a molecular sample that is characterized simultane-

ously by a high vibrational temperature and a low rotational temperature. The low

rotational temperature is crucial for the sensitivity of the millimeter-wave absorption

experiment, which has a 1
T 2 dependence [93]. One possible method of accessing highly

vibrationally excited states is direct optical pumping, as described in Chapter 2. Op-

tical pumping gives rise to an inherently non-thermal rotational distribution if the

transitions used are rotationally resolved. That is, all of the population is put into a

single rotational level, so the population difference, ∆Nab, a factor in the transition

intensity, is equal to the number of molecules in the pumped state, Na.

Single-photon optical pumping methods for populating highly vibrationally ex-

cited levels are, however, limited by the exceedingly weak absorption cross-sections for

all vibrations apart from the overtones of X-H stretching modes. Multiple-resonance

optical techniques, such as stimulated emission pumping (SEP)[94, 95], can bypass

the restrictive vibrational selection rules by exploiting significant changes in molecu-

lar geometry upon electronic excitation. These methods require a well-characterized

excited electronic state to use as a mutiple-resonance intermediate. Despite attempts

by several research groups [96], including our own, no bound vibrational levels of

any electronically excited states of HNC have been definitively identified. Therefore,

optical pumping strategies may prove useful for accessing highly vibrationally excited

states of HCN but cannot universally access the relevant states of the HCN/HNC

system.

Alternative strategies for the production of vibrationally excited HCN/HNC in-

clude discharge, pyrolysis, and photolysis. Of these, the pulsed discharge is the easiest

to implement and has, as described in Chapter 3, proven to be a reliable source of

69



ground-state HNC. Although it is possible to generate vibrationally excited states in

a pulsed-discharge coupled to a supersonic expansion [40], very little vibrational ex-

citation of the HCN/HNC products is observed in our apparatus. In laser photolysis,

an ultraviolet photon excites a molecule into a dissociative state. The partitioning of

excess energy among rotational, vibrational, and translational degrees of freedom in

the photoproducts depends upon the details of the dissociation mechanism. Despite

some controversy over the mechanism [97], we find that photolysis of acrylonitrile

(vinyl cyanide, CH2CHCN) at 193 nm (the wavelength of the ArF excimer emission)

is effective at producing observable quantities of HCN and HNC, highly excited in

the bending mode.1

Figure 4-1: Schematic of the laser-photolysis millimeter-wave spectrometer.

The absorption measurements are performed in the coaxial mm-wave jet spectro-

meter described in the previous chapter. The modifications made to the spectrometer

to incorporate a photolysis laser are depicted in Figure 4-1. The photolysis beam is

routed along the notch in the rooftop reflector so as to cause the precursor molecule

to fragment while it is still in the region of the jet expansion where there are suffi-

cient collisions with the inert atoms of the gas mixture to cause significant rotational

1Experiments monitoring the intensity of HCN and HNC signals as a function of excimer laser
intensity indicate that the species studied here are likely due to multiphoton dissociation processes.
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cooling. Under typical experimental conditions, the measured intensity ratios of the

several observed transitions (J = 1−0, 2−1, and 3−2) indicate a cooled rotational

temperature of ∼ 5 K for both HCN and HNC.

The cooling dynamics are relevant to the data acquisition in the coaxial spectro-

meter geometry because the mm-waves are spatially overlapped with the complete

expansion including the photolysis region. The recorded transients for photolysis-

produced HCN (0000), as a function of mm-wave frequency, are plotted in Figure 4-2.

Directly after the photolysis pulse, the absorption signals are relatively broad in fre-

quency, on the order of those observed in the orthogonal spectrometer geometry (see

Figure 3-4). While the HCN photoproduct is still spatially localized in the region of

the rooftop reflector, the molecules interact with the portion of millimeter-wave field

passing between the two walls of the rooftop reflector. Spectra time-gated to detect

only this absorption do not benefit from the narrowing associated with the coaxial

geometry.

Additionally, the photolysis products may have large translational velocities that

are not initially directed along the axis of the jet expansion but, instead, are relatively

isotropic as they would be in a static cell. It is only after experiencing sufficient

collisions with the buffer gas that the photoproducts become fully entrained in the

expansion and become transitionally cold enough to give spectra with the highest

resolution. This is evident in the bowing of the absorption transients of each of the

three hyperfine components displayed in Figure 4-2. The initial isotropic distribution

of velocities gives rise to broad Doppler profile. As the photoproducts experience

collisions, their velocity in the laboratory frame increases and becomes highly directed

along the beam axis. The experimental consequence is that the splitting between the

two Doppler components becomes larger. After further collisions, the translational

temperature, the velocity distribution of the molecules in the moving frame of the

molecular beam, decreases and the frequency width of each of the Doppler components
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narrows. As a consequence, the desired portion of the signal can only be collected once

the asymptotic velocity has been reached. If the spectra are integrated over the full v-

shaped time-evolution of the signal shown in Figure 4-2, the Doppler-split speaks are

skewed towards each other, and there is an intense and broad ‘zero-velocity’ peak that

obscures much of the hyperfine structure. In practice, the best, i.e. translationally

coldest, portion of the signal is selected by adjusting the gate to later times in order

to observe the broadest Doppler splitting and the narrowest absorption features.

Figure 4-2: Time dependence of hyperfine-resolved absorption signals of photolysis-
generated HCN (0000), J = 1 − 0. The color scale reflects the bolometer output
signal: darker color reflects larger absorption signals. As the photolysis products
become entrained in the supersonic expansion, the detected absorption transition
frequency shifts and narrows. The time-dependence of each hyperfine component of
the absorption is equivalent.

For the spectra described in this chapter, vibrationally excited HCN and HNC

are generated either by an electric discharge of a 2% acetonitrile/Ar mixture (for the

ground vibrational states and lowest few vibrational states) or by 193 nm photolysis

of a 2% acrylonitrile/Ar mixture (for the higher vibrational states). Methyl azide

(CH3N3) was also tested as a photolysis precursor and was found to produce significant
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quantities of HNC, however this route was discarded due to safety concerns associated

with its synthesis and handling. Excimer laser powers for the photolysis experiments

were in the range of 60–90 mJ/pulse.

4.3 Mm-wave spectroscopy of bend-excited HCN

and HNC

In HC14N and H14NC, the only nucleus with a nonzero quadrupole moment, Q, is 14N.

The interaction of the nuclear spin (IN = 1) with the rotational angular momentum

(J) causes the J = 1−0 rotational transition for both HC14N and H14NC to split into

three lines that are labeled according to the total angular momentum F = I + J and

have an intensity ratio of 3:5:1. Figure 4-3 shows the J = 1− 0 rotational absorption

spectrum of several bend-excited levels of HC14N and H14NC.

As shown in Figure 4-3, the hyperfine structure patterns of HCN and HNC are

qualitatively different. First, the sign of the splitting for the ground vibrational level

(0000) of HNC is reversed with respect to that of HCN: the weak HNC F = 0 − 1

component is on the low frequency side of the strong F = 2 − 1 component rather

than on the high frequency side, as in HCN. Second, the magnitude of the splitting is

an order of magnitude smaller for HNC than for HCN. Indeed, the hyperfine structure

of HNC cannot be resolved under normal Doppler-broadened conditions (Chapter 3).

Finally, bending excitation in HCN increases the splitting of the hyperfine compo-

nents, whereas bending excitation in HNC causes the splitting to decrease initially in

magnitude and to reverse sign.

The observed transition frequencies are recorded in Table 4.1. As in Chapter 3,

the line positions are fitted to a hyperfine Hamiltonian of the form given in Eq. 3.7,

including the spin-rotation interaction. Higher rotational levels are not uniformly

recorded, so the rotational constants are not determined. Instead the “hyperfine-
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Figure 4-3: Millimeter-wave rotational spectra (J = 1 − 0) of several bend-excited,
(0 v`2 0) vibrational levels of HCN and HNC, where v2 is the number of quanta in
the bending vibrational mode and ` is the vibrational angular momentum. Only one
member of each pair of Doppler-split peaks is shown. The frequencies have been
shifted such that the F = 2− 1 components are aligned at zero frequency shift.
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free” value for the J = 1 − 0 transition is determined by the fit. The fit results for

the observed vibrational levels are listed in Table 4.2.

Table 4.1: Hyperfine-resolved J = 1 − 0 transition frequencies (in MHz) of ground-
state and bend-excited H12C14N, H14N12C, and D15N12C.

Vibrational level F ′ − F ′′ = 1− 1 F ′ − F ′′ = 2− 1 F ′ − F ′′ = 0− 1

H14N12C (0000) 90663.622(3) 90663.556(3) 90663.417(3)
(0200) 91341.926(3)a 91341.911(3)a 91341.883(3)a

(0400) 92066.079(3) 92066.155(3) 92066.226(3)

H12C14N (0000) 88630.414(3) 88631.846(3) 88633.935(3)
(0200) 89086.423(3) 89087.914(3) 89090.085(3)
(0400) 89567.869(3) 89569.413(3) 89571.660(3)
(0600) 90080.003(3) 90081.591(3) 90083.904(3)
(0800) 90628.340(3) 90629.629(3) 90632.339(3)

(0 100 0) 91221.973(3) 91223.634(3) 91226.054(3)

D15N12C (0000) 75286.821(3) 75286.742(3) 75286.631(3)

Values in parentheses represent the experimental uncertainty, in units of the last digit.
aResults determined from lineshape analysis of unresolved spectral features; single line fit
yields 91341.914(3) MHz.

4.4 Ab initio calculation of (eQq)N

To explain the observed trends, we performed ab initio calculations at the CCSD(T)/cc-

pCVQZ level. By choosing a grid of 24 angles between the HCN (θ = 0◦) and HNC

(θ = 180◦) isomers and optimizing all other internal coordinates to minimize the total

energy, we obtained a one-dimensional potential from which (eQq)N values are calcu-

lated. Further details of the approach to solving for the energies and wavefunctions of

the resulting one-dimensional vibrational potential can be found in Ref. [99]. Here,

θ is the Jacobi angle between the Jacobi vectors r and R, where r is the N–C dis-

placement vector and R is the displacement vector between the C–N center of mass

and the H atom. As shown in Figure 4-4, the trends in the ab initio (eQq)N values

agree with the experimental observations: (eQq)N for HCN is large and negative, and
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Table 4.2: Fitted hyperfine parameters for H12C14N, H14N12C, and D15N12C.

Vibrational level ν0(J = 1− 0)/MHz eQqN/MHz CN/kHz

H14N12C (0000) 90663.5627(7) 0.2641(10) 6.79(10)
(0200) 91341.9156(11)a 0.0451(17)a,b 6.77(20)a

(0400) 92066.1372(7) -0.2066(8) 7.05(40)

H12C14N (0000) 88631.6010(16) -4.7084(11)c 9.99(43)
(0200) 89087.6577(18) -4.8966(21)d 10.33(82)
(0400) 89569.1480(40) -5.0699(63) 11.52(151)
(0600) 90081.3185(112) -5.2175(68) 11.52(82)
(0800) 90629.6887(11) -5.3485(41) 11.78(208)

(0 100 0) 91223.3489(40) -5.4579(107) 11.77(141)

D15N12C (0000) 75286.7557(16) 0.2550(38) -1.34(26)

Values in parentheses represent 95% confidence intervals of repeated measurements in units
of the last digit.
aMolecular constants based on results of lineshape analysis.
bInstrumental resolution and lack of resolvable hyperfine components indicate −0.060 <
(eQq)N < 0.060 MHz.
cLiterature value is -4.70903(162) [85].
dLiterature value is -4.8990(21) [98].
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(eQq)N for HNC is small and positive. Bending on the HCN side causes (eQq)N to

increase initially in mangnitude, whereas bending on the HNC side causes (eQq)N to

decrease in magnitude and then change sign.

To make quantitative comparisons with the experimental data, the ab initio values

of (eQq)N were averaged over the one-dimensional vibrational wavefunctions. To

obtain the experimental (eQq)N values, the frequencies of the three J = 1−0 hyperfine

components from each spectrum were fit with the SPFIT program [82]. As shown

in Table 4.3, the agreement between the experimental and ab initio (eQq)N values is

better than 35 kHz, which is remarkable considering our approximation of the motion

to a single coordinate.

Table 4.3: Experimental and ab initio (eQq)N values for H14N12C and H12C14N.

Vibrational level Experimental/MHza ab initio/MHz

H14N12C (0000) 0.2641(10) 0.2961
(0200) 0.0451(17)b 0.0611
(0400) -0.2066(8) -0.1915

H12C14N (0000) -4.7084(11) -4.6764
(0200) -4.8966(21) -4.8771
(0400) -5.0699(63) -5.0561
(0600) -5.2175(68) -5.2157
(0800) -5.3485(41) -5.3578

(0 100 0) -5.4579(107) -5.4843

aValues in parentheses represent 95% confidence intervals of repeated measurements in units
of the last digit.
bValue based on lineshape analysis; lack of resolvable hyperfine components and instrumen-
tal resolution indicate that −0.060 < eQqN < 0.060 MHz.
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Figure 4-4: (a) Ab initio (eQq)N values in the C–N bond axis frame as a function
of Jacobi angle. (b) Ab initio (eQq)D values in the C–D bond axis frame (triangles)
and the N–D bond axis frame (circles). The red line follows the (eQq)D values in the
C–D bond axis frame for θ < 90◦ and follows the (eQq)D values in the N–D bond axis
frame for θ > 90◦.
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4.5 Chemical interpretation of the variation of the

hyperfine structure

4.5.1 Variation of (eQq)N

According to the model of Townes and Dailey[5], the primary contribution to q in

most molecules is the unequal filling of p orbitals in the valence shell of the coupling

atom. In H–C≡N:, the bonding associated with the N nucleus consists of one electron

in an sp-hybridized orbital that contributes to a σ bond, two electrons in a counter-

hybridized sp orbital to make up the lone pair, and one electron in each of the px

and py orbitals for the two π bonds. The lone pair creates an excess of electrons

along the C–N axis, resulting in a large negative quadrupole coupling constant. In

contrast, the N bonding for the primary resonance structure of H−
+

N≡
−
C: consists

of one electron in an sp-hybridized orbital that contributes to the N–C σ bond, and

one electron in each of the px and py orbitals for the two π bonds. In this case,

the four covalent bonds leads to a balanced occupancy of p orbitals, thus an (eQq)N

near zero. The small positive value arises from the contribution of the secondary

resonance structure H–N̈=C:, which has a lone pair in the px orbital, causing an

excess of electrons perpendicular to the C–N axis.

As Figure 4-4 demonstrates, the values of (eQq)N do not follow a simple linear

function as the bend angle increases. Instead, bending of HCN initially causes the

magnitude of (eQq)N to increase before eventually decreasing during the isomerization

process. Yarmus[100] suggested that the effect of bending on (eQq)N was caused by

a decrease in the sp hybridization of the N–C σ bond. A natural bond orbital[101]

analysis of our ab initio calculations shows, however, that the hybridization changes

associated with the N atom are too small to account for this initial increase. Rather,

the increase in magnitude of (eQq)N is caused by a partial localization of the in-plane

π bond on the C atom that removes some of the electron density in the N-atom px
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orbital. Because the lone-pair electrons on the N atom remain primarily along the C–

N axis, an even larger p-electron imbalance is created, causing (eQq)N to increase. In

the region around θ = 90◦, however, the C–H bond breaks and the N–H bond forms.

This rearrangement of the chemical bonding shifts the lone-pair electrons off the C–N

axis and involves them in four covalent bonds, ultimately leading to a balance of the

p electrons and a decrease in (eQq)N.

4.5.2 Variation of (eQq)D

The nature of the bonding may also be observed from the perspective of the hydrogen

nucleus. Although hydrogen does not have a nuclear quadrupole moment (IH = 1/2),

deuterium (ID = 1) does. The Townes-Dailey model is not directly applicable for

predictions of (eQq)D because deuterium does not have any p electrons and its one

electron is in a spherically symmetric 1s orbital. Instead, the electric field gradient

q arises from the nuclear charge and the electron density of the atom to which the

deuterium is bound [102]. To simplify the experimental analysis, we examined the

D15NC isotopologue instead of the D14NC isotopologue, because 15N (I = 1/2) does

not have a nuclear quadrupole moment; thus, the hyperfine structure of D15NC gives

a direct measure of (eQq)D. The experimental and ab initio values for the ground

vibrational state of D15NC are 255.0(38) and 270.4 kHz, respectively. The J =

1 − 0 transition of DC15N is just outside the range of our spectrometer, but the

literature value[103] of (eQq)D = 200.9(8) kHz is in good agreement with our ab

initio calculation of (eQq)D = 208.9 kHz.

Unlike (eQq)N, (eQq)D is similar in sign and magnitude for the two isomers. More-

over, as shown in Figure 4-4, the ab initio values of (eQq)D remain relatively un-

changed as the molecule bends, except for the region around θ = 90◦ where the C–D

and N–D bonds are not well defined. The lack of change in (eQq)D indicates that

the chemical bond involving deuterium remains relatively unaltered until isomeriza-
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tion begins, when the D nucleus bridges the C and N nuclei. The angular region

over which this ‘bridged’ bonding arrangement exists can be related to the features

of the (eQq)D plot in Figure 4-4b. When the deuterium is involved with bonding

interactions with both the carbon and nitrogen nuclei, (eQq)D will be significantly

distorted from its linear-molecule values in both the C–D and N–D bond-axis frames

of reference. This is observed to occur, relatively symmetrically, over a range of 70◦

to 110◦ in the Jacobi angle. The variation of (eQq)N provides further support for a

qualitative change in bonding character over this region; 70◦ and 110◦ are both points

where the (eQq)N curve is kinked.

Because q originates primarily from the interaction with the nucleus to which

deuterium is bound, we expect q to be largely dependent on the bond length [104].

Indeed, the ab initio (eQq)D values are strongly anticorrelated with the bond length:

the smallest (eQq)D value occurs at θ = 90◦, which corresponds to the largest sepa-

ration between D and C or N. The analysis of the ab initio values of the hyperfine

coupling constants has recently been extended by our colleague, Bryan Wong [105].

4.6 Variation of the HNC quadrupole hyperfine

structure with excitation of stretching modes

To this point, the HCN/HNC system has been treated as one dimensional, exclusively

dependent on bond angle. The other degrees of freedom have been discarded due to

the fact that they do not directly project along the isomerization reaction coordinate.

Since the stretching motions do not lead to isomerization, excitation of the stretching

modes is expected to have little effect on the electronic structure and, therefore, on

the value of (eQq)N.2

2It is likely that excitation of stretching modes will give rise to interesting changes as one ap-
proaches the dissociation limits for bonds involving the nitrogen atom, but this has not been explored.
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Figure 4-5: Hyperfine-resolved J = 1 − 0 rotational spectrum of HNC in the (0001)
vibrational state.

The J = 1 − 0 rotational spectrum of HNC (0001), where ν3 is a predominately

C-N stretching vibration, is shown in Figure 4-5. As anticipated, the qualitative

appearance of this spectrum is the same as that of the vibrationless level of HNC.

The derived value for (eQq)N increases from the vibrationless value by approximately

10% to a value of 294 kHz.

4.7 Nuclear quadrupole hyperfine splitting reveals

nascent bond breaking isomerization

We have demonstrated that nuclear quadrupole hyperfine structure is altered by the

extent of bending excitation in HCN and HNC. As shown in Figure 4-6, the ab initio

(eQq)N values of HC14N and H14NC follow the patterns experimentally established at

low excitation and change smoothly as a function of increasing energy in the bending

coordinate. Near the isomerization barrier (above 15,000 cm−1), however, the (eQq)N

values of HC14N and H14NC deviate dramatically from their respective trends before
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approaching a nearly constant value at above-barrier energies.

Figure 4-6: Experimental and vibrationally averaged ab initio (eQq)N values for
HC14N and H14NC in the principal inertial axis frame, which is approximately aligned
with the C–N bond. The ab initio energies are referenced to the HCN (0000) level,
and the experimental (eQq)N values are matched to the ab initio energies accord-
ing to vibrational level. The (eQq)N values for HC14N and H14NC vary smoothly as
a function of energy until the onset of delocalization, at which point they deviate
dramatically.

This deviation is caused by the onset of delocalization of the vibrational wavefunc-

tion into the regions above both the HCN and HNC potential energy wells. Bowman

et al.[1] proposed the use of the electric dipole moment, another electronic structure

indicator, as a diagnostic for delocalized states, because the HCN and HNC isomers

have large dipole moments of nearly equal magnitude, but opposite sign, and the

delocalized states have dipole moments near zero. Stark effect measurements of the
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dipole moment can consequently characterize the degree of localization in a vibra-

tional state of HCN or HNC. Although a single measurement of nuclear quadrupole

hyperfine structure is not as useful as a single Stark effect measurement in terms of

identifying a delocalized level, hyperfine structure can determine whether the wave-

function is localized in the HCN or HNC potential well, which is not possible with a

single Stark effect measurement. Moreover, the dramatic deviation from the (eQq)N

trend along a progression of bending vibrational levels provides a useful indicator of

the onset of delocalization and provides a means of identifying pre-delocalized lev-

els. Thus, Stark effect and nuclear quadrupole hyperfine structure measurements

are complementary indicators of electronic structure that can be used as diagnostics

for detecting and assigning delocalized states. Because the lowest energy delocalized

state is the isomerization transition state, the detection of this state is tantamount

to catching the molecule in the act of bond-breaking isomerization.
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Chapter 5

Vibrational assignments in the S1

state of acetylene, I:

Pure-bending polyads

The work in this chapter resulted from a collaborative effort between myself and Prof.
Anthony Merer, with contributions from Dr. Nami Yamakita and Soji Tsuchiya. The
majority of the results in this chapter have been published in the Journal of Chemical
Physis (Ref. [106]).

5.1 Introduction

The Ã 1Au−X̃ 1Σ+
g electronic transition of acetylene is one of the most widely studied

of all polyatomic spectra. The principal reason is that acetylene is the simplest

compound containing a C≡C triple bond, so that the analysis of the spectrum gives

a clear picture of what happens on π∗ ← π electronic excitation of such a bond. As

is well known, acetylene is linear in its ground electronic state, but, as was shown by

Ingold and King[107, 108] and by Innes[109] over 50 years ago, it becomes trans-bent

in its first excited singlet state Ã 1Au. This was one of the first demonstrations that

a molecule can change its point group on electronic excitation. In fact, it is more
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complicated than this. The first excited singlet state (S1), which corresponds to a

1Σ−u state of the linear molecule, has potential minima corresponding to both cis- and

trans-bent isomers [110, 111, 112, 113, 114, 115, 116], but transitions from the ground

state are only permitted to levels of the trans isomer by the dipole selection rules.

The S1 state of the cis-isomer, Ã 1A2, has never been observed, though it is calculated

to lie about 3000 cm−1 higher that the Ã 1Au state of the trans-isomer[113, 116] or

roughly 1000 cm−1 below the dissociation limit [117]. Interesting dynamics will occur

at the barrier to cis–trans isomerization, and a search for the spectroscopic signatures

of these dynamics has been one of the motivations of this work.

A second reason for the interest in the Ã 1Au − X̃ 1Σ+
g transition of acetylene is

the wealth of detail it contains. The Franck–Condon pattern in absorption [118, 119]

consists of a long progression in the trans-bending (or “straightening”) vibration, ν ′3,

each member of which is the origin of a short progression in the C=C stretching

vibration, ν ′2. This is consistent with the rotational analysis, which shows[120] that

the equilibrium HCC angle is 122.5◦, and that the C–C bond length has increase from

1.208 to 1.375 Å, which is greater that that in C2H4. One of the results of the change

in point group symmetry on electronic excitation, which was found in the spectrum

of acetylene for the first time, is “axis-switching”[121] where a small rotation of the

principal inertial axis system upon excitation causes the appearance of unexpected

K ′−`′′ = 0 and ±2 subbands in an otherwise perpendicular (K ′−`′′ = ±1) transition.

Although predissociation sets in[117] just below the 34 level, its effects are minimal

at first. Very extensive rotational analyses have therefore been possible, leading to

a detailed description of the level structures of the ν ′2 and ν ′3 progressions and, from

hot bands, of the ground state ν ′′4 (trans-bending) vibration [118, 119, 122].

With a detailed understanding of the upper-state level structure available, the

Ã 1Au state has been a valuable stepping stone for emission studies [123, 124, 125,

126, 127, 128] and particularly for double resonance experiments. Among these are
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many comprehensive studies of the high vibrational levels of the ground state using

stimulated emission pumping[129, 130, 131, 132] and of the level structures of various

Rydberg and valence states[133, 134] and of the acetylene cation [135, 136].

Interestingly, although the Franck-Condon active (gerade) vibrational levels are

fairly well understood, much less is known about the ungerade vibrations of the Ã 1Au

state. IR-UV double resonance experiments via the ground state 3ν ′′3 level[2, 137]

have allowed analyses of the three ungerade fundamentals, ν ′4 (au, torsion), ν ′5 (bu,

antisymmetric CH stretch), and ν ′6 (bu, in-plane cis-bend), together with the combi-

nation 3151. The ν ′4 and ν ′6 fundamentals of the Ã 1Au state are almost degenerate

[2], with wavenumbers of 764.9 and 768.3 cm−1, respectively; they are also extremely

strongly coupled by Coriolis interactions. Further double resonance experiments via

the ground state ν ′′3 fundamental have allowed analyses[138] of the combinations 3241,

3261, 3341 and 3361, where again the structure is massivley distorted by Coriolis effects.

The only other information about the ungerade vibrations comes from one-photon

laser-induced fluorescence (LIF) studies of the excitation spectrum[139] where, with

the help of supersonic-jet cooling, some weak bands in among the strong Franck-

Condon progression were identified as combinations involving overtones of the ν ′4 and

ν ′6 vibrations.

The assignment of these weak combination bands[139] suggested that many other

bands involving the low-lying ungerade vibrations ν ′4 and ν ′6 should be observable given

sufficiently sensitive experiments. These bands would be highly forbidden according

to the Franck–Condon principle but could obtain small amounts of intensity through

anharmonic interactions of their upper levels with the Franck–Condon allowed levels.

The purpose of the present chapter is to describe the successful observation of a

number of such bands belonging to overtones of the ν ′4 and ν ′6 vibrations with up to

five vibrational quanta. The gerade members have been observed in one-photon LIF

experiments, and the ungerade members in IR-UV double resonance experiments via
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the ground state ν ′′3 and ν ′′3 + ν ′′4 levels.

The rotational and vibrational structures of these bands are highly unusual. Be-

cause the ν ′4 and ν ′6 vibrations have very nearly the same frequency, many of the

features of a doubly degenerate vibration, with its associated vibrational angular

momentum, appear in the overtone spectra. The strong Coriolis coupling of the ν ′4

and ν ′6 vibrations is one of these. Another is the strikingly large Darling–Dennison

resonance that occurs between the overtones of ν ′4 and ν ′6, and which causes the vi-

brational levels to be grouped into what looks like the vibrational angular momentum

level structure of a degenerate vibration. As far as we are aware, this type of pattern

has not been seen before in the bending vibrations of an asymmetric top molecules

The combination of a- and b-axis Coriolis coupling with the Darling–Dennison reso-

nance distorts the spectra very severely. The K-structure is totally disorganized, and

local rotational perturbations occur in the J-structure at many places where appro-

priate sets of levels happen to lie close to each other. For K > 0, all the members of

an overtone polyad appear in the spectra, whatever their nominal vibrational sym-

metries. Specifically, the distinction between a and b irreducible representations is

lost, although g/u symmetry remains valid (in the energetic region sampled by our

experiments).

5.2 Experimental details

The c-axis polarization of the Ã 1Au−X̃ 1Σ+
g transition implies the rotational selection

rule K ′ − `′′ = ±1. Taking into account the g/u symmetry properties of the levels,

it has been necessary to carry out four sets of experiments in order to map the

K ′ = 0 − 2 structure of the Ã state, as illustrated in Figure 5-1. In one-photon

jet-cooled experiments from the ground vibrational level, which has `′′ = 0, only the

vibrationally gerade K ′ = 1 levels are accessible in the absence or Coriolis- or axis-
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switching-induced “forbidden” subbands. To get at the gerade K ′ = 0 and 2 levels,

it is necessary to use a warmed sample that has a sufficient population in the ground

state ν ′′4 fundamental, where `′′ = 1. Similarly, for the ungerade vibrational levels

observed in IR-UV double resonance experiments, only the ungerade K ′ = 1 levels

can be reached if the intermediate level is a Σ+
u (`′′ = 0) ground state vibrational

level, such as the ν ′′3 fundamental; a Πu vibrational intermediate (`′′ = 1) is needed

in order to reach the ungerade K ′ = 0 and 2 levels.

Figure 5-1: Schematic energy level diagram showing how the K ′ − `′′ = ±1 selection
rule necessitates two experiments, both in one-photon excitation and in IR-UV double
resonance, in order to observe the complete set of upper state levels with K ′ = 0− 2.

Laser-induced fluorescence spectra of neat acetylene have been recorded in an

unskimmed pulsed jet expansion. The gas was expanded through a pulsed valve

(General Valve, Series 9) with a 0.5 mm orifice from a backing pressure of 200 kPa.

The ultimate vacuum achieved in the apparatus was 2 × 10−7 Torr, which rose to

5× 10−5 under normal gas load.

The laser radiation was the frequency-doubled output of a Lambda Physik 3002E

dye laser, pumped by the third harmonic of a Nd:YAG laser (Spectra-Physics DCR-

3). A small amount of the portion of the dye laser power was passed through a
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heated gas cell containing 130Te2 vapor for calibration (±0.02 cm−1 accuracy), while

the remainder was doubled in a β-barium borate crystal, and sent to the molecular

beam chamber. The laser radiation crossed the pulsed jet about 3 cm from the orifice.

Fluorescence from the excited acetylene was observed at right angles to both the

laser beam and the jet axis. The fluorescence was collected by a lens system and

detected by a Hamamatsu R331 photomultiplier after passing through a UG-5 or

UG-11 colored glass filter.

To observe the K ′ = 0 and 2 levels belonging to gerade vibrational states it has

been necessary to record hot band transitions from the ground state ν ′′4 fundamental.

In order to induce hot bands in the jet spectra while maintaining reasonably low

rotational temperatures, the distance between the nozzle and the intersection of the

laser with the pulse of molecules was reduced from ∼ 30 to ∼ 5 mm. Additionally,

the relative timing of the pulsed valve and the laser was adjusted so that the laser

radiation intersects the leading edge of the gas pulse, which is characterized by higher

effective vibrational temperatures.

The ungerade vibrational states have been observed by IR-UV double resonance,

using the ν ′′3 and ν ′′3 + ν ′′4 IR bands as intermediates. The infrared radiation was

generated in a two-step difference frequency generation/optical parametric amplifica-

tion process. A portion of the 1064 nm output of an injection-seeded Nd:YAG laser

(Spectra-Physics PRO-270) was mixed, in a lithium niobate (LiNbO3) crystal, with

the output of a dye laser (Lambda Physik FL 2002) operating with either LDS 798 or

LDS 751. The resulting infrared radiation was then passed through a second LiNbO3

crystal, which was pumped by the remainder of the 1064 nm beam. The amplified

IR radiation had an energy of approximately 3 mJ/pulse and a spectral width of

0.15 cm−1, which is limited by the resolution of the grating-tuned dye laser.

A small fraction of the IR beam was sent to a photoacoustic cell containing 10

Torr of acetylene gas. The observed photoacoustic signal was used to ensure that
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the IR frequency stayed in resonance with the desired vibrational transition. The

remaining IR radiation entered the chamber through a CaF2 window in the opposite

direction to the UV laser. The relative timing of the two lasers was adjusted so that

the beams were temporally overlapped, with the precise timing adjusted to maximize

the observed double-resonance fluorescence signals.

5.3 Theory

The energy level pattern for the coupled ν ′4 and ν ′6 bending fundamentals of the Ã 1Au

state of C2H2 has been described by Utz et al.[2] and is similar to that analyzed by

Hegelund et al.[140] in the infrared spectrum of the trans-bent molecule diimide,

N2H2. The overtones of ν ′4 and ν ′6, which are the subject of the present work on

C2H2, require, in addition, considerations of anharmonicity and Darling–Dennison

resonance [141]. A summary of the relevant theory follows.

5.3.1 Matrix elements of the rotational and Coriolis opera-

tors

For an asymmetric top molecule such as C2H2 in its Ã 1Au state, the general rotational

Hamiltonian[142, 143, 144] simplifies to

Ĥrot = A(Ĵa − Ĝa)
2 +B(Ĵb − Ĝb)

2 + C(Ĵc − Ĝc)
2, (5.1)

where A, B, and C are the rotational constants, Ĵ is the total angular momentum,

Ĝ is the vibrational angular momentum, and a, b, and c refer to the principal inertial

91



axes. When the squares are expanded, this equation becomes

Ĥrot = AĴ2
a +BĴ2

b + CĴ2
c (5.2)

− 2AĴaĜa − 2BĴbĜb − 2CĴcĜc

+ AĜ2
a +BĜ2

b + CĜ2
c .

The first three terms are the familiar rigid rotator Hamiltonian, followed by the three

first-order Coriolis terms, and finally three terms involving the squares of the compo-

nents of the vibrational angular momentum. These components are defined[145, 146]

as

Gα = QtrζαP, (5.3)

where Q and P are the vectors of vibrational normal coordinates and their conju-

gate momenta, and ζα is a skew-symmetric matrix of Coriolis coupling constants.

Multiplying this out, and considering just the vibrations ν ′4 and ν ′6,

Gα = Q4ζ
α
46P6 −Q6ζ

α
46P4. (5.4)

For the Ã 1Au state of C2H2 the only nonvanishing coupling constants between ν4

and ν6 are ζa46 and ζb46, which are related by the sum rule[118, 144]

(ζa46)2 + (ζb46)2 = 1. (5.5)

The terms in Ĝc can be ignored, since there is no c-axis coupling.

The matrix elements of the vibrational angular momentum operators follow from
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the matrix elements of the Q and P operators in a harmonic basis,[143]

〈v4 + 1 v6| Ĝα |v4 v6 + 1〉 = −iζα46~Ω[(v4 + 1)(v6 + 1)]1/2, (5.6)

〈v4 v6 + 1| Ĝα |v4 + 1 v6〉 = iζα46~Ω[(v4 + 1)(v6 + 1)]1/2,

where Ω is Mills’ abbreviation,[147]

Ω =
1

2

[√
ν4

ν6

+

√
ν6

ν4

]
. (5.7)

Since the highest J values in either our jet-cooled spectra or our double resonance

spectra are never more than 9, centrifugal distortion effects can be ignored. In a

signed-k basis the matrix elements of the rigid rotator and first-order Coriolis terms

are then

〈v4 v6 J k|Ĥ |v4 v6 J k〉 (5.8)

=
[
A− 1

2
(B + C)

]
k2 + 1

2
(B + C)J(J + 1),

〈v4 v6 J k ± 2|Ĥ |v4 v6 J k〉

= 1
4
(B − C)[J(J + 1)− k(k ± 1)]1/2[J(J + 1)− (k ± 1)(k ± 2)]1/2,

〈v4 + 1 v6 J k|Ĥ |v4 v6 + 1 J k〉

= 2iAζa46Ωk[(v4 + 1)(v6 + 1)]1/2,

〈v4 + 1 v6 J k ± 1|Ĥ |v4 v6 + 1 J k〉

= iBζb46Ω[J(J + 1)− k(k ± 1)]1/2[(v4 + 1)(v6 + 1)]1/2,

〈v4 v6 + 1 J k|Ĥ |v4 + 1 v6 J k〉

= −2iAζa46Ωk[(v4 + 1)(v6 + 1)]1/2,

〈v4 v6 + 1 J k ± 1|Ĥ |v4 + 1 v6 J k〉

= −iBζb46Ω[J(J + 1)− k(k ± 1)]1/2[(v4 + 1)(v6 + 1)]1/2.
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The matrix elements of the terms in Ĝ2
α can be obtained by matrix multiplication

from Eq. 5.6. There are nine possible expressions, but the only important ones are

the diagonal element and the elements that act within a given vibrational polyad,

defining this as one where the levels have the same value of v′4 + v′6,

〈v4 v6|AĜ2
a +BĜ2

b |v4 v6〉 (5.9)

= [A(ζa46)2 +B(ζb46)2](2v4v6 + v4 + v6),

〈v4 v6|AĜ2
a +BĜ2

b |v4 + 2 v6 − 2〉

= −[A(ζa46)2 +B(ζb46)2][(v4 + 1)(v4 + 2)v6(v6 − 1)]1/2,

〈v4 v6|AĜ2
a +BĜ2

b |v4 − 2 v6 + 2〉

= −[A(ζa46)2 +B(ζb46)2][v4(v4 − 1)(v6 + 1)(v6 + 2)]1/2.

In deriving these elements, the factors of ~2 are absorbed into the rotational constants,

and Ω2 has been taken as exactly 1; terms involving [(ν ′4/ν
′
6)1/2 − (ν ′6/ν

′
4)1/2]2 were

ignored since ν ′4 and ν ′6 are very nearly the same. The approximation of retaining

only the matrix elements of Ĝ2
α acting within a given polyad is not expected to cause

problems, since the closest polyads must differ by two units of v′4 + v′6, as a result of

the g/u symmetry properties of the levels, and will be separated by about 1500 cm−1.

It can be seen from the first line of Eq. 5.9 that one of the effects of the vibra-

tional angular momentum is to add a quantity [A(ζa46)2 + B(ζb46)2] to the vibrational

frequencies ν ′4 and ν ′6. With the values of the parameters taken from the least squares

analysis of the v′4 + v′6 = 2 polyad, described below, this quantity is 7.06 cm−1.

The vibrational angular momentum also adds twice this quantity, i.e. 14.12 cm−1,

to the anharmonicity parameter x′46. This is slightly larger than the observed value,

x′46 = 11.39 cm−1 (described below), and implies that the anharmonic force field

contributes a mere −2.73 cm−1 to x′46. The dominance of the angular momentum

contribution to x′46 is unusual and somewhat surprising. It also emphasizes that
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the role of vibrational angular momentum, in generating what looks like vibrational

anharmonicity, should not be neglected.

5.3.2 Darling–Dennison resonance

The off-diagonal elements in Eq. 5.9 have the same vibrational quantum number

dependence as those responsible for the Darling–Dennison resonance [141]. This is

a well-known effect[148, 149, 150] in the overtone spectroscopy of molecules such as

H2O and the ground state of C2H2. Provided that certain definite relationships be-

tween the Darling–Dennison resonance parameter and the anharmonicity constants

are satisfied [151], the Darling–Dennison resonance converts the normal mode energy

level pattern of low-lying stretching vibrational levels into a local mode pattern at

higher energy [148]. This represents how the vibrational structure changes from the

low energy pattern, where the two bonds vibrate in phase, to the high energy pat-

tern approaching dissociation, where just one of the two bonds breaks. The strong

Darling–Dennison resonance involving nearly degenerate bending vibrations in an

asymmetric top appears to be a new phenomenon. Some aspects of the resulting

vibrational level structure resemble what is found for stretching vibrations, but there

are also differences; research into the various effects is continuing. It should be pointed

out that the motions resulting from considering the combinations of modes ν ′4 and

ν ′6 are not ‘local,’ because these vibrations are not the symmetric and antisymmetric

motions of a pair of two symmetry-related internal coordinates. In the small ampli-

tude rectilinear limit, the resulting motions are in directions 45◦ with respect to the

ab plane.

Darling–Dennison resonance has been considered in some detail by Lehmann [152].

He gives the matrix element as

〈na + 2 nb − 2| Ĥ |na nb〉 = 1
4
Kaabb[(na + 1)(na + 2)nb(nb − 1)]1/2, (5.10)
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where

Kaabb =
1

4
φaabb +

∑
α

−Bα(ζαab)
2 (ωa + ωb)

2

ωaωb
(5.11)

+
1

8

∑
k

φkaaφkbbωk

(
1

4ω2
a − ω2

k

+
1

4ω2
b − ω2

k

)
− 1

2

∑
k

φ2
kab

ωk
ω2
k − (ωa − ωb)2

.

Although the notation is different, the term involving the ζαab parameters in Eq. 5.11

corresponds exactly to the coefficient in the off-diagonal elements of Eq. 5.9. Allowing

for the factor 1
4

in Eq. 5.10, this term contributes an amount −4[A(ζa46)2 +B(ζb46)2] =

−28.24 cm−1 to the parameter K4466. Although this is a surprisingly large amount,

which (as shown below) outweighs the effects of cubic and quartic anharmonic po-

tential constants, φ. It is remarkable that the vibrational angular momentum should

make such a large contribution to what is usually though of as anharmonicity, both

for the x′46 and K4466 parameters.

5.3.3 Structures of the Hamiltonian matrices

A complication in using the elements of Eq. 5.8 for a matrix calculation of the energy

levels is that the first order Coriolis terms are imaginary. This can be overcome by

multiplying the |v6〉 harmonic oscillator basis functions by a phase factor (i)v6 . To

implement this, the Hamiltonian matrices for each J-value from Eq. 5.8 are subjected

to a similarity transformation, H′ = S†HS. The S matrix consists of blocks for each

vibrational level that take the sums and differences of the signed-k basis function,

converting them to an unsigned-K basis [6], but with all the elements in the blocks

for the various vibrational levels multiplied by (i)v6 . The transformation factorizes the

matrix for each J-value into two submatrices, which can be given e and f symmetry

labels. Further factorization is not possible because of the ∆K = ±1 form of the
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b-axis Coriolis elements.

After the transformation the matrix elements are all real, but any element off-

diagonal in the vibrational quantum numbers carries a negative sign. The energy

matrices can then be constructed directly from Eqs. 5.8 and 5.10, taking into account

of the signs and the vibrational symmetries. Writing the basis functions as |K± x〉,

where ± indicates the sum or difference and x is the irreducible representation label a

or b, the e matrix contains the functions |0+a〉 , |1−a〉 , |1+b〉 , |2+a〉 , |2−b〉 , |3−a〉 , . . . ,

while the f matrix has the same structure but with the a and b labels reversed. As is

well known [6], the 〈k = −1|H |k = 1〉 asymmetry element is added to or subtracted

from the |K = 1〉 diagonal element by the similarity transformation, and any element

connecting a |k = 0〉 basis function to a |k = ±1〉 or |k = ±2〉 basis function gets

multiplied by 21/2.

5.3.4 Selection rules: Coriolis coupling and axis-switching

In the absence of Coriolis and axis-switching[121] effects, the rotational selection

rules for the c-axis polarized Ã 1Au − X̃ 1Σ+
g transition are K ′ − `′′ = ±1, ∆J =

0,±1. Both Coriolis and axis-swtiching effects act to destroy the strictness of the

first rule, giving rise to additional K ′ − `′′ = 0,±2 subbands. Because of this fact,

it is difficult to distinguish between the two effects. In this work, the term axis-

switching will be used to describe forbidden subbands of the Franck–Condon-allowed

3n and 2m3n progressions. These are easily recognized since the K-structures of

the upper levels follow the normal asymmetric top energy level expressions, because

there is no competing Coriolis coupling. The forbidden subbands in the bending

polyads are best described as Coriolis-induced since this is the principal mechanism

for their appearance. These forbidden subbands are mostly fairly weak, but a few

are suprisingly strong, particularly when two sets of levels with zero-order K values

differing by one unit happen to lie close to each other.
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As for the vibrational selection rules, these are found to be obeyed strictly only

for the K = 0 levels of the v′4 + v′6 = even polyads, where K ′ = 0 levels with bg

vibrational symmetry are not seen. For the v′4 + v′6 = odd polyads, the K ′ = 0 levels

with both au and bu vibrational symmetry appear in the double resonance spectra

via Πu intermediate levels (`′′ = 1). They can be distinguished by their different

rotational selection rules. For instance, in transitions from f -symmetry rotational

levels of a Πu intermediate level, K ′ = 0 levels with au vibrational symmetry (which

have e rotational symmetry) give only Q branches, while those with bu vibrational

symmetry (f rotational symmetry) give R and P branches. The pattern is reversed

in transitions from e-symmetry intermediate levels. The relative strengths of double

resonance transitions to K ′ = 0 levels with au and bu vibrational symmetry are found

to depend on which Πu intermediate state is chosen. Transitions to bu levels dominate

when ν ′′3 +ν ′′4 is used as the intermediate, though experiments with other polyads have

shown that transitions to au levels dominate when ν ′′1 +ν ′′5 is used as the intermediate.

It is not clear why this should be so. For K 6= 0 levels the a-axis Coriolis mixing

is so strong that that every vibrational level appears in the spectrum, with the only

restriction being that K ′ − `′′ = ±1 transitions are usually the most intense.

For simplicity in what follows, the distinction between K for the Ã 1Au state and

` for the X̃ 1Σ+
g state will not always be made. The two quantities describe the

projection of the total angular momentum along the linear or near-linear inertial axis

and are essentially equivalent.

5.4 Results

The structures of the bending polyads are highly irregular because of the interplay of

Coriolis coupling and the Darling–Dennison resonance. Both of these are very large

effects, with the experimental Darling–Dennison parameter K4466 found to be about

98



−50 cm−1 and the Coriolis parameter 2Aζa (which is the coefficient of K in the a-axis

coupling elements) about 18 cm−1. It is not possible to separate them or to under-

stand the structures of the polyads without data from levels with several K-values.

For instance, it is essential to have data from as many of the K = 0 stacks as possi-

ble, because these contain no a-axis Coriolis effects and allow the vibrational origins

to be established. Even so, these vibrational origins are not the fully deperturbed

origins, because they represent the levels that result after the Darling–Dennison reso-

nance has acted between harmonic basis levels of the same symmetry. The higher-K

stacks suffer from both Darling–Dennison and Coriolis effects, but the effects can be

separated because the a-axis Coriolis coupling depends linearly on K, whereas the

Darling–Dennison resonance is independent of K. This means that a successful least

squares analysis of a bending polyad requires data from K = 0, 1 and 2 stacks, at

a minimum. It is, of course, necessary to use the the deperturbed band origins to

calculate the higher-K levels correctly, since the Coriolis coupling and the Darling–

Dennison resonance are both perturbations on the rigid rotator–harmonic oscillator

basis.

5.4.1 The v′4 + v′6 = 2 polyad (B2)

The first overtone polyad (v′4 + v′6 = 2, or B2, where B means “bending”) lies near

43 700 cm−1. It consists of three vibrational levels: 42, 4161, and 62. In room temp-

erature absorption spectra it is completely buried under very intense hot band struc-

ture from the Franck–Condon allowed 3241 band, but in jet-cooled LIF experiments

the hot bands are sufficiently reduced to make analysis possible. Two regions of

structure can be recognized: a confused group of lines centered at 43 715 cm−1 and

an elegantly simple K ′− `′′ = 1− 0 subband at 43 796 cm−1. The 43 715 cm−1 group

is illustrated in Figure 5-2. In this figure, the lines of an overlapping hot band have

been colored light gray.
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Figure 5-2: Low frequency part of the v′4 +v′6 (B2) polyad of the Ã 1Au state of C2H2,
observed in one-photon laser excitation. Three subbands are present, representing
three interacting K-stacks, two with K ′ = 1 and one with K ′ = 2. The lines of an
overlapping hot band (3241,∆− Π) have been colored gray.
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The bands shown in Fig. 5-2 represent transitions from the ground vibrational

level of the molecule to the lower two of the three K ′ = 1 levels of the polyad, to-

gether with a Coriolis-induced K = 2− 0 subband. One of the K = 1− 0 subbands,

with Q head at 43 712 cm−1, is easily assigned and accounts for most of the strong

lines. Somewhat surprisingly for a level so low in the vibrational manifold, it contains

perturbations at J ′ = 4e and 5f . Because of the unexpectedly large Coriolis pertur-

bations and the severe blending, the remaining structure could not be assigned until

the v′4 + v′6 = 3 (B3) polyad had been analyzed, and the Darling–Dennison resonance

recognized. Calculations of the rotational structure then allowed the remaining lines,

and the perturbations, to be assigned immediately.

Experiments with a warmed beam gave the spectrum shown in Fig. 5-3. The

energy range illustrated lies below that of Fig. 5-2 by the amound of the ground state

ν ′′4 fundamental, and shows four of the K ′ = 0 and 2 stacks as hot bands from ν ′′4 .

The K ′ = 0 subbands belong to the two overtones, namely 42 and 62, which have ag

vibrational symmetry. Although the ν ′4 and ν ′6 fundamentals lie only 3 cm−1 apart, the

two overtones are 52 cm−1 apart, as a result of the Darling–Dennison resonance. The

third K ′ = 0 hot band, going to the combination level 4161 (bg vibrational symmetry),

is not seen. It would be observable if it lay close enough to one of the K ′ = 1 levels

to obtain some intensity by b-axis Coriolis coupling, but such is not the case here. It

is calculated to lie at 43 131 cm−1.

The K ′ = 1 and 2 subbands near 43 110 cm−1 in Fig. 5-3 are hot bands with the

same upper states as the cold bands near 43 720 cm−1 in Fig. 5-2. In Fig. 5-2 the

intensity is carried by the K ′ = 1 level, with the K ′ = 2 level getting its intensity by b-

axis Coriolis coupling. In Fig. 5-3 the roles of the two levels are reversed. Consistent

with the line strengths for a K = 2 − 1 band, the P branches of both bands are

expected to be much weaker than the rest of the structure, and are not seen. The

intense K = 2 − 1 hot band at 43 138 cm−1 in Fig. 5-3 goes to the middle K ′ = 2
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Figure 5-3: Hot bands of the v′4 +v′6 = 2 (B2) polyad of the Ã 1Au state of C2H2. The
region shown lies to the red of that shown in Fig. 5-2 by the amount of the ground
state ν ′′4 fundamental (πg, 612 cm−1). Overlapping lines from bands with ν ′′4 = 2 have
been colored gray.
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level. The uppermost K = 2− 1 hot band is calculated to lie at 43 258 cm−1, exactly

as the position of the strong Franck–Condon allowed 31
0 band. It will be totally buried

and has not been searched for.

The assignments of the K ′ = 0 and 2 hot bands near 43 140 cm−1 are confirmed

by the observation of some very weak lines near 43 750 cm−1 in the cold spectra,

corresponding to Coriolis-induced K = 0− 0 and 2− 0 cold bands. These had been

noted during the analysis of the cold spectra, but could not be assigned initially.

The line assignments of the various subbands are given in Table 5.4. In this table

the subbands are labeled for convenience by Roman numerals in order of increasing

energy for each K value.

Figure 5-4: (a) K-structure of the v′4 + v′6 = 2 polyad. Observed levels are shown in
black, calculated levels in gray. (b) J-structure of the eight lowest K-stacks of the
B2 polyad, with observed levels shown as black dots and calculated structure as gray
lines. A quantity 1.05 × J(J + 1) has been subtracted in order to reduce the term
energies to approximately flat lines.
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The level structure of the B2 polyad is illustrated in Fig. 5-4. The left-hand

side of Fig. 5-4 shows the K-structure. The two overtones, 42 and 62, are almost

degenerate in zero-order, with 42 lying 2.1 cm−1 above 62. However, as a result of

the Darling–Denison resonance, they give rise to two well-separated K = 0 levels,

whose wavefunctions are very nearly the normalized sum and difference of |42〉(0)
and

|62〉(0)
. The K = 0 level of 4161 lies above the midpoint of the two overtones because

of the x′46 term. For K = 1, the a-axis Coriolis coupling complicates the picture.

The 4161 level interacts essentially only with the upper of the mixed overtone levels,

whose approximate (sum) wavefunction is 2−1/2
[
|42〉(0)

+ |62〉(0)
]
. The lower mixed

overtone (difference) is almost unaffected. The result is that the two upper K = 1

levels are pushed apart, with one of the dropping almost to the energy of the lower

mixed overtone. For K ≥ 2 the Coriolis coupling between the upper mixed overtone

and 4161 is so large that the Coriolis-coupled levels become the top and bottom levels

for their K-value. It is possible to view these effects as an interference between the

Coriolis and Darling–Dennison interactions, which allows the sign of the Darling–

Dennison parameter to be determined.

The right-hand side of Fig. 5-4 shows the observed and calculated J-structure

plotted against J(J+1). Only the low energy levels are illustrated, so that the highest

observed K = 1 level lies off the top of the figure. The most obvious irregularity is

the very strong b-axis Coriolis perturbation between the lowest K = 2 level and the

second K = 1 level. The two levels are almost exactly degenerate in zero-order,

such that the splitting between the rises to over 20 cm−1 at J = 7. The lower level,

nominally K = 2, is pushed down so strongly that the R branch going to it (see Fig.

5-2) degrades entirely to the red, in contrast to the usual pattern. This level also cuts

through the lowest K = 1 level, causing the small perturbations mentioned at the

beginning of the section.

An unexpected feature in Fig. 5-4 is the presence of an unseen K = 3 level
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between the two uppermost K = 0 levels. It appears not to perturb the nearby K = 2

level, despite the possibility of b-axis Coriolis coupling (following ∆K = ±1 selection

rules), but to interact strongly with the two K = 0 levels. Detailed examination of

the rotational energy matrices and their eigenvectors confirms that the K = 2 and

K = 3 levels should not interact. The vibrational wavefunctions for these levels are,

to a good approximation,

K = 2 : (2)−1/2
[
|42〉(0) − |62〉(0)

]
, (5.12)

K = 3 : (2)−1/2 |4161〉(0)
+ 1

2

[
|42〉(0)

+ |62〉(0)
]

The b-axis Coriolis coupling between them would involve the matrix element

〈4161|(0)
Ĝb

[
|42〉(0) − |62〉(0)

]
, (5.13)

where the two terms cancel exactly, to give zero. On the other hand, ∆K = ±3

interactions between the K = 3 level and the two K = 0 levels arise from vibrationally

allowed cross-terms between the asymmetry and the b-axis Coriolis coupling.

Here, we note that the interactions described above demonstrate that, despite the

systematically large matrix elements that couple states within a Bn polyad, the vi-

brational levels cannot be described as “fully mixed.” That is, each eigenstate of the

polyad Hamiltonian has characteristics that are unique, though these characteristics

may not be obvious from the normal mode–asymmetric top labels. The fact that such

systematic (as opposed to statistical) characteristics can be identified points to the

fact that there likely exists a better zero-order basis in which to consider this rovi-

brational problem. In this better basis, the state labels would indicate the properties

of the eigenstates. Although we do not offer a description of a better basis in this

work, it seems likely that it would be related to the angular momentum properties of

two degenerate harmonic oscillators, as in the description of the vibrational levels of
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the linear electronic ground state of acetylene.

With seven of the nine K-stacks with K = 0− 2 assigned, there are enough data

for a least squares fit to the upper state term values. A simple model was chosen for

the rotational structure. The rotational constants A, 1
2
(B+C), and B−C were varied

just for the overtones 42 and 62, and it was assumed that the rotational constants

for the combination level 4161 were the averages of those for the two overtones. For

the coupling terms, the two Coriolis parameters 2Aζa and Bζb and the Darling–

Dennison parameter K4466 were varied initially, though it was later found that adding

a centrifugal distortion correction to K4466 improved the fit considerably. This was

taken as

Keff
4466 = K

(0)
4466 +K4466,DK

2
a . (5.14)

The vibrational parameters required some care. Since the K ′ = 0 stack of the combi-

nation level is not seen, there are only two observable band origins, corresponding to

the overtones 42 and 62, heavily mixed by the Darling–Dennison interaction. In the

end it was decided to included the J = K = 0 energies of the two fundamentals ν ′4

and ν ′6 (from the work of Utz et al.[2]), and to adjust, by least sqaures, ω′4, ω′6, and

two of the three anharmonicity parameters x′44, x′46, and x′66. The value of x′66 was

then fixed at −4.226 cm−1, as obtained from combining the position of the ν ′6 funda-

mental with the deperturbed origin of the 63 overtone (described in Section 5.4.2).

The fit is extremely good, with an rms error of 0.011 cm−1, which is comparable to

the accuracy of the line measurements. The results are give in Table 5.4.1.

The most surprising result is the large size of the parameters x′46 and K4466.

These are made up of contributions from the vibrational angular momentum and

the anharmonic force field, and in both cases the vibrational angular momentum

contribution is the larger. It is interesting to compare the anharmonic contributions

with those calculated from the anharmonic force field of Ref. [106]. For the Darling–

Dennison parameter K4466, where the experimental value, −51.68 cm−1, includes
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Table 5.1: Rotational constants from least squares fitting of the B2 polyad of the
Ã 1Au state of C2H2. Values are in cm−1.

Vibrational parameters Rotational parameters

62 42

ω′6 772.497 ±0.032 A 13.356 ±0.128 12.857 ±0.138
ω′4 764.709 0.075 1

2
(B + C) 1.0806 0.0077 1.0743 0.0080

x′66 −4.226 fixed (B − C) 0.1262 0.0077 0.0530 0.0088
x′46 11.385 0.080
x′44 0.191 0.047 2Aζa46 18.449 0.005
K4466 −51.678 0.020 Bζb46 0.7980 0.0023
K4466,D 0.0381 0.0281

rms error = 0.0112 cm−1

The J = K = 0 levels lie at 43 700.85 cm−1 (62, 1503.28 cm−1 above T00), 43 742.13
(4161, 1544.56), 43 752.57 (42, 1555.00). Derived Coriolis constants: ζa46 = 0.7038,
ζb46 = 0.7111; (ζa46)2 + (ζb46)2 = 1.001. The only correlation coefficients with magni-
tudes over 0.9 are 1

2
(B + C) (62)/1

2
(B + C) (42) −0.996, A(62)/A(42) −0.981, and

ω′4/x
′
44 −0.949.

−28.24 cm−1 from the vibrational angular momentum (meaning that the anharmonic

contribution −23.44 cm−1) a calculation using Eq. 5.11 gives −16.6 cm−1. Similarly,

for x′46, where the anharmonic contribution is −2.73 cm−1, a calculation using the

symmetry-allowed terms from Mills’ perturbation theory expression [153],

x′46 = 1
4
φ4466 − 1

4

∑
k

φ44kφk66/ωk, (5.15)

gives +1.08 cm−1. At the same time experimental anharmonicity parameters x′44 and

x′66 in Table 5.4.1 are quite small, which suggests that the pure bending motions

are comparatively harmonic, once allowance is made from the vibrational angular

momentum.

As for the Coriolis coupling parameters, these are almost unchanged from the val-

ues found in the fundamentals [2], where 2Aζa = 18.47 cm−1 and Bζb = 0.787 cm−1.

It is interesting to see how accurately the zeta sum rule (Eq. 5.5) holds in the B2

polyad. The derived values of ζa46 and ζb46 are given in Table 5.4.1; the sum of their
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squares is 1.001, compared to the theoretical value of 1.

The variation in the A rotational constants with v′4 and v′6 appears to be much

smaller for the overtones (Table 5.4.1) than for the fundamentals [2], where A(41) =

11.36(8) cm−1 and A(61) = 14.59(13) cm−1. However, we note that the average of

A(41) and A(61) is close to the value of the zero-point level, 13.057(5) cm−1.[118]

It is known from the N2H2 spectrum [140] that there is almost 100% correlation

between the A constants of two strongly a-axis Coriolis-coupled levels, such that only

their sum is well-determined. This may have also affected the determinations for

the C2H2 fundamentals. In the overtones the correlation is less severe because there

are more vibrational levels to provide data. On subject of correlation, we may also

note that our fitting models incorporate only the frequency information contained

in the spectra and not the intensity information. Using the intensity information

in the spectra, if it were meaningful, would allow the model to distinguish energy

level shifts due to variation in the diagonal energy terms, including the rotational

constants, from energy level shifts due to off-diagonal terms such as the Coriolis ζ

constants. Unfortunately, the intensity information in our LIF spectra is complicated

by a number of factors that affect the relative detection efficiencies of the populated

states, in addition to the pulse-to-pulse fluctuations in laser power that conspire to

render intensity information qualitative at best.

An interesting minor point is that the (deperturbed) asymmetry parameter (B −

C) is much smaller in the 42 level than it is in the 62 level. This is consistent with the

C2H2 molecule becoming nonplanar on average as the torsional vibration is excited.

The rationale is as follows. Since the inertial b and c axes interchange when C2H2 is

twisted from trans-bent to cis-bent, there must be a point near a twisting angle of 90◦

where it is accidentally a symmetric top, with B−C = 0. The prototype molecule for

this effect is H2S2, which is 90◦ twisted and accidentally almost exactly a symmetric

top [6, 154].
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5.4.2 The v′4 + v′6 = 3 polyad (B3)

The B3 polyad consists of four vibrational levels, 43, 4261, 4162 and 63. Their symme-

tries are au, bu, au and bu respectively. Two spectra of the polyad have been recorded

by IR-UV double resonance. In one, the ground state ν ′′3 funamental (`′′ = 0) was

used as the intermediate level in order to observe the K ′ = 1 levels. In the other,

the ν ′′3 + ν ′′4 combination level (`′′ = 1) was used to observe the K ′ = 0 and 2 levels.

Because of the strong b-axis Coriolis coupling, some of the K ′ levels appear in both

spectra.

Figure 5-5: Low energy part of the v4 + v6 = 3 (B3) polyad of the Ã 1Au state of
C2H2, as observed in IR-UV double resonance via the Q(1)−Q(5) lines of the ground
state ν3 + ν4 combination band (3897.16 cm−1).

The low energy part of the polyad is illustrated in Fig. 5-5, as seen following

IR pumping of the Q branch of the ν ′′3 + ν ′′4 band at 3897.16 cm−1. This branch is
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very compact, so that when the IR laser is tuned to its head the first five lines are

excited simultaneously, populating the J = 1f − 5f rotational levels. This allows the

complete double resonance spectrum to be recorded in one scan, though it loses the

state-selectivity of pumping individual rotational lines. Nevertheless the line assign-

ments could be made straightforwardly, using lower state combination differences.

To assist with the assignments a scan was also taken via the P (3) line of the band,

which populates the J = 2e levels. This was valuable in distinguishing the K ′ = 0

subbands, since the branch structures depend on the parity of the intermediate levels,

as described above.

The strongest features in Fig. 5-5 are two close-lying K ′ = 2 subbands. The

upper states interact with each other, and with nearby K ′ = 1 and 3 levels, inducing

extra subbands. At the low energy side are two K ′ = 0 subbands separated by 8

cm−1. They form a pair with bu and au symmetries. There is also another weak

Coriolis-induced K ′ = 1 band.

The central part of the B3 polyad is illustrated in Fig. 5-6. It contains the other

two K ′ = 0 subbands, again as a bu/au pair, but this time separated by only 0.7 cm−1.

Also present are another strong K ′ = 2 subband and weaker Coriolis-induced K ′ = 1

and 3 bands. The remainder of the polyad, not illustrated, consists of a K ′ = 1

subband at 44 614 cm−1 and a K ′ = 2 subband at 44 703 cm−1. These latter lie well

above the rest of the polyad, and are not perturbed.

TheK- and J-structures of the B3 polyad are illustrated in Fig. 5-7. The left-hand

side shows clearly how the Darling–Dennison resonance groups the four K = 0 levels

into au/bu pairs, separated by about 100 cm−1. As expected from the near degeneracy

of the ν ′4 and ν ′6 fundamentals, the four zero-order basis levels lie quite close to each

other, with the overtones below the combinations by an amount 2x′46. However, their

separations are much smaller than the Darling–Dennison matrix element. The result

is that one level of each symmetry is pushed up, and the other down, by the amount of
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Figure 5-6: Central part of the B3 polyad. This spectrum is a continuation of Fig.
5-5 to higher energy. The two K ′ = 0 subbands appear to be a single subband with
R, Q and P branches but closer examination shows that the Q branch (K = 0, au)
is shifted up by 0.73 cm−1 relative to the R and P branches (K = 0, bu).

111



Figure 5-7: (a) K-structure of the B3 polyad of the Ã 1Au state of C2H2, with the
observed levels shown in black and the calculated levels shown in gray. Vibrational
assignments are marked for the K = 0 levels, as given by their leading eigenvectors
coefficients. For K ≥ 1 levels the harmonic basis functions are so mixed that it is
meaningless to give assignments. (b) J-structure of the 13 lowest energy K-stacks.
Observed levels are shown as dots, calculated levels as gray lines. Two major avoided
crossing occur: one between the K = 1 and 3 levels near 44 150 cm−1 and the other
involving the second K = 2 level, which interacts with the lowest K = 2 and second
K = 1 levels.
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the coupling matrix element, which in this case is 50 cm−1. The patterns for higher K

values are not so simple, though in first approximation that Coriolis coupling between

the combination levels 4162 and 4261 pushes one of the levels far above the others.

The J-structure patterns show a number of local avoided crossings caused by the

b-axis coupling elements. These follow ∆K = ±1 selection rules in the rigid rotator

basis, and therefore act to destroy the goodness of the quantum number K as a label.

At the same time the Darling–Dennison resonance and the a-axis coupling, though

diagonal in K, scramble the harmonic oscillator basis levels, so that the resulting

patterns are often quite surprising. An example is given by the lowest two K = 2

levels. The upper of these two, which begins near 44 480 cm−1, is almost degenerate

with the second K = 1 levels, and it gets pushed down strongly by b-axis coupling

with it. As in the B2 polyad, the R branch going to it degrades entirely to the red

(see Fig. 5-5). At J = 6, this K = 2 level undergoes an avoided crossing with the

lowest K = 2, after which it goes on to perturb the two K = 0 levels at the bottom

of the pattern. Very clearly the K quantum number loses all meaning, as was noted

by Utz et al.[2] in their analysis of the fundamentals, though it is retained here as

a convenient label. Another unexpected avoided crossing occurs between the K = 1

and 3 levels near 44 510 cm−1.

Fourteen K ′ stacks have been identified, representing all the stacks with K = 0−2

together with two K ′ = 3 stacks. This has allowed a detailed least squares treatment,

of which the results are given in Table 5.4.2. As might be expected from the density

of perturbations, the main problem encountered was that of matching the eigenvalues

of the Hamiltonian to the observed upper state term values. After some experimen-

tation, the tactic adopted was to transform the Hamiltonian matrix in several steps.

In the first step the Darling-Dennison resonance and the a-axis Coriolis coupling el-

ements were diagonalized, after which the full Hamiltonian matrix was transformed

by the resulting eigenvectors. Since the elements eliminated were diagonal in K, the
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transformed basis states preserved the values of K. In the second step the asymme-

try elements (∆K = ±2) were diagonalized, such that the next set of transformed

functions still retained the odd- or even-K character of the original basis functions.

Finally the doubly transformed Hamiltonian matrix was diagonalized, eliminating the

b-axis coupling, and the eigenvalues sorted according to their eigenvector coefficients.

Even so, it was found that the sorting was not always accurate at the most severe

avoided crossings, so that the stacks with a given nominal K-value were then placed

in ascending order.

Table 5.2: Rotational constants from least squares fitting of the B3 polyad of the
Ã 1Au state of C2H2. Values are in cm−1. The band origins (T0) are given relative
to T00 ( Ã 1Au) = 42 197.57 cm−1, from Ref. [118].

Vibrational parameters Rotational parameters

63 43

T0 (43) 2295.008 ±0.102 A 13.000 ±0.050 13.121 ±0.051
T0 (4261) 2321.592 0.068 1

2
(B + C) 1.0870 0.0028 1.0685 0.0030

T0 (4162) 2314.791 0.087 (B − C) 0.1406 0.0072 0.0798 0.0102
T0 (63) 2279.470 0.086 A∆ −0.398 ±0.050

2Aζa46 18.363 0.009

K
(0)
4466 −51.019 0.009 2AζaD −0.0228 0.009

K4466,D 0.224 0.008 Bζb46 0.8024 0.0029

rms error = 0.0282 cm−1

The J = K = 0 levels lie at 44 457.26 cm−1 (43), 44 547.04 (4261), 44 547.77 (4162),
44 449.15 (63). Derived Coriolis constants: ζa46 = 0.7030, ζb46 = 0.7083; (ζa46)2+(ζb46)2 =
0.996. The parameter A∆ raises the A constant of 4261 (and lowers that of 4162)
relative to its value as interpolated between those for 43 and 63. The only correla-
tion coefficients with magnitudes over 0.9 are 1

2
(B + C) (63)/1

2
(B + C) (43) −0.948,

A(63)/A(43) −0.978, and 2Aζa/A∆ −0.934.

Again, a simple model was used fro the rotational energy, where only the A,

1
2
(B + C), and B − C constants for the overtones 43 and 63 were varied, with those

for the combinations being interpolated between those of the overtones. As in the

B2 polyad, the coupling terms used were K4466, 2Aζa, and Bζb, though the first two

were allowed centrifugal distortion corrections as in Eq. 5.14. No attempt was made

114



to write the band origins in terms of anharmonicity parameters, instead the four

deperturbed origins were taken as adjustable parameters.

The final fit was not quite as good as that for the B2 polyad, but there are other

factors to consider. The first is the possibility of Fermi resonance between the B3

polyad and the 21B1 polyad, which lies about 100 cm−1 below. In fact, with the

strong a-axis Coriolis coupling in both polyads the K-structure of 21B1 catches up

rapidly to that of B3, such that its upper K = 2 level lies only 40 cm−1 below the

lowest K = 2 of B3. An attempt was made to allow for interpolyad interactions by

extending the rotational matrices to include this Fermi resonance, but the results were

inconclusive, presumably because the small perturbation shifts could be absorbed into

effective constants for the B3 polyad. Another factor is that the interpolation of the

rotational constants for the combination levels reduces the flexibility of the model.

An additional parameter representing the shift in the A rotational constant for the

two combination levels, up and down from their interpolated values, was eventually

added. It made a considerable improvement in the quality of the fit.

A comparison of Tables 5.4.1 and 5.4.2 shows that the coupling parameters and

rotational constants are essentially the same in the B2 and B3 polyads, to within

their error limits. As was found in the B2 polyad, the asymmetry parameter B−C is

smaller for the 43 overtone than for the 63 overtone, again suggesting that excitation

of the torsional vibration ν4 makes the molecule significantly nonplanar. The line

assignments for the B3 polyad are included in Table 5.4.

5.4.3 The B4 and B5 polyads

Given the vibrational and rotational constants from the B2 and B3 polyads, the

structures of the higher bending polyads can be predicted with fair accuracy. The

bands are weak, since higher order anharmonicity terms are required to provide their

intensity, but it has been possible to identify portions of both the B4 and B5 polyads.
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The B4 polyad consists of five gerade vibrational levels, 44, 4361, 4262, 4163 and

64, whose K = 0 rotational levels are calculated to be spread over the energy range of

45 170− 45 365 cm−1. A search of the one-photon LIF spectra immediately identified

the two lowest K ′ = 1 subbands, within 2 cm−1 of their predicted positions, together

with a Coriolis induced subband. These are illustrated in Fig. 5-8. Also appearing

in Fig. 5-8 is the top K ′ = 1 member of the 21B2 polyad, which is expected to be in

Fermi resonance with the B4 polyad. The fact that the B4 levels are so close to their

expected positions indicates that the effects of the Fermi resonance are quite small.

Examination of the spectra taken with a warmed beam then allow identification of

the lowest K = 0 level and the second K ′ = 2 level, as hot bands from ν ′′4 . These

levels lie within 1 cm−1 of their predicted positions.

All five K ′ = 1 levels of the B4 polyad can be identified. The two lowest are

illustrated in Fig. 5-8, while the top three lie at 45 276, 45 301, and 45 446 cm−1, all

within 1− 2 cm−1 of their calculated positions. The levels at 45 276 and 45 446 cm−1

have not been observed before, but the 45 301 cm−1 level, which is almost coincident

with the 33 K = 1 level, had been seen earlier by Scherer et al.[3] The 45 301 cm−1

level has since been identified as a bending level [2], but it is now possible to assign

it unambiguously as the second-highest K ′ = 1 member of the B4 polyad. The

evidence for the assignment is very clear. First, it has essentially no asymmetry

splitting. Drabbels et al.[155] give the effective value of B − C as −0.001(3) cm−1,

while our calculation gives B−C = 0.006 cm−1. In comparison, the zero-point level of

the Ã 1Au state has B−C = 0.0931 cm−1 [118]. Second, it lies a mere 0.3 cm−1 from

its predicted position. It can be argued that its position that its position is affected

by the presence of the nearby 33 level but, since the two level lie only 0.4 cm−1 apart,

any shirt caused by interaction between them must be small. In fact, a reanalysis[155]

of the two interacting levels led to the conclusion that the best fit resulted when the

interaction strength was set equal to zero.
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Figure 5-8: Three of the lowest energy subbands of the B4 polyad, as seen in one-
photon laser excitation. There is a weak Fermi resonance with the K = 1 level of
2142 (assignments shown in gray).
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No attempt has been made to fit the levels of the B4 polyad by least squares

because only eight of the fifteen stacks with K ′ = 0 − 2 have been found, and it is

clear that at least two of the stacks are perturbed. For reference, the calculated level

pattern is given in Table 5.3. It is interesting to note how the K = 1 asymmetry

splittings vary erratically in these bending polyads: the pattern in the zero-point level

is that the J = 1e level lies 0.09 cm−1 above the J = 1f level, but in the B4 polyad

the J = 1e levels are calculated to lie below J = 1f for the lowest two ag levels, while

for the two uppermost K = 1 levels the asymmetry splitting is close to zero.

Table 5.3: Calculated J = K rotational levels of the B4 and B5 polyads ( cm−1). A
quantity 1.074× J(J + 1) has been subtracted in order to facilitate comparison with
Q branch positions in the spectra.

K = 0 K = 1e K = 1f K = 2

B4 45 171.80 (ag) 45 180.76 45 180.79 45 191.23
45 206.94 (bg) 45 197.94 45 197.84 45 220.97
45 239.79 (ag) 45 275.13 45 275.18 45 266.46
45 361.62 (bg) 45 301.63 45 301.63 45 346.16
45 363.22 (ag) 45 447.64 45 447.64 45 556.89

B5 45 894.42 (bu) 45 896.13 45 896.46 45 912.06
45 914.48 (au) 45 928.16 45 928.18 45 937.90
46 006.85 (bu) 45 979.55 45 979.56 46 006.98
46 017.50 (au) 46 076.83 46 076.84 46 058.26
46 192.59 (bu) 46 113.30 46 113.30 46 166.75
46 192.68 (au) 46 296.23 46 296.23 46 423.83

The B5 polyad consists of six ungerade vibrational levels, whose K ′ = 0 subbands

are calculated to lie in the region 45 890−46 200 cm−1. This is an extremely crowded

region of the double resonance spectrum, where five polyads overlap. Besdies B5,

bands are expected from 33B1, 3151, 11B1, and 21B3. The 33B1 polyad gives the

most intense bands, and has already been assigned by Mizoguchi et al. [138], the 3151

band has been assigned by Tobiason et al.[137] Reasonable predictions can then be

made for the K-structures of the other two polyads, based on the properties of the

B1 and B3 polyads. These indicate that there will be no structure with K ′ = 0 − 2
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from overlapping polyads above 46 150 cm−1.

As seen in double resonance via the ground state ν ′′3 + ν ′′4 , the region of 46 150−

46 240 cm−1 contains six subbands. It is immediately possible to identify three of

these as belonging to the B5 polyad since they lie within 2 cm−1 of the positions

calculated from the constants of the B2 and B3 polyads (see Table 5.3). These three

are the close pair of K ′ = 0 levels and the K ′ = 2 level illustrated in Fig. 5-9. The

calculations predict that the two topmost K ′ = 0 levels of the B5 polyad will form

an au/bu pair with the au member higher in energy 0.09 cm−1. What is observed is

an au/bu pair with the au member higher by 0.3 cm−1. (The small difference between

the observed and calculated positions is not considered significant.) The reason why

the topmost K ′ = 0 levels of a bending polyad form a close pair is that they correlate

with what would be the component of highest vibrational angular momentum if the

molecule were linear. For such a state, a perturbation would only lift the degeneracy

in high order.

Given that the predictions of the levels of the B5 polyad appear to be correct

within a few cm−1, it should be possible to identify more of them in the crowded

region at lower energy. Some likely candidates can be picked out but, until the various

resonances between the overlapping polyads are better understood, a discussion of

them would be premature.

Two other subbands appear in Fig. 5-9. One of these is the axis-switching-induced

K ′ = 3 subband of the 3151 level, the position of which is consistent with the constants

for that level given by Tobiason et al.[137] The other is a K ′ = 0 (bu) subband at

46 175 cm−1, which seems to be associated with a K ′ = 2 subband at 46 227 cm−1 (not

shown). Near this energy, every level of the Ã 1Au state that should exist has been

accounted for, and it seems that these subbands may represent levels of the cis-well

of the Ã(S1) that tunnel through the cis–trans isomerization barrier and obtain some

intensity through interactions with nearby levels of the trans-well.

119



Figure 5-9: The two topmost K ′ = 0 subbands of the B5 polyad, as seen in IR-UV
double resonance via the Q branch of ν3 +ν4 at 3897.16 cm−1. These form a very close
pair, with the K ′ = 0 (au) state lying 0.30 cm−1 above the K ′ = 0 (bu) state. The R
and P branches belong to the bu state, and the Q branch to the au state. Also shown,
with assignments marked in black, is the second highest K ′ = 2 subband. Two other
subbands, marked in gray, are the K ′ = 3 subband of 3151 and an unidentified K ′ = 0
subband which might possibly represent a level of the S1 cis-well.
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5.5 Discussion

In this work, detailed rotational analyses of the pure bending polyads with v′4 +v′6 = 2

and 3 have been carried out for the Ã 1Au state of acetylene. The v′4 + v′6 = 2 polyad

(B2) was recorded in high sensitivity one-photon laser-induced fluorescence spectra,

while the v′4 + v′6 = 3 polyad (B3) polyad was recorded by IR-UV double resonance,

using the ground state ν ′′3 fundamental and ν ′′3 +ν ′′4 combination level as intermediates.

The bands are weak because they are Franck–Condon forbidden; their intensity comes

from anharmonic mixing of their upper states with the Franck–Condon-allowed levels

of the 3n and 2m3n progressions.

The structures of the higher bending polyads are unexpectedly complicated be-

cause, in addition to the Coriolis coupling that was recognized[2] in the fundamentals,

they suffer from unusually strong Darling–Dennison resonance, where the parameter

K4466 is no less than −51 cm−1. Its effect is that, even for K = 0, the members

of a polyad with the same vibrational symmetry are pushed apart by amounts on

the order of 50 − 100 cm−1, even though the fundamentals themselves are almost

degenerate. For K ≥ 1 the a-axis Coriolis coupling causes the vibrational levels with

different symmetry to interact with each other, following ∆K = 0 selection rules,

while the b-axis Coriolis coupling cause local interactions between close-lying levels

with different K-values.

An interesting result of the strong a-axis Coriolis coupling is that the asymmetry

splitting in the higher K = 1 member of a bending polyad is almost zero. The reason

for this is that their wavefunctions contain nearly equal mixtures of basis states with

a and b vibrational symmetries, so that the equal an opposite asymmetry splittings

cancel in the heavily Coriolis-mixed levels.

As can be seen from Eqs. 5.9 and 5.11, the strengths of the Coriolis coupling

and Darling–Dennison resonance both depend on the vibrational quantum numbers,

which means that they becomes extremely large in the higher polyads. Nevertheless

121



the dependence is perfectly regular, so that it is possible to predict the level structures

of the polyads with v′4+v′6 = 4 and 5 with good accuracy, and to identify some of their

K-stacks. The bands involved are extremely weak, as might be expected since the

intensity is transferred to them from the Franck–Condon-allowed bands only by high

order mixing terms. Once allowance is made for the Darling–Dennison resonance,

the pure bending vibrational motion is found to be comparatively harmonic. The

underlying level structure can be represented by the following constants:

ω′4 = 764.71, ω′6 = 772.50, x′44 = 0.19, (5.16)

x′66 = −4.23, x′46 = 11.39 cm−1,

where, as discussed below, the value of x′46 arises mostly from the Coriolis coupling.

The Coriolis coupling is a symptom that vibrational angular momentum is present.

As Eq. 5.16 shows, the two bending vibrations ν ′4 and ν ′6 have almost the same

frequency. If the molecule were linear they would coalesce into the degenerate cis-

bending vibration (ν5, πu) of the linear configuration, with its associated vibrational

angular momentum. This angular momentum does not go away in the bent molecule,

but instead appears as a coupling of the two nearly degenerate vibrations. In the

rotational structure it gives rise to the a- and b-axis Coriolis coupling, while in the

vibrational structure is adds to the Darling–Dennison resonance parameter K4466

and the anharmonicity parameter x′46. Remarkably, the vibrational angular momen-

tum contributes the larger portion of both these parameters, which are usually con-

sidered to arise from the anharmonic force field. Specifically, it adds a quantity

2
[
A(ζa46)2 +B(ζb46)2

]
= 14.1 cm−1 to x′46, and −2 times this quantity to K4466. The

zeta sum rule, given as Eq. 5.5, is found to hold very accurately in the bending

polyads.

The analysis of the lowest bending polyads of the Ã 1Au state has important
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consequences for the understanding of the higher vibrational levels, particularly for

those approaching the barrier to cis–trans isomerization. A significant result is that

the singlet state vibrational level which appears to interact [3] with the low-J levels

of the 33, K ′ = 1 stack can now be definitively assigned. This state has been found

to interact via ∆K = 0 selection rules, albeit with a vert small matrix element

[155], suggesting that the mechanism involves a-axis Coriolis coupling or anharmonic

resonance. Based on their assignment of the ν ′4 and ν ′6 fundamentals, Utz et al.[2]

suggested that the interacting state was one of the vibrationally ag members of the B4

polyad, 44, 4262, or 64. With the accurate simulation of the B4 polyad available from

the present work, the interacting level is now seen to be the second-highest K = 1

member of the B4 polyad. This is a combination level with nominal bg vibrational

symmetry, though the strength of the a-axis Coriolis coupling is so great in this polyad

that for K > 0 the resulting levels are complete mixtures of ag and bg vibrational

basis states.

The patterns found in the B2 and B3 pure bending polyads can be extended to the

analyses of combination polyads such as 21B2 and 31B2. That is, the Coriolis/Darling–

Dennison polyad model for the pure-bending polyads establishes a template for the

expected energy-level patterns in the remainder of the spectra. The vibrational iden-

tities of the higher lying combination states are best understood in terms of to which

polyad they belong. Those states that do not fit within the polyad structure, estab-

lished in this chapter, stand out as unique and must be accounted for by a zero-order

state not belonging to the S1trans-well. One such state, suspected to be a vibrational

level belonging to the S1 cis-well, has been identified in this chapter, and several

others will be discussed in the chapters that follow.
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Chapter 6

Vibrational assignments in the S1

state of acetylene, II:

Totally symmetric modes

The work in this chapter resulted from a collaborative effort between myself, Dr.
Hans A. Bechtel, and Prof. Anthony Merer. The results in this chapter have been
published in Molecular Physics (Ref. [156]).

6.1 Introduction

The electronically excited states of polyatomic molecules, even those which can be

reached by a one-photon excitation from the ground state, are, as a rule, less com-

pletely characterized and less well understood than the corresponding ground elec-

tronic states. Access to excited states is limited by a number of factors, including

restrictive spectroscopic selection rules (particularly in the presence of high symme-

try), Franck-Condon overlap, and large variations in the detectability of vibrational

levels in the excited state manifold due to nonradiative processes, most notably pre-

dissociation. Though not immune to these difficulties, the Ã 1Au state of acetylene,

C2H2, is among the best understood of all polyatomic molecule excited states. This
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can largely be attributed to the fact that it has been the subject of numerous ex-

perimental approaches including high-resolution absorption [118, 119, 122], infrared-

ultraviolet double-resonance [2, 157, 138], and H-atom action spectroscopy [117, 158].

Pioneering work on this state focused on the change of geometry upon excitation

from the ground state [108, 109, 121]. The Ã 1Au excited state was demonstrated to

arise from a π∗g ← πu electronic excitation and to be characterized by a trans-bent

equilibrium geometry. In recent years emphasis has moved toward developing an un-

derstanding of the vibrational dynamics of trans–cis isomerization in the excited state

[127] and the role of specific classes of vibration in mediating the coupling between

the Ã(S1) state and the manifold of triplet states [159, 160, 161]. These efforts require

a nearly complete understanding of the vibrational energy level structure in order to

interpret the spectra in regions well above the vibrational fundamentals, where an-

harmonic and Coriolis interactions may have grossly distorted the expected energy

level patterns. However, even for a state of such prototypical nature, the complete

set of the fundamental vibrational levels has yet to be observed. The symmetric

C–H stretching fundamental, ν ′1, has remained undetected despite more than a half-

century of spectroscopic investigation. Furthermore, only a relatively small number

of the binary combinations and overtones are known, making it difficult to determine

the magnitudes of anharmonic contributions to the observed vibrational energies.

In order to be sure that our pictures of the vibrational dynamics are correct, we

need to establish the vibrational assignments for as many of the Ã state levels as

possible, building the vibrational assignments at higher energy upon a sound foun-

dation. The main obstacle to making a complete set of assignments at low energy is

the strength of the hot bands arising from the ground state ν ′′4 level and its overtones.

These are greatly enhanced, relative to cold bands observed at a similar frequency,

by the Franck-Condon principle and by the variation of the electronic transition mo-

ment with bending angle (which goes to zero at the linear configuration). As a result,
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the hot bands mostly obscure the weaker cold bands at the long wavelength end of

the absorption spectrum [162]. Thus many states, which either have poor Franck-

Condon factors for excitation from the ground vibrational state, or which are only

weakly allowed through anharmonic interactions with members of the Franck-Condon

active progressions, are likely to escape detection. As part of a continuing effort to

describe the vibrational dynamics of Ã-state acetylene, up to and including the onset

of trans–cis isomerization, we have recorded high resolution jet-cooled laser induced

fluorescence spectra in the region around 45 000 cm−1. Although barely detectable in

the jet-cooled survey spectra of Ref. [139], several analyzable bands were found in this

region. One of them, assigned as 22
0, is straightforward to assign. The others consist

of complicated structure resulting from interactions between the 11 fundamental and

the 21B2 polyad, where v′B = v′4 + v′6. The lower-state J values could be assigned

from population-labeling double resonance experiments, using an infrared laser to de-

populate selected ground-state rotational levels. A least squares fit has provided an

accurate value for ν ′1 = 2880.08 cm−1, in agreement with the results from Ref. [139],

as well as anharmonicity parameters describing the interactions of the symmetric C-H

stretching vibration with the polyad-forming low-frequency bending modes.

The new value determined for ν ′1 implies that some of the currently accepted

assignments above 47 000 cm−1 are in error. As a consequence, the interpretation of

dynamics studies, which have relied on the accepted spectroscopic assignments, must

be revisited. In particular, the pioneering studies of state-selective photodissociation

by Mordaunt et al.[163] used the assignment of a vibrational level at 47 206 cm−1 to

identify ν ′1 as a promoting mode for a dissociation mechanism involving direct S1/T1

crossing. In light of the current results, this mechanism is more likely to be promoted

by one or other of the low-frequency bending modes: ν ′4, torsion (au) and ν ′6, in-plane

bend (bu).
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6.2 Experimental details

Laser induced fluorescence spectra were recorded in an unskimmed pulsed jet expan-

sion of neat acetylene gas. No attempt was made to remove residual acetone, which

is present as a stabilizer. Acetylene was expanded through a pulsed valve (General

Valve, Series 9), with a 0.5 mm orifice from a backing pressure of 200 kPa. The

ultimate vacuum achieved in the apparatus was 2× 10−7 Torr, which was reduced to

5 × 10−5 Torr under normal gas load. The laser radiation intersected the pulsed jet

∼3 cm downstream from the orifice.

The radiation was the frequency-doubled output of a Lambda Physik 3002E dye

laser, pumped by the third harmonic of a Nd:YAG laser (Spectra-Physics DCR-3).

The majority of the power from the dye laser was doubled in a β-barium borate (BBO)

crystal, and routed to the molecular beam chamber, while the residual fundamental

was attenuated and passed through a heated gas cell containing 130Te2 vapor for

calibration (±0.02 cm−1 accuracy).

Fluorescence from the excited acetylene was observed in a direction that is per-

pendicular to both the laser beam and the jet axis. The fluorescence was collected

by a lens system and routed to a photomultiplier tube (PMT) assembly (Hamamatsu

R331). Before impinging on the PMT, the fluorescence was passed through a dichroic

mirror, which is coated for use at 193 nm and at an incident angle of 45◦. Used

at 0◦, we have found that this mirror does an excellent job of suppressing scattered

laser light near 220 nm, while transmitting the majority of the fluorescence in the

near-ultraviolet and visible regions.

6.2.1 Hot band promotion

The Ã 1Au− X̃ 1Σ+
g transition obeys c-type selection rules: K ′a = `′′± 1. This means

that, under beam conditions where most of the molecules are in the vibrationless
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level of the ground state, transitions go only to levels with K ′ = 1. The selection

rule is relaxed by axis-switching [121], but the resulting additional lines only have

appreciable intensity for J greater than about 5, where the population in the cold

molecular beam is already quite small. Therefore, the jet spectra usually only give

part of the asymmetric top rotational structure of a vibrational band, and do not

allow the A rotational constant to be determined. This is unfortunate since Merer

et al.[139] have stressed how the apparent A constant can be used to distinguish

between vibrational levels where only the totally symmetric modes are excited and

those where even quanta of the low-frequency non-totally symmetric modes ν ′4 and

ν ′6 are excited.

In order to observe more of the K structure, the experiment was modified so

as to record hot bands arising from the v′′4 = 1(`′′ = 1) level. While this could be

accomplished by recording spectra in a static cell as in Ref. [139], we have found that

weak hot bands are easily obscured by the high J lines of nearby bands with more

favorable Franck-Condon factors.

With the goal of populating the ν ′′4 level while maintaining reasonably low rota-

tional temperatures, the distance between the nozzle and the intersection of the laser

with the pulse of molecules was reduced from ∼ 30 mm to ∼ 5 mm. Additionally,

the relative timing of the pulsed valve and laser was adjusted so that the laser ra-

diation intersected the leading edge of the gas pulse, where the effective vibrational

temperature is higher.

6.2.2 Absolute lower state J-numbering

Utz et al. [2] demonstrated that strong a- and b-axis Coriolis effects in Ã-state C2H2

destroy the regular energy level patterns upon which spectroscopic assignments are

often based. They were able to assign the spectra of the coupled ν ′4/ν ′6 system (B1

polyad) because their IR-UV double resonance experiments gave a series of spectra
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originating from known J ′′, thereby simplifying the assignment of J ′.

In order to assign J ′ in complicated spectra terminating on gerade vibrational

levels, spectra have been recorded using a population-labelling technique. An IR

laser is tuned to a selected rotational line within the ground state ν ′′3/(ν
′′
2 + ν ′′4 + ν ′′5 )

dyad. The IR laser has sufficient power to saturate the line partially and therefore

reduce the lower state population for a selected value of J ′′. While the laser is tuned

to a particular rovibrational line in the IR, the UV spectrum of interest is scanned

with a second laser. The repetition rate of the IR laser is reduced to half that of

the UV laser, so that every other UV laser shot samples the depleted lower state

population. The detection electronics average the difference between each pair of

consecutive shots, returning a spectrum that only contains features that originate

from the rotational level that has been selectively depleted by the IR laser.

A similar effect can be achieved by recording the spectrum under conditions of a

temperature-regulated static gas cell [162] or by systematically varying the expansion

conditions in order to alter the effective rotational temperature of the sample. How-

ever, in the case of significant overlap between lines originating from different values

of J ′′, differing temperature-dependence of the underlying structure often precludes

any clear assignment. We therefore favor the more definitive, population-labelling

technique, which returns an essentially binary answer to the question: is any signif-

icant intensity at this UV laser frequency due to population in the selected value of

the lower state J ′′?

The IR radiation for this experiment was generated by difference frequency genera-

tion (DFG) in a lithium niobate (LiNbO3) crystal by mixing the 1064 nm fundamental

of an injection-seeded Nd:YAG laser and the output of a dye laser (Lambda Physik FL

2002) operating with LDS 798. The infrared radiation was then amplified by optical

parametric amplification (OPA) in a second LiNbO3 crystal to provide approximately

3 mJ of infrared light. The IR and UV light are spatially and temporally overlapped
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at the sample, with the precise timing of the IR laser set to optimize a depletion

signal on a line with a known lower state while minimizing the intensity of satellite

peaks due to collisions that occur in the time between the IR and UV pulses.

6.3 Theory: Matrix elements for the interacting 11

and 21B2 vibrational levels

The interaction between the 11 fundamental and the 21B2 polyad can be modeled by

adding the function |v1〉 to the basis set of Eqs. 5.8 and 5.9, and including matrix

elements for the anharmonic interactions. The operator for these latter was taken as

Ĥanharm = K1244q̂1q̂2q̂
2
4 +K1266q̂1q̂2q̂

2
6. (6.1)

The relevant matrix elements of this operator, which are diagonal in J and k, are

〈v1 = 1 v2 = 0 v4 = 0 v6| Ĥanharm |v1 = 0 v2 = 1 v4 = 2 v6〉 = 1
2
√

2
K1244 (6.2)

〈v1 = 1 v2 = 0 v4 v6 = 0| Ĥanharm |v1 = 0 v2 = 1 v4 v6 = 2〉 = 1
2
√

2
K1266.

As in Ref. [106], a similarity transformation was applied to the matrices to remove

the imaginary matrix elements of the first order Coriolis coupling. The effect of this

on the matrix elements of Eq. 6.2 is that the terms in K1266 have their signs changed,

but those involving K1244 remain unchanged. This becomes important in determining

the relative signs of K1244 and K1266 from the experimental data.
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Figure 6-1: Laser-induced fluorescence spectra of jet-cooled C2H2 in the region of the
22

0 (upper panel) and 22
040

1 bands (lower panel). The lower spectrum is offset by 612
cm−1, the ground state ν ′′4 fundamental frequency, in order to display the asymmetric
top Ka-structure in the 22 vibrational level. The 44 910− 44 935 cm−1 portion of the
spectrum is expanded by ×20 to show the corresponding 22

0 band for the H13C12CH
isotopologue, present at its natural abundance.

6.4 Results

6.4.1 The 22 level

Although the survey spectrum shown in Figure 3 of Ref. [139] contains no discernible

features in the region near 45 000 cm−1, our high-sensitivity measurements reveal

several bands of detectable strength in this region. The lowest energy band, displayed

in Figure 6-1, lies at 44 960 cm−1 and is of clear Π − Σ type. In order to complete

the rotational analysis of the upper state of this transition, the jet conditions were

adjusted to favor hot bands originating from the ν ′′4 level of the ground state, and

a spectrum was recorded approximately 612 cm−1 lower in energy in order to locate

the associated K-structure. Although it is overlapped by the stronger 32
0K

2
0 axis-
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switching transition, a Σ − Π type band could be identified at 44 337 cm−1 with a

corresponding ∆ − Π band at 44 385 cm−1. The upper state term values were fitted

by least squares using Watson’s A-reduced Hamiltonian and gave the constants listed

in Table 6.4.1. Line positions for all bands described in this section are provided at

the end of the chapter.

Table 6.1: Rotational constants (in cm−1) for the 22 vibrational level of the Ã 1Au
state of C2H2. The error limits are the 3σ uncertainties derived from the fit.

T0 44948.681 0.033
A 12.757 0.045
B 1.1060 0.0012
C 1.0155 0.0015
∆K 0.0031 0.0099
∆JK 0.00017 0.00057
∆J 0.28 x 10−5 fixed

r.m.s. error 0.0117

The 1047 cm−1 interval between this level and the level 2231 at 45 995.65 cm−1, pre-

viously assigned in Ref. [139], strongly supports the assignment of the 44 948.68 cm−1

level as 22. This assignment is confirmed by the vibrational dependence of the ro-

tational constants. In particular, the ν ′2 fundamental is the only level observed by

Watson et al.[118] that has a smaller Av rotational constant (12.902 cm−1) than the

vibrationless level (13.057 cm−1). Our fitted value of Av for the 44 948 cm−1 band

very closely matches the extrapolation from the observed ν ′2 fundamental.

It should be noted that these observations are only possible given the simplification

afforded by jet cooling. Watson et al.[118] have studied this region of the spectrum

previously at high resolution in absorption, but identified only numerous hot bands,

mostly involving the K-structure of the strongly Franck-Condon allowed levels ν ′2+2ν ′3

and 4ν ′3.

The high sensitivity of our jet LIF measurements is demonstrated by the presence

of an additional Π−Σ type band at 44 920 cm−1, which is approximately one percent
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as intense as the band at 44 960 cm−1. This band lacks the characteristic 3:1 intensity

alternation caused by the nuclear spins of the equivalent hydrogen atoms. In addition,

its ground state combination differences are about 3 percent smaller than those for

the zero-point level of C2H2, consistent with an assignment to the 22
0 band of the

H13C12CH isotopic species. No spectra of the Ã← X̃ transition for this isotopologue

are available in the literature, though the vibrational structure of its ground electronic

state has been investigated in great detail [164].

6.4.2 Deperturbation of the 11/21B2 interaction

Between 45 000 and 45 170 cm−1 there is significant structure in the spectrum that

has not previously been observed. With the 44 949 cm−1 level assigned as 22 from

its A rotational constant, the only remaining level involving excitation of just the ag

symmetry normal modes that could lie in this region is the ν ′1 fundamental. As for

combinations involving the low frequency bending modes (ν ′4, torsion (au) and ν ′6,

in-plane bend (bu)), the v′4 + v′6 = 2 polyad (B2, for short) was shown in Chapter 5

to lie near 43 720 cm−1, so that the 21B2 polyad should lie near 45 100 cm−1. The B4

polyad can be discounted since its lowest K = 1 level lies at 45 182 cm−1.

The observed spectrum consists of two clear Π − Σ bands at 45 078 cm−1 and

45 162 cm−1, together with a collection of moderately strong but confused lines near

45 090 cm−1. The Π−Σ bands strongly resemble the lowest and highest components

expected for a B2-type polyad. The remaining structure could initially be interpreted

only as being induced by pervasive Coriolis interactions.

In order to establish secure rotational assignments for the remaining lines, the

spectrum was re-recorded using the population-labeling technique described in section

6.2.2 for J ′′ = 0 − 5. An example of the results of this technique is shown in Figure

6-2 for the highly congested region of 21B2 near 45 090 cm−1. The downward going

lines in the lower trace are the LIF depletion signal recorded with the IR laser tuned
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to the R(1) line of the ν3 ← GS band at 3299.52 cm−1.

Only after the lower-state rotational numbering had been established could we

identify the various branches making up the spectrum. Of particular note is that two

lines with lower state J ′′ = 0 are located only 4.34 cm−1 apart. These must both

be R(0) lines, showing that there are two close-lying J = 1e,K = 1 levels present.

They can be immediately assigned to the 11 and 21B2 (middle polyad component)

vibrational levels.

However, the branch structure associated with these lines is unexpectedly com-

plicated because the lower energy J ′ = 1 level is strongly perturbed. Among the

remaining lines it is possible, given the lower-state J-numbering, to assign a sub-

band containing abnormally strongly degraded Q- and R-branches, the first lines of

which show that it has K ′ = 2. The resulting energy level pattern is shown, plotted

against J(J + 1), in Figure 3. As the figure shows, this K = 2 level interacts, by

very strong b-axis Coriolis coupling, with the 21B2 K = 1 (middle) level, which in

turn interacts with the 11 K = 1 level via anharmonic resonance. By accident the 11

K = 1 level happens to lie exactly in the middle of the Coriolis pattern, so that its

level structure gets severely disrupted at J = 2, where the Coriolis interaction sets in.

The Coriolis mixing is essentially complete, which means that the 21B2 K = 1 char-

acter is spread equally between the nominal 21B2 K = 1 and 2 levels. The 11 K = 1

level, lying between them, then feels equal and opposite perturbations from the two

21B2 levels, so that its level structure appears to be regular at higher J values.

As in the case of the 22 level, the corresponding hot band region for the 11/21B2

levels has been recorded with the jet conditions adjusted to favor hot bands. The

degree of congestion and spectral overlap is significantly worse in this region, but it

is possible to identify hot bands terminating on the K ′ = 0 sublevels of 21B2(lower),

21B2(upper), and 11. In addition, the corresponding K ′ = 2 sublevels have been

located for the 21B2(lower), 21B2(middle), and 11 states.
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The term energies of the states from the 10 identified sublevels (out of 12 possible

with K ′ = 0− 2) were fitted by least squares to the Hamiltonian described in section

6.3. The results are given in Table 6.4.2. The reported value of T0(11) corresponds to

a vibrational energy of +2880.08(16) cm−1 with respect to the vibrationless level of

the Ã state. A complete account of the structure of the 21B2 polyad and its relation

to other 2n3mB2 polyads follows in the next chapter.

Table 6.2: Term values, rotational constants, and coupling parameters determined
from the fit to the Coriolis/anharmonic model for the 11/21B2 vibrational levels
described in section 6.3. The values of the rotational constants for the 214161 level
are fixed to the averaged values of the 2142 and 2162 levels. The error limits correspond
to the 3σ uncertainties from the fit.

Level 11 2162 214161 2142

T0 45 077.65 ±0.48 45 097.98 ±0.72 45 108.33 ±0.66 45 089.16 ±0.36
A 12.672 0.021 13.535 0.180 12.906 fixed 12.277 0.210
B̄ 1.0741 0.0012 1.0670 0.0054 1.0667 fixed 1.0664 0.0054
B − C 0.0989 0.0051 0.1184 0.0141 0.0885 fixed 0.0585 0.0141

K1266 8.922 ±1.223 2Aζ46
a 17.956 ±0.021

K1244 −1.854 4.036 Bζ46
b 0.790 0.006

K4466 −51.39 0.48

r.m.s. error 0.023

6.4.3 Vibrational assignments up to +4500 cm−1

With the assignments of the 11 and 22 vibrational levels, we are able to make reliable

predictions for the other vibrational levels with excitation in the totally symmetric

modes, ν ′1, ν
′
2 and ν ′3. Using the term values and A rotational constants of 21 and 22,

we predict that the 23 K = 1 sublevel will lie at 46 302.83 cm−1. The one-photon LIF

spectrum in this region is dominated by the very intense 34
0 K = 1−0 band. However,

just beyond the R-branch of this band, and extending a little way into it, are two

series of lines which, based on their intensity patterns, appear to be another R- and

Q-branch pair terminating on a K = 1 level at 46 302.51 cm−1. A least squares fit,

shown in Table 6.4.3, gave values for the upper state B and C rotational constants
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Figure 6-3: Reduced term value plots of the K = 0 − 2 levels of acetylene in the
45 000 cm−1 region. Solid squares mark the positions of e-symmetry levels, triangles
mark the f -symmetry levels, and circles mark positions where the e- and f -symmetry
levels are unresolved in our experiments. The dashed lines represent the energy
levels calculated from the Hamiltonian of section 6.3, with fit parameters given in
Table 6.4.2. The energy scale for the left panel covers the range of +2750-2965 cm−1

of energy above the Ã state origin. The right-hand panel is an expansion of the
term value plot corresponding to the spectral region illustrated in Figure 6-2. States
belonging to the 22 and nominal 11 levels are plotted in black, while the nominal 21B2

states are plotted in gray. The kink at J = 1 in the reduced term value curve for the
nominal 11 K = 1 level is caused by the multistate interaction with the 21B2 polyad
described in section 6.4.2.
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that are completely consistent with extrapolations from the constants of the 21 and

22 levels, confirming that the upper state is the 23, K = 1 level.

Table 6.3: Rotational constants (in cm−1) for the 23 vibrational level of the Ã 1Au
state of C2H2. Only Ka = 1 data are included in the fit, and the A rotational constant
is fixed to the value extrapolated from the 21 and 22 levels. The error limits are the
3σ uncertainties derived from the fit.

T0 46 290.94 0.014
A 12.622 fixed
B 1.0966 0.0013
C 1.0095 0.0039

r.m.s. error 0.0090

The remaining level of those containing excitation only in the totally symmetric

modes is 1121. From the level positions of 11 and 21, we predict the 1121 level to

lie at 46 464.55 cm−1, with an A rotational constant of 12.517 cm−1. We find a

relatively strong K = 1− 0 band in the one-photon LIF at 46 474.95 cm−1. However,

it is difficult to interpret the hot band spectra for this region, in which there appear

to be two K = 0 sublevels at 46 460.53 and 46 467.85 cm−1 and a K = 2 level at

46 509.41 cm−1. It seems that this is another example of the K12bb interaction that we

have successfully deperturbed in the 11/21B2 region. Here the near-degeneracy occurs

between the K = 0 sublevels of 1121 and one component of 22B2, thus obscuring the

expected asymmetric top structure for the 1121 band. However, if we assume that the

perturbation only affects the K = 0 sublevel, it is possible to fit the remaining data

from K = 1 and 2 in order to extract a zero-order vibrational energy of +4265.91

cm−1. The results of the fit are given in Table 6.4.3. The vibrational origin of

1121 extrapolated from the fit would place it very near the midpoint of the two

observed K = 0 sublevels. The magnitude of the separation between the two resulting

K = 0 eigenstates is consistent with the matrix elements derived from the of 11/21B2

interaction, listed in Table 6.4.2.
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Table 6.4: Rotational constants (in cm−1) for the 1121 vibrational level of the Ã 1Au
state of C2H2. Data from the Ka = 0 sublevel are excluded because of a strong per-
turbation by a member of the 22B2 polyad. The error limits are the 3σ uncertainties
derived from the fit.

T0 46463.481 0.027
A 12.544 0.012
B 1.1095 0.0009
C 1.0313 0.0012
∆K 0.000 fixed
∆JK 0.00059 0.00033
∆J 0.000 fixed

r.m.s. error 0.0177

6.5 Vibrational parameters for the totally

symmetric modes

Our deperturbation of the 11/21B2 interaction provides the definitive value of

ν ′1 = 2880.08(16) cm−1, (6.3)

in essentially complete agreement with the conclusions of Ref. [139]. As foreshadowed

in Ref. [139], this resolves the discrepancy between the earlier assigned value of

ν ′1 ≈ 3040.6 cm−1 given in Ref. [118], and the normal mode analysis of Tobiason

et al.[137] The agreement between our revised value and the result from the normal

mode analysis (ν ′1 ≈ 2954cm−1) is not perfect, but much of the discrepancy can be

attributed to the uncertain partitioning of the observed term energies into harmonic

and anharmonic contributions. Unfortunately, the 12 vibrational level is expected to

lie above 47 500 cm−1, in a region of very high state density. This factor, coupled

with the anticipated poor Franck–Condon factor for the transition from the ground

state, makes it unlikely that an experimental value for x′11 will be determined before

significant advances have been made.
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The measurement of the ν ′1 fundamental frequency is in good agreement with the

ab initio vibrational perturbation theory treatment presented in Ref. [139] (ν ′1 ≈ 2940

cm−1) and the recent MULTIMODE result[165] (ν ′1 ≈ 2903.28 cm−1). It is noteworthy

that, in conjunction with the measurements of Refs. [118], [2], and [157], all of the

upper state fundamentals have now been directly observed and rotationally analyzed.

Such completeness is very rarely achieved for a molecule with more than three atoms.

Furthermore, with our assignment of the 1121 and 23 levels, all the vibrational states

involving excitation of the totally symmetric modes have now been established up to

4500 cm−1 of vibrational energy.

From our direct measurement of the 22 level, we have been able to determine a

value of

x′22 = −11.35 cm−1. (6.4)

This value is again consistent with the previous determination (x′22 = −12.13 cm−1)

from [139]. It also supports the assumption made in Ref. [137] that anharmonicities

can be transferred according to the isotopic relation

x∗ii = (ω∗i /ωi)
2xii, (6.5)

in which the starred quantities refer to vibrational parameters of an unmeasured iso-

topologue. Using this relation, Tobiason et al. [137] derived x′22(C2H2)= −10.5 cm−1

using the measured anharmonicity of C2HD.

Similarly, from our measurement of the 1121 vibrational level, we obtain a value

of

x′12 = −1.07 cm−1. (6.6)

In fact, all of the x′ij parameters for the totally symmetric modes are now well known,
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with the exception of the diagonal anharmonicity, x′11. The vibrational energy formula

G(v1, v2, v3) =
∑
i

ωi(vi +
1

2
) +

∑
i≥j

xij(vi +
1

2
)(vj +

1

2
) (6.7)

can be parameterized to the observed (and, in the case of 11, deperturbed) vibrational

term energies of the Ã-state vibrational levels with up to two quanta of excitation in

the ag symmetry modes. The resulting parameters are given in Table 6.5.

Table 6.5: Vibrational parameters for the ag symmetry

vibrational modes of Ã 1Au state of acetylene. ω1 + 2x11 2885.89

ω2 1410.26

ω3 1070.34

x22 −11.35

x33 −8.70

x12 −1.07

x13 −10.55

x23 −0.24

6.6 Vibrational assignment of previously observed

levels

With this knowledge of the vibrational level structure, we can assign several previ-

ously observed ag combination levels up to at least +5000 cm−1. The parameterized

vibrational energy formula implies positions for the 2232, 1132, and 112131 K = 1 levels

of 47 039, 47 148, and 47 513 cm−1 respectively. Although not rotationally analysed in

Ref. [139], a K = 1− 0 band is apparent in their overview spectra near 47 044 cm−1.

Based on the agreement with our predicted vibrational energy, we tentatively assign

the upper state of this band as 2232. Between 47 100 and 50 500 cm−1, Yamakita et
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al. [158] have analysed a large number of bands in LIF and H-atom action spectra.

They observed a K = 1 − 0 band with a value of T0 + A = 47 512.47 cm−1. We

tentatively assign the upper state of this band as 112131.

Most notably, on the basis of the assignments of 11 in this work and 1131 in Ref.

[139], it is clear that the assignment in Ref. [119] of 1132 K = 0 at 47 194.80 cm−1,

with the corresponding K = 1 at 47 206.31 cm−1 should be re-examined. As shown

in Ref. [139], the known anharmonicity constants are consistent with the assignment

of the K = 1 level at 47 146.92 cm−1 as 1132. It is also likely that assignments at yet

higher energy, based upon following the vibrational intervals up from the erroneous

ν ′1 energy, may prove incorrect, specifically the K = 1 level observed at 48 160 cm−1

assigned as 1133 in Ref. [119], and the higher members of the 113n progression assigned

in Ref. [122].

6.7 Impact of reassignment on our understanding

of S1 predissociation

The reassignment of ν ′1 may have significant impact on the current interpretation of

the near-threshold photodissociation of acetylene. Mordaunt et al. [163] argued that

excitation of ν ′1 enhanced the probability of dissociation through a direct (S1 → T1 →

C2H + H) channel relative to nearly isoenergetic states with excitation in the Franck-

Condon active modes, which favor dissociation through an indirect (S1 → T3 → T2 →

T1 → C2H + H) pathway. This argument was based on the comparison of the C2H

product state distributions, derived from total kinetic energy release measurements,

arising from the vibrational state-selected excitation of Ã-state C2H2. In particular,

bimodal product state distributions were noted by comparing photolysis energies of

47 265.0 cm−1, terminating on the 35 level of the Ã state, and 47 212.5 cm−1, accessing

the level then assigned as 1132 and currently under question. From the enhanced low-
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J population present in the dissociation via the lower energy state and the associated

H-atom recoil anisotropy, they concluded that this state decays by a mechanism

that is both more direct and that imparts less torque to the C2H fragment than the

mechanism which dominates the decay of other states, particularly those at lower

energy.

They interpreted these results in light of the ab initio calculations of Cui and

Morokuma [166, 167] who tabulated stationary point energetics for various low-lying

singlet and triplet states and, in addition, the minima of the seams of intersection

between these electronic potential energy surfaces. While the indirect channel can, in

large part, be rationalized by a mechanism resulting from sequential crossings from

the S1 to T3 to T2/1 and eventual dissociation over a late barrier on the T1 surface,

the mechanism controlling product formation for the more direct channel is not as

clear. It is argued that the barrier which determines the product formation is half-

linear, where the bond fission occurs for the C-H bond which is aligned with the

CC bond, and therefore provides little torque to the departing C2H fragment. The

origin of the barrier is postulated to be the direct S1/T1 crossing, which may be

invoked in the mechanism because the crossing is calculated to occur at a similar

energy. However, the S1/T1 minimum of the seam of intersection (MSX) is calculated

to have Cs symmetry and an out-of-plane structure with a dihedral angle of ∼ 140◦.

Mordaunt et al. point out that the MSX structure does not resemble what they

anticipate for a dissociation transition state structure, but they do not discuss how

the MSX structure and the expected half-linear structure would both appear to be

unrelated to the observation that ν ′1 serves as a promoting mode for this channel.

Since ν ′1 is the symmetric C-H stretching mode, it is not expected to provide access

to either out-of-plane or semi-linear geometries invoked in the argument of Ref. [163].

However, in light of the recent reassignment of 1132 K ′ = 1 to a lower energy band

at 47 147 cm−1 [139], the vibrational character of the level accessed in photolysis
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at 47 212.5 cm−1 is currently unknown. As we have mentioned, the assignments of

vibrational levels containing excitation in only the totally symmetric, ag, vibrational

modes are considered secure up to to +4500 cm−1 (46 700 cm−1) and can be extended

with some certainty up to +5000 cm−1 (47 200 cm−1). The lowest energy state formed

from totally symmetric modes which has not been at least tentatively assigned is

2331, the K ′ = 1 level of which is expected to lie near 47 348 cm−1, some 140 cm−1

above the observed level position. Therefore, the upper state of this transition must

involve excitation in the non-totally symmetric modes, belonging to either a 2n3mB2

or 2n3mB4 polyad. From energetic considerations, the most likely polyads to which

the state may belong are 2132B2, 32B4, or 34B2. Merer et al. [139] have suggested

that the abnormally low value reported for Av for this level in Ref. [119] was consistent

with asymmetric top structure that had been distorted by Coriolis interactions, which

are characteristic of the polyads formed by the low-frequency bending modes.

The plausible assignments of the 47 206 cm−1 level can be viewed in light of the

analysis of phototodissociation results. The two geometric structures, out-of-plane

with 140◦ dihedral angle and half-linear, implicated in the direct S1/T1 dissociation

channel can each be associated with one of the two low-frequency bending vibrations.

Reaching the out-of-plane structure of the S1/T1 MSX requires excitation of the tor-

sional mode ν ′4. More interestingly, the half-linear structure, postulated on account

of the low-J population of C2H fragments, bears strong resemblance to the calculated

Ã-state trans–cis isomerization transition state. Reaching the isomerization tran-

sition state requires excitation in a superposition of the cis- (ν ′6) and trans-bending

(ν ′3) normal modes. It is, therefore, possible that the state previously assigned as 1132

may instead be one of the lowest members of a new class of states whose vibrational

wavefunctions lie primarily along the isomerization coordinate, and the emergence of

which is due to anharmonic interactions between the Franck-Condon active modes

(ν ′2, ν
′
3) and the low-frequency bending vibrations (ν ′4, ν

′
6).
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We will consider the precise nature of the 47 206 cm−1 vibrational state and its

relation to the onset of trans–cis isomerization in a later chapter.

Table 6.6: 22 upper state, K ′a = 0 and 1.

Σ− Π Π− Σ Σ− Σ

J R Q P R Q P Qfe

0 44962.55
1 44341.02* 44336.74 44334.66* 64.53 44960.09 44948.48
2 42.62 36.30 32.00 66.32 59.54 44955.50 47.96*
3 44.01 35.66* 29.18 67.90 58.69 52.74 47.28
4 45.14 34.66 26.07 69.33 57.60 49.83 46.35
5 46.06 33.49 22.78 70.57 56.23 46.74 45.19*
6 46.71 32.18* 19.22 71.59 54.55 43.45 43.76
7 15.40 72.44 52.64* 39.96 42.11
8 73.08 50.35 36.30
9 73.55 47.84 32.45
10 73.84 45.19*

*Denotes a line that is blended or otherwise uncertain.

Table 6.7: 22 upper state, K ′a = 2.

∆− Π

J Ree Rff Qfe Qef Pee Pff

1 44387.68
2 89.31 44382.96
3 90.78 82.28 44375.92
4 91.92 81.26 72.80
5 92.92 80.21 80.07 69.62
6 93.50 78.88 78.62 65.92
7 94.21 77.33 76.92 62.41
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Table 6.8: 22(H13C12CH) upper state, K ′a = 1.

Π− Σ

J R Q P

0 44922.57
1 24.48 44920.18
2 26.23 19.61 44915.67
3 27.73 18.78 13.01
4 29.07 17.68 10.14
5 30.22 16.31 07.03
6 31.21 14.65

Table 6.9: 11 upper state, K ′a = 0 and 1.

Σ− Π Π− Σ Σ− Σ

J R Q P R Q P Q

0 45089.69
1 44470.06 44465.79 44463.64 93.18 45087.31
2 71.72 65.38 61.06 95.10* 88.29 45082.64
3 73.78 64.70 58.26 96.90 87.64 81.42 45076.34
4 74.63 64.05 98.33 86.65 78.66 75.66
5 75.65 63.00 99.55 85.41 75.66 74.58
6 61.74 72.45
7 68.97

*Denotes a line that is blended or otherwise uncertain.

Table 6.10: 11 upper state, K ′a = 2.

∆− Π

J Ree,ff Qfe,ef

1 44516.92
2 18.65 44512.18
3 20.21 11.64
4 21.56 10.72
5 22.74 09.89
6 23.80
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Table 6.11: 23 K ′a = 1 upper state.

Π− Σ

J R Q

0 46304.67
1 06.60 46302.21
2 08.36
3 09.89 00.77
4 11.21
5 12.35
6 13.28
7 13.96

Table 6.12: 1121 K ′a = 1 and 2 upper states.

Π− Σ ∆− Π

J R Q P Ree Rff Qfe Qef Pee Pff

0 46477.14
1 79.13 46474.73 45901.73
2 80.96 74.21 46470.07 03.42 45897.03
3 82.61 73.43 67.35 04.92 96.40 45890.00
4 84.10 72.41 64.50 06.15 95.45 86.91
5 85.41 71.15 61.47 07.29 07.17 94.46 94.30 83.74
6 86.54 69.61 58.23 08.15 07.95 92.94 80.16
7 87.47 67.89 54.81 91.72
8 65.97 72.58
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Chapter 7

Vibrational assignments in the S1

state of acetylene, III:

Combination polyads and the

approach to isomerization

The work in this chapter resulted from a collaborative effort between myself and Prof.
Anthony Merer. A version of this chapter has been submitted as an article to the
Journal of Molecular Spectroscopy.

7.1 Introduction

Multiple potential energy minima exist on the S1 electronic surface of acetylene. The

barriers separating these minima are relatively small (compared to the bond-breaking

isomerization barrier on the ground state), a fact that suggests that the anharmonic

vibrational interactions should become important at relatively low energy. In partic-

ular, the lowest energy path to trans–cis isomerization is calculated to occur through

a half-linear geometry, where one of the CCH bond angles remains at 120◦, while the
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other hydrogen atom moves onto the C-C bond axis. This important geometry is not

a point along any of the normal mode coordinates, but rather requires a superposi-

tion of the trans (ν ′3) and cis-bending (ν ′6) vibrations to be excited in order for it to

be reached from the equilibrium geometry. The trans-bending mode is the primary

Franck–Condon active mode in the Ã 1Au − X̃ 1Σ+
g transition. As a result, long

progressions in v′3 are observed in the spectrum. In contrast, ν ′6 is of bu vibrational

symmetry and, therefore, forbidden to appear in the one-phone spectrum. Weak over-

tones of ν ′6 have recently been observed on in the excitation spectrum (see Chapter 5),

where they are found to be strongly mixed with the torsional mode, ν ′4, which also has

a nearly identical frequency. Coriolis interactions and Darling–Dennison resonance

between these modes lead to the formation of polyads, which are characterized by

unexpected rotational and vibrational patterns.

In this chapter, we describe the combination polyads, which contain excitation in

the Franck–Condon active modes as well as the coupled low frequency modes. We

aim to identify the effect that excitation of the Franck–Condon active modes has on

the polyad structures in order to begin to characterize the effects of the trans–cis

isomerization barrier. A second goal is to use the known polyad structures in order

to securely assign all observed vibrational bands. Unassigned vibrational bands are

of particular interest because they may involve vibrational levels of the unobserved

cis well, transitions to which are forbidden by dipole selection rules.

7.2 Appearance of the spectra

The various vibrations involved in the combination polyads described in this chapter

introduce considerable vibrational anharmonicity. As discussed below, this anhar-

monicity causes the simple model of Eqs. 5.8 and 5.9 to break down, though the

basic structures of the polyads are not changed. We have not found a way to extend
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the model to allow for the anharmonicity, and in our least squares fittings we have

had to introduce, somewhat artificially, a number of centrifugal distortion terms and

other corrections. These make minor adjustments to the K-structure, of the order of

1–2 cm−1, which then allow the rotational levels to be fitted with reasonable accu-

racy, though in some cases the values of these parameters are wholly unreasonable.

These terms should be considered merely as fitting parameters, with no real physical

meaning.

We refer to the bending polyads using the notation Bn. This notation means that

the sum of the bending quantum numbers, v′4 and v′6, for the vibrational levels making

up the polyad is n; for example the 21B2 polyad consists of the three vibrational levels

2142, 214161 and 2162.

Figure 7-1 presents survey spectra of the Ã 1Au − X̃ 1Σ+
g system of acetylene

as observed in jet-cooled excitation. The lower trace is the one-photon excitation

spectrum from the ground vibrational level, which shows the K ′ = 1 levels of the

Franck-Condon allowed (gerade) vibrational levels together with some of the bands

involving the bending overtones. These latter are so much weaker than the Franck-

Condon allowed bands that they are barely detectable at the long wavelength end

of the spectrum. Leading lines show their positions. The upper trace shows the

ungerade vibrational levels, as seen in IR-UV double resonance taken via the P(1)

line of the ground state ν ′′3 fundamental (which populates the J ′′ = 0 level). In this

spectrum every vibrational band is reduced to a single R(0) line with K ′ = 1. The

spectra are shown at the same horizontal scale, but displaced from each other by the

average frequency of the upper state bending vibrations, so that the corresponding

Franck-Condon allowed bands in the two spectra are roughly aligned vertically. The

IR-UV double resonance spectrum becomes very complicated at about 46 000 cm−1

and the vibrational assignments at higher energy have not been completed. Some

one-photon bands are unavoidably present in these double resonance spectra; these
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bands appear whenever the frequency of the UV laser happens to coincide with an

absorption band. They are marked with asterisks in the figure.

Figure 7-1: Survey spectra of the Ã 1Au−X̃ 1Σ+
g system of acetylene recorded with jet-

cooling. Lower trace: One-photon excitation spectrum from the ground vibrational
level, showing the K ′ = 1 levels of the Franck-Condon allowed gerade vibrational
levels and some of the bending overtones. Upper trace: IR-UV double resonance
spectrum of the ungerade vibrational levels, taken via the J ′ = 0 level of the ground
state ν ′′3 fundamental. In this spectrum a vibrational band is reduced to a single R(0),
K ′ = 1 line. Asterisks indicate one-photon artifacts.

Two points concerning the 3nB1 polyads should be noted in Fig. 7-1, upper trace.

First, the splitting between the two members of the polyads increases with excitation

of ν ′3 and, second, the lower members drop progressively below the corresponding one

photon bands. In these polyads the nominal 3n61 level always lies below the nominal

3n41 level, providing clear evidence that the combinations of ν ′3 and ν ′6 are highly
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anharmonic, as noted in Ref. [138]. Both traces in Fig. 7-1 show how the widths

of the polyads, in energy terms, depend on the number of bending quanta that they

contain. This is a result of the Darling-Dennison resonance term which, as Eq. 5.11

shows, has a strong vibrational quantum number dependence.

Some of the low-lying stretch-bend combination polyads of the Ã 1Au state have

already been described by other authors. Specifically, Mizoguchi et al. [138] reported

analyses of the 32B1 and 33B1 polyads, and quoted unpublished results for the 31B1

polyad. In Chapter 6, we have given some details of the 21B2 polyad, since it interacts

with the ν ′1 fundamental. The present chapter reports analyses of 21B1, 22B1, 22B2,

31B2, 32B2 and the pairs of interacting polyads 2131B1/31B3 and 2131B2/31B4. We

confirm the conclusion of Mizoguchi et al. [138] that the combinations of ν ′3 and ν ′6

are strongly anharmonic, though we find that excitation of ν ′2 has only a small effect

on the structures of the bending polyads.

7.3 Combination polyads observed in IR-UV double

resonance

7.3.1 The 21B1 polyad

The 21B1 polyad has been observed in IR-UV double resonance, with the IR laser

tuned to individual P lines of the ν ′′3 IR fundamental (`′′ = 0) to record its K ′ = 1

levels and to the Q-branch head of the ν ′′3 + ν ′′4 combination band (`′′ = 1) to record

its K ′ = 0 and 2 levels. A weak Coriolis-induced band going to the lower K ′ = 3 level

was also found in the second set of experiments. The Q-branch head of the ν ′′3 + ν ′′4

band is very compact, such that its first five lines lie within the line width of the IR

laser; the levels J ′′ = 1f − 5f can then be excited simultaneously. This reduces the

time for data collection, but loses the J-selectivity of double resonance. However, the
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line assignments could be made without difficulty by combination differences.

The structure of the 21B1 polyad is similar to that of the B1 polyad analyzed by

Utz et al. [2], the main difference being that the 2161 level lies 9.6 cm−1 above the

2141 level, whereas 61 lies only 3.4 cm−1 above 41. This is in contrast to the 3nB1

polyads, where the ν ′6 member always lies below the ν ′4 member [138]. There is no

doubt about the assignments because the branch structures are unambiguous. Seen

in double resonance via the f -symmetry component of the ν ′′3 + ν ′′4 combination level,

the 2161 level (bu symmetry) gives a K ′ = 0 sub-band with R and P branches, while

the K ′ = 0 sub-band of 2141 (au symmetry) has only a Q branch.

Figure 7-2 is a reduced energy level plot showing the assigned upper-state term

values together with the patterns calculated from the final least squares fit, described

below. The strong b-axis Coriolis coupling between the two K = 0 levels and the lower

K = 1 level is evident in the curvature of the plots for those levels. Interestingly, the

largest asymmetry splitting occurs in the lower K = 2 level, presumably because of

the proximity of the 2161, K = 0 level. The asymmetry splittings of the two K = 1

levels are smaller than expected for the Ã 1Au state. In the absence of the a-axis

Coriolis coupling, these two levels would have equal and opposite splittings, each

about twice as large as is found. The a-axis coupling between them results in partial

cancellation of their splittings.

The 21B1 polyad lies just below the B3 polyad and, with the strong a-axis Cori-

olis coupling pushing the uppermost level of each K ′ value some distance above the

others, the upper K = 2 stack of the 21B1 polyad lies only 40 cm−1 below the lowest

K = 2 stack of the B3 polyad. Obviously there must be Fermi resonance between

the polyads, but the small shifts that result can be absorbed into sets of effective

parameters for them.

The seven observed K-stacks of the 21B1 polyad have been fitted by least squares

to the Hamiltonian of Eq 5.8. The resulting parameters are given in Table 7.3.1. To
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Figure 7-2: Reduced term value plot of the 21B1 polyad, where the upper state energy
levels, less 1.05× J(J + 1), are plotted against J(J + 1). A-axis Coriolis interaction
between the two K ′ = 1 levels pushes the lower K = 1 level (nominally 2141) below
its K ′ = 0 level; b-axis Coriolis coupling between this K ′ = 1 level and the two K ′ = 0
levels is responsible for the curvatures in the plots. Points represent observed levels;
lines are calculated from the results of the final least squares fit.
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allow for the Fermi resonance with the B3 polyad, a centrifugal distortion correction

to the a-axis Coriolis constant, called D(2Aζa46)K , was added to the parameter set.

It reduced the r.m.s. error by about 30%. The rotational and Coriolis constants are

found to be very similar to those determined by Utz et al. [39] for the B1 polyad,

though this is possibly fortuitous since there are extremely strong correlations between

the two A rotational constants and the a-axis Coriolis parameters. We note that the

mean of the two A constants, 12.894 cm−1, is almost identical to the A constant of

the 21 level, 12.902 cm−1. With the rotational constants taken from the 21 level, the

zeta sum rule [118],

(ζa46)2 + (ζb46)2 = 1, (7.1)

holds very well, with the sum of the squares of the derived zeta parameters equal to

1.026.

Table 7.1: Rotational and Coriolis constants from a least squares fit of the Ã, 21B1

polyad. Values in cm−1.

Level 2141 2161

T0 44 336.08 ±0.04 44 345.69 ±0.03
A 11.411 0.50 14.376 0.50
B̄ 1.0750 0.0027 1.0601 0.0033
B − C 0.1080 0.0090 0.0813 0.0078

2Aζ46
a 17.928 ±0.13

Bζ46
b 0.821 0.009

D(2Aζ46
a )K −0.0902 0.045

∆K 0.0060 0.0027

r.m.s. error 0.020

The a-axis Coriolis coupling is defined as 2Aζa46 + D(2Aζa46)KK2. Derived val-
ues for the Coriolis parameters are: ζa46 = 0.695, ζb46 = 0.737. The cen-
trifugal distortion parameter ∆K is assumed to be the same for both vi-
brational levels. The following correlation coefficients have absolute values
above 0.95: A(2141)/A(2161), −0.998; A(2141)/2Aζa46, 0.987; A(2161)/2Aζa46, −0.981;
2Aζa46/D(2Aζ46

a )K , 0.954;A(2141)/D(2Aζ46
a )K , 0.988; A(2161)/D(2Aζ46

a )K , −0.994
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7.3.2 The interacting 2131B1 and 31B3 polyads

Low resolution spectra of the overlapping 2131B1 and 31B3 polyads taken by IR-UV

double resonance via the ν ′′3 fundamental showed that there are seven K ′ = 1 stacks

present, although only six are expected. We have therefore gone to some length to

obtain a full analysis in order to clarify the vibrational assignments. It turns out

that the extra stack is the highest of the seven in energy, and lies 8.2 cm−1 above

the topmost K ′ = 1 stack of 31B3. There is no obvious vibrational assignment for

the extra stack within the manifold of the S1-trans ( Ã 1Au) state because every

vibrational level expected in this energy region has been observed. Either it belongs

to the S1-cis state, or it belongs to a higher S1-trans polyad where anharmonicity

has pushed one of the component levels down by a huge amount. In either case, it

presumably interacts with the 31B3 levels, causing an energy shift, though this is

hard to quantify.

The structure of the 2131B1 and 31B3 polyads is distorted because the ν ′3/ν
′
6

anharmonicity has a strong effect, particularly on the 31B3 polyad. Excitation of

the ν ′3 vibration causes the vibrational level with the largest value of v′6 (3163) to

drop considerably below the rest of the polyad. The result is that the lowest energy

K-stacks of the 31B3 polyad lie in the low-K region of the 2131B1 polyad. A further

complication is that there is non-negligible Fermi resonance between the two polyads.

The two interacting polyads have been recorded by IR-UV double resonance, using

rotational levels of the ν ′′3 fundamental and ν ′′3 +ν ′′4 combination level as intermediates,

as described above for the 21B1 polyad. Most of the analysis was carried out from

spectra taken via the Q branch of the ν ′′3 +ν ′′4 band, which gave the whole J ′′ = 1f−5f

spectrum in one recording, with consistent calibration. The line assignments could be

made by combination differences, assisted for the crowded regions by spectra taken via

the P(3) line of the ν ′′3 +ν ′′4 band (populating J ′′ = 2e). Various one-photon “artifact”

bands, excited by the UV laser alone when its frequency happens to coincide with
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an unrelated absorption band, could be distinguished by comparing the Q- and P-

pumped spectra.

Figure 7-3 shows the rotational energy level structure of the two polyads, less

1.05 × J(J + 1) cm−1, plotted against J(J + 1). Every assigned K-stack is shown,

except the highest K ′ = 2 stack, which lies off the top of the figure near 45 712 cm−1.

The K values of the various stacks, as given by the first lines of the branches, are

marked in two columns, one for the 2131B1 polyad and the other for the 31B3 polyad.

The process of assigning the K-stacks to the polyads was complicated by the Fermi

resonance and by the fact that some of the weaker sub-bands were not found until

the late stages of the analysis.

Sizeable interactions occur among the levels in the central part of the structure.

The most unexpected is the group of interacting K = 1, 3 and 4 levels near 45 500

cm−1. Their spectrum is shown in Fig. 7-4, as seen in double resonance via the Q

branch of the ν ′′3 + ν ′′4 band. None of these levels should have given bands in Fig.

7-4 according to the selection rule K ′ − `′′ = ±1, since the intermediate level has

`′′ = 1. It appears that the intensity comes from the very intense K ′ = 0 bands near

45 540 cm−1, and is transferred to the K ′ = 1 band by b-axis Coriolis coupling. The

rotational level pattern shows that theK ′ = 3 stack gets its intensity by a combination

of b-axis coupling with nearby K ′ = 2 stacks and asymmetry mixing with the K ′ = 1

stack. Finally, the K ′ = 4 stack interacts with the K ′ = 3 stack, again by b-axis

coupling. Surprisingly, the K ′ = 3 stack does not appear in double resonance spectra

taken via the ν ′′3 fundamental (`′′ = 0), although the K ′ = 4 stack gives quite strong

lines. Evidently the K quantum number loses its meaning completely in the presence

of the strong b-axis coupling. A similar situation was noted by Utz et al.[2] in their

analysis of the B1 polyad.

An interesting avoided crossing occurs between the K ′ = 1 and 2 stacks near

45 460 cm−1, illustrated in Fig. 7-5. In zero order the stacks belong to different
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Figure 7-3: Energy levels of the interacting 2131B1 and 31B3 polyads, less 1.05J(J+1),
plotted against J(J + 1). The nominal K values of the rotational levels, as obtained
from the first lines of the relevant branches, are indicated in two columns; left column,
2131B1 polyad, right column, 31B3 polyad. Several avoided crossings between the K
sub-levels occur in the central part of the figure. Points are observed rotational levels,
lines are calculated from the results of the final least squares fit. All the observed K
sub-levels are shown, with the exception of the highest K ′ = 2 sub-level, which lies
near 45 712 cm−1.
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Figure 7-4: The region 45 485–45 554 cm−1 in the IR-UV double resonance spectrum
of acetylene, showing seven overlapping sub-bands with K ′ = 0 − 4. The IR laser
was tuned to the Q-branch head of the X̃ 1Σ+

g , ν ′′3 + ν ′′4 band (`′′ = 1), populating
the J = 1f − 5f levels simultaneously. Some small splittings resulting from triplet
perturbations can be seen in the K ′ = 0f sub-band.
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polyads, and have B values such that they cross through each other between J = 5

and 6. The minimum energy separation, which represents the strength of the Fermi

resonances, is 1.36 cm−1. A similar perturbation occurs between the K ′ = 2 and

3 stacks near 45 420 cm−1; there is clearly an avoided crossing, since the intensity

is progressively transferred from the nominal K ′ = 2 stack to the nominal K ′ = 3

stack with increasing J , but the rotational levels diverge starting from the lowest J

values. The lowest K ′ = 3 stack of the 31B3 polyad, near 45 450 cm−1, could not

be identified, although most of the other K ′ = 3 stacks appear weakly. However, its

presence is shown by the avoided crossing with the K ′ = 0e stack immediately below,

where the J = 7 level is out of place.

Occasionally the rotational structures of two K-stacks cross through each other

without a noticeable perturbation occurring. An example is the crossing between the

upper K ′ = 3 stack of 2131B1 and the upper K ′ = 0f of 31B3 near 45 540 cm−1.

There are no measurable shifts at the crossing, and calculations of the level structure

show that the shifts will be less than 0.01 cm−1. Another example is the crossing of

the upper K ′ = 0e and the lowest K ′ = 5 of 31B3 (not shown in Fig. 7-4) at J = 7;

no measurable shifts are expected.

A few of the sub-bands, such as the upper K ′ = 0f sub-band of the 31B3 polyad

illustrated in Fig. 7-5, show evidence of perturbations by triplet states. These take

the form of small splittings of the lines into two or three components spread over up

to about 0.4 cm−1. The lines involved were not included in the final data set.

The results of a least squares treatment are given in Table 7.3.2. The levels of

the 2131B1 polyad were modeled with rotational constants A, 1
2
(B + C) and B − C

for the two vibrational levels, together with Coriolis constants 2Aζa46 and Bζb46. The

operators for the Fermi resonances were taken as

ĤFermi = k244q̂2q̂
2
4 + k266q̂2q̂

2
6 (7.2)
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Figure 7-5: The region 45 415–45 484 cm−1 in the double resonance spectrum of acety-
lene, showing six overlapping sub-bands. This figure is a continuation of Fig. 7-4 to
lower frequency. Below 45 436 cm−1 the intensity scale of the spectrum has been
expanded by a factor of 15 to show the weaker sub-bands in that region.
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which gives matrix elements

〈213141| Ĥ |3143〉 =
√

3
2
k244 (7.3)

〈213141| Ĥ |314162〉 = 1
2
k266

〈213161| Ĥ |3163〉 =
√

3
2
k266

〈213161| Ĥ |314261〉 = 1
2
k244

As explained in Section 6.3, the transformation that makes the Coriolis matrix ele-

ments real changes the signs of the k266 terms in Eq. 7.3, making them negative.

The ν ′3/ν
′
6 anharmonicity complicated the fit of the 31B3 polyad. It was found that

the various avoided crossings in the J-structure could not be fitted satisfactorily until

the K-structure was reproduced correctly, but in order to do this it was necessary

to float the A constants for each of the four vibrational components and introduce a

number of centrifugal distortion parameters. Some of these have unreasonable values,

and should be treated just as fitting parameters, without physical meaning. The ∆K

parameters are a case in point. The parameters ∆K(3143) and ∆K(3163) were fitted

by least squares, with the values of the ∆K parameters for the other two vibrational

levels of the polyad interpolated between them. The final values are far larger than

expected, of opposite sign and also strongly correlated. Another unreasonable value

is that for the parameter D(2Aζa46)K of the 2131B1 polyad. For the J-structure of the

31B3 polyad, the parameters 1
2
(B + C) and B − C for the 3143 and 3163 levels were

fitted, with the values for the other vibrational levels interpolated between them.

It was sometimes difficult in the least squares treatment to match the observed

and calculated energies, particularly at the avoided crossings. The procedure adopted

was to sort the energy levels by their nominal K values, which were then placed in

ascending order. At the final stages, when the pattern of the K-structure had been

established, the levels of each J and e/f symmetry were indexed by their energy
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Table 7.2: Rotational and Coriolis constants from a simultaneous least squares fit of
the Ã, 2131B1 and 31B3 polyads. Values in cm−1.

T0(213141) 45 369.82 ±0.11 T0(3143) 45 502.16 0.71
T0(213161) 45 364.12 0.11 T0(314261) 45 517.43 0.17
2Aζa46(2131B1) 20.971 0.057 T0(314162) 45 487.64 0.67
Bζb46(2131B1) 0.7644 0.0108 T0(3163) 45 417.73 0.23
A(213141) 10.709 0.228 K4466 −57.865 0.123
1
2
(B + C) 1.0784 0.0048 K4466,DK 0.077 0.092

(B − C) 0.1235 0.0171 2Aζa46(31B3) 20.596 0.050
A(213161) 16.796 0.236 Bζb46(31B3) 0.7788 0.0084
1
2
(B + C) 1.0545 0.0036 A(3143) 13.582 0.321

(B − C) 0.0868 0.0153 1
2
(B + C) 1.0755 0.0036

D(2Aζa46)K(2131B1) −0.2701 0.0393 (B − C) 0.0934 0.0171
A(314261) 13.231 0.136

k244 -7.36 1.14 A(314162) 14.730 0.322
k266 8.702 0.150 A(3163) 14.873 0.080

1
2
(B + C) 1.0780 0.0042

(B − C) 0.1532 0.0180
D(2Aζa46)K(31B3) −0.0589 0.0075
∆K(3143) 0.0689 0.0243
∆K(3163) −0.0909 0.0240
K4466,DJ −0.0035 0.0015

r.m.s. error 0.0453 cm−1

Error limits are three standard deviations.
The following correlation coefficients have absolute values above 0.95:
A(213141)/A(213161), 0.998; T0(3143)/T0(314162), −0.985;
A(3143)/T0(3143), −0.975; ∆K(3143)/∆K(3163), −0.982;
A(213141)/D(2Aζ46

a )K(2131B1), 0.994; A(213161)/D(2Aζ46
a )K , −0.991;

A(3143)/T0(314162), 0.981
The J ′ = 0 levels of the vibrational states are calculated to lie at:
e-symmetry: 45369.48 cm−1 (213141); 45444.27 and 45545.87 cm−1 (314162 and 3143)
f -symmetry: 45362.99 cm−1 (213161); 45397.81 and 45538.50 cm−1 (3163 and 314162)
The differences between these values and those in the body of the table arise from the Fermi
and Darling–Dennison resonances.
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order. This method copes with the avoided crossings very well, but breaks down if a

large change in a parameter interchanges the energy order of two K-stacks. In the end

216 rotational term values from 24 K-stacks were fitted with 33 parameters, giving

an r.m.s. error of 0.045 cm−1. It is very clear that the simple model of Eqs. 5.8 and

5.9 is starting to break down for these polyads. The line measurements are probably

good to better than 0.03 cm−1 but, if no centrifugal distortion terms are included, the

best fit to Eqs. 5.8 and 5.9 gives an r.m.s. error of about 0.12 cm−1. Nevertheless,

with the centrifugal distortion terms included, the courses of all the avoided crossings

are reproduced with good accuracy.

One of the reasons for trying to get a good fit to the structure was to determine the

Fermi resonance parameters, since these are important for extending the vibrational

assignments to higher energy. It was found that the parameter k266 is quite well deter-

mined, though k244 is more approximate. Their absolute signs are not determinable,

but their relative signs are opposite. To some extent their values must depend on the

centrifugal distortion terms that were added in order to fit the K-structure. However,

it was found that the value of k266 did not vary much from 8.7 cm−1 as these various

terms were included.

As indicated at the beginning of this Section, the strong ν ′3/ν
′
6 anharmonicity

causes the 3163 basis level of the 31B3 polyad to drop a long way below the other three

basis levels (see Table 7.3.2). As a result the Darling-Dennison resonance between

the 3163 and 314261 levels causes only a modest shift of 20 cm−1 (as can be seen from

the calculated J = 0 energies in the Table). On the other hand the 3143 and 314162

levels, which lie quite close in zero order, interact strongly, such that the nominal

3143 state ends up as the top member of the polyad, 7 cm−1 above the nominal 314261

state. These two states form an au/bu pair, of the type described in Chapter 5,

which demonstrates the development of vibrational angular momentum patterns in

the higher bending polyads. However, the effect is not as marked when ν ′3 is excited,
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compared to the pure bending polyads, because the ν ′3/ν
′
6 anharmonicity distorts the

polyad structure.

7.3.3 The 22B1 polyad

The 22B1 polyad lies immediately above the 31B3 polyad which, as just described,

contains an “extra” K ′ = 1 stack. Another “extra” K-stack (this time with K ′ = 0, au

symmetry) lies at 45 735 cm−1, just above the predicted position of the 22B1 polyad.

It therefore becomes important to locate the 22B1 polyad securely, in order to be sure

that the “extra” stacks are not related to it. The 22B1 polyad is expected to be much

weaker than the 21B1 polyad, since the 22
0 band (which was only found recently) is

much weaker than the 21
0 band. We have searched for the K ′ = 0 and 2 levels of the

22B1 polyad using IR-UV double resonance. Despite the poor signal-to-noise ratio it

seems that the K ′ = 0 sub-band of 2261 can be definitely identified, and the upper

K ′ = 2 sub-band of the polyad possibly so. There is still some doubt about the 2241

level.

The lines used for the IR pumping were isolated P branch lines of the ν ′′3 + ν ′′4

combination band. These populate the e-symmetry rotational levels of ν ′′3 + ν ′′4 , such

that levels of the Ã state with bu vibrational symmetry give Q branches in IR-UV

double resonance, and upper states with au symmetry give R and P branches. The

2261 (bu), K
′ = 0 sub-band, which appears as a weak Q branch at 45 702.8 cm−1, is

within 0.1 cm−1 of where it is predicted, based on anharmonicity constants derived

from the known positions of 21, 22 and the bending polyads B1 and 21B1. The

anharmonicity constants predict the 2241 (au), K
′ = 0 sub-band to lie at 45 687 cm−1.

We have found nothing with the correct appearance near there, though a possible P

and R branch pair lies at 45 704.5 cm−1, some 17 cm−1 higher than predicted. This

region is dominated by very intense lines from the highestK ′ = 2 sub-band of the 31B3

polyad, and it could be that artifacts of the blending have confused the assignments,
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despite the use of J-selected double resonance. The K ′ = 1 sub-bands of the 22B1

polyad are not expected to appear in double resonance via an `′′ = 1 intermediate

level, and have not been looked for.

A calculation of the K ′ = 2 sub-band energies, based on the predicted K ′ = 0

origins together with rotational and Coriolis constants from the 21B1 polyad, places

them at 45 705 and 45 780 cm−1. Nothing assignable as K ′ = 2 appears at the lower

energy, but K ′ = 2 sub-bands are found at 45 777.9 and 45 790.8 cm−1. It seems that

the lower sub-band belongs to 22B1 in zero-order, while the upper K ′ = 2 state is

associated with the “extra” K ′ = 0 level at 45 735 cm−1. No least squares fitting has

been attempted for the 22B1 polyad, since only three fragmentary sub-bands have

been assigned.

The ν ′4 member of the various B1 polyads is always weaker than the ν ′6 member,

so that it is perhaps not surprising that we could not identify the 2241, K ′ = 0 sub-

band securely. Nevertheless the good agreement of the position of the 2261, K ′ = 0

sub-band with the prediction from the anharmonicity constants suggests that there

is nothing unusual about the 22B1 polyad. The “extra” K stacks at 45 623 cm−1

(K ′ = 1) and 45735 cm−1 (K ′ = 0, au) therefore appear not to belong to the 22B1

polyad.

7.4 Combination polyads observed in one-photon

laser excitation

With the a-axis Coriolis coupling disrupting the asymmetric top K-structure so

severely, it is not possible to get a satisfactory least squares fit to a bending polyad

without data from K ′ = 0, 1 and 2 stacks. As described above, two sets of experi-

ments are needed to provide such data for the gerade bending levels, because of the

rotational selection rule K ′ − `′′ = ±1. The K ′ = 1 levels can be recorded in jet-
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cooled laser excitation spectra from the ground vibrational state, where `′′ = 0, but

to record spectra of the K ′ = 0 and 2 levels it is necessary to warm the jet so that

there is sufficient population in the ν ′′4 fundamental, where `′′ = 1. High sensitivity

experiments with a cold jet have been carried out for the region up to 47 000 cm−1,

though with decreasing efficiency at the highest frequencies because of predissocia-

tion. Experiments with a warmed jet have so far not been attempted beyond 46 000

cm−1.

7.4.1 The 31B2 polyad

The 31B2 polyad, near 44 700 cm−1, has the simplest spectrum of all of the B2-type

polyads observed in one-photon LIF. It lies at sufficiently low energy that it does

not suffer from overlap with other polyads, while the anharmonicity between ν ′3 and

ν ′6 causes the lowest member of the polyad (nominally 3162) to drop well below the

other members. Compared to the B2 polyad, the anharmonicity greatly reduces the

damaging effect of the b-axis Coriolis resonance on the qualitative appearance of

the spectrum. All three K ′ = 1 bands are readily recognizable and sufficiently free

from overlap with other bands to allow straightforward rotational analyses. The low

frequency part of the polyad, as seen in laser excitation from the ground vibrational

level, is illustrated in Fig. 7-6. The lowest two K ′ = 1 bands lie between the intense

3341, Σ− Π and ∆− Π hot bands.

There is, in fact, a systematic coincidence between the strong hot bands of the type

3n41 and weaker cold bands going to the 3n−2B2 polyads. This can cause confusion

when low resolution spectra are examined. For example, in the survey spectra of Ref.

[139] there are bands with barely detectable intensity close to the expected positions

for B2 and 31B2. Upon closer inspection, despite the low temperature of the free-jet

expansion, the positions of these bands are found to match those of the known 3n41

hot bands and do not correspond to polyads formed from the low-frequency bending
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Figure 7-6: Low frequency part of the 31B2 polyad of acetylene, as seen in jet-cooled
laser excitation from the ground vibrational level. The comparatively intense, and
very strongly red-degraded K = 2−0 sub-band near 44 719 cm−1 gets its intensity by
b-axis Coriolis coupling with the K = 1−0 sub-band near 44 733 cm−1. The intensity
scale of the spectrum has been expanded by a factor of 25 at the high frequency end
in order to show the weak Coriolis-induced K = 2−0 and 0−0 sub-bands near 44 760
cm−1.
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modes.

There are no low-J avoided crossings between the K stacks of the 31B2 polyad

members, but the b-axis Coriolis resonance is sufficiently strong that, despite the

rotational selection rule K ′ − `′′ = ±1, seven of the nine K ′ = 0 − 2 levels of the

polyad appear in the cold jet spectrum; the exceptions are the middle K ′ = 0 level,

which has bg symmetry, and the highest K ′=2 level, which lies 85 cm−1 above the

highest K ′ = 1. As a result of the a-axis Coriolis interactions, the lowest vibrational

level of the polyad has very compressed K-structure, with its K ′ = 2 sublevel only 16

cm−1 above its K ′ = 1. The K ′ = 2 sub-level is strongly affected by b-axis Coriolis

resonance with the second K ′ = 1, so that the R branch going to it (near 44 722

cm−1) appears very compact in the spectrum. As Fig. 7-6 shows, the R(1)–R(6) lines

fall within a span of only 2.5 cm−1.

The middle K ′ = 2 sub-band and the uppermost K ′ = 0 sub-band appear in

Fig. 7-6 as a result of the Coriolis interactions. Spectra recorded in a warmed beam

confirm their assignments, but do not give evidence for any new sub-bands. The

sub-band terminating on the highest K ′ = 2 level is predicted to lie hidden under the

very intense 32
0K

1
0 cold band, and has not been searched for.

The observed rotational term values of the seven observed K-stacks have been

fitted to a Hamiltonian of the same form as that used for the B2 polyad. The results

of the fit are given in Table 7.3. Despite the lowering of the 3162 level by the ν ′3/ν
′
6

anharmonicity, no additional centrifugal distortion parameters were required to fit

the data to within the measurement uncertainty. Comparing the parameters for 31B2

and B2, the most significant difference is the 10% increase in the parameters K4466

and 2Aζa46 on excitation of ν ′3. The Bζb46 parameter undergoes a corresponding, but

smaller percent decrease. Although the addition of one quantum of ν ′3 restores some of

the regularity of the observed spectrum, it only slightly reduces the degree of mixing

of the 3142 and 3162 normal mode basis states in the final vibrational eigenstates.
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The reason for this is that the anharmonic shifts that separate the zero-order states

are mostly offset by the larger value of the Darling–Dennison parameter, K4466.

Table 7.3: Rotational and Coriolis constants from a least squares fit of the Ã, 31B2

polyad. Values in cm−1.

Level 3162 314161 3142

T0 44 708.96 ±0.13 44 749.61 ±0.03 44 748.83 ±0.13
A 14.238 0.073 14.147 fixed 14.055 0.069
B̄ 1.0757 0.0012 1.0765 fixed 1.0772 0.0010
B − C 0.1153 0.0012 0.1112 fixed 0.1070 0.0029

2Aζ46
a 20.625 ±0.017

Bζ46
b 0.784 0.005

K4466 −60.101 0.166

r.m.s. error 0.032 cm−1

The J ′ = K ′ = 0 levels are calculated to lie at 44 692.84 (3162), 44 749.61 (314161) and
44 764.96 (3142) cm−1.

After the measured K ′ = 0 − 2 stacks had been fitted, it was noticed that the

lowest K ′ = 3 sublevel of 31B2 was predicted to lie at almost exactly the same energy

as the K ′ = 3 sublevel of 2131, which had been reported as perturbed by Watson et

al.[118] The near-degeneracy is quite striking: the predicted values given by Watson

et al. for 2131 K ′ = 3, based on fitting the unperturbed K = 0− 2 sublevels, coincide

with the predictions of our model for the K ′ = 3 sublevel of 31B2 to better than 0.5

cm−1. On this basis, we can now assign the lowest K ′ = 3 sublevel of 31B2 as the

perturbing partner to 2131 K ′ = 3. Watson et al.[118] noted that this perturbation

was the lowest energy perturbation that they found in the Ã 1Au state.

A reduced term value plot for the perturbed levels is given in Fig. 7-7. The

predicted term values of 31B2 and 2131 are shown, together with term values derived

from measured line positions that were communicated privately to us by Dr. J.K.G.

Watson. The observed components of the doubled band lie approximately 6.4 cm−1

apart and are symmetrically distributed around the predicted zero-order positions,

indicating a coupling matrix element of about 3.2 cm−1. An independent estimate
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of this value can be obtained from the anharmonic parameters k244 and k266 derived

from the interacting 2131B1/31B3 polyads (see Table 7.3.2). The eigenfunction of the

lowest J ′ = K ′ = 3 state, considering just the Darling-Dennison and a-axis Coriolis

interactions, and allowing for the phase factor for the v′6 levels, is

|31B2, K = 3, I〉 = 0.62 |3142〉+ 0.70i |314161〉 − 0.35 |3162〉 . (7.4)

The Fermi resonance matrix element has only two terms, by symmetry:

〈2131| Ĥ |31B2, K = 3, I〉 = 0.62 〈2131| Ĥ |3142〉 − 0.35 〈2131| Ĥ |3162〉 , (7.5)

where the two integrals on the right hand side are 1
2
k244 and 1

2
k266, respectively.

Taking k244 = −7.36 and k266 = 8.70 cm−1 from Table 7.3.2, we obtain

〈2131| Ĥ |31B2, K = 3, I〉 = −3.8 cm−1. (7.6)

Total agreement is not expected, in view of the uncertainties in the determination

of the k244 and k266 parameters, but the agreement with the (unsigned) value of 3.2

cm−1 from Fig. 7-7 seems very reasonable. The fact that the observed matrix element

is small compared to k244 and k266 themselves is explained by the large amount of

|314161〉 character in the eigenfunction of Eq. 7.5, which does not contribute to the

Fermi resonance matrix element.

A further perturbation in a single rotational level should be noted here. The J ′ =

2e level of the highest K ′ = 1 member of the 31B2 polyad exhibits quantum beats with

nearly 100% modulation and a beat frequency of approximately 5 MHz. The large

modulation depth combined with a slow beat frequency implies a weak interaction of

< 0.002 cm−1. It is not surprising then, that the adjacent lines in the band appear

to be unaffected by the perturbation and exhibit regular fluorescence decays. In
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Figure 7-7: Observed and predicted rotational level structure at the perturbation
between the K ′ = 3 stacks of the 2131 and 31B2 polyads, plotted against J(J + 1).
The predicted zero-order level positions, as obtained from least squares fits to lower-K
stacks, are shown in the centre of the figure; the observed levels (from measurements
communicated to us by Dr. J.K.G. Watson) are shown at the top and bottom of the
figure.
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hindsight we note that the R(1) line of this sub-band is very slightly asymmetrical,

but this would not have been noticed without the quantum beat information. The

perturbing state is presumably a member of the triplet manifold.

7.4.2 The 32B2 polyad

The spectrum of the 32B2 polyad is centered near 45 700 cm−1, a region dominated

by intense bands terminating on the 2132 vibrational level. The 32B2 polyad bands

are themselves significantly more intense than the other B2-type polyads described

in this work, a fact that is consistent with the observed trend of increasing intensity

with higher excitation in the Franck-Condon active trans-bending mode ν ′3. As a

result, bands terminating on two of the three K ′ = 1 levels of the polyad can be seen

in the survey spectrum of Ref. [139], where the upper state of the band at 45 811

cm−1 is labeled as 3242.

The 32B2 bands look quite similar to those of the 31B2 polyad described above.

There are no low-J avoided crossings between the polyad members, so the rotational

assignments of the states are not complicated by b-axis Coriolis interactions. The

most obvious feature is the relatively intense 45 811 cm−1 band, which goes to the

highest K ′ = 1 level. The sub-band terminating on the middle K ′ = 1 level, at

45 726.12 cm−1, is nearly coincident with a hot band at 45 726.93 cm−1 terminating

on 34 K ′ = 2, but is easily recognized from its intensity and the contrast between its

fluorescence lifetime and that of the overlapping band. Coriolis-induced bands going

to the middle K ′ = 2 and the highest K ′ = 0 levels lie in the clear and are readily

recognized. The lowest K ′ = 0 sublevel of the 32B2 polyad was located using spectra

recorded with a warmed beam. Despite severe blending, the K = 0− 1 sub-band was

found to lie near 45 032 cm−1, in the tail of the K = 0− 1 hot band of 2132.

The lowest energy K ′ = 1 member of the polyad, at 45 653.24 cm−1, was signif-

icantly more challenging to identify because of overlap by no less than four other
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sub-bands. These four are the tail of the intense 21
032

0K
1
0 sub-band, its accompany-

ing K0
0 axis-switching band, the analogous K ′ = 1 transition of H13C12CH and the

3441K
0
1 hot band. The bands are illustrated in Fig. 7-8. Once the lines of these

four bands are accounted for, only a few strong isolated lines remain, in particular

the series at 45 655.31, 45 657.20, and 45 658.83 cm−1. Since no clear combination

differences could be found to number these lines, stimulated emission pumping (SEP)

spectra were recorded using their upper states as the intermediate levels. Specifically,

spectra were recorded to the [N ′′resonance = 13, N ′′stretch = 1]g polyad of the ground

state, which lies near 8300 cm−1. This region was chosen because it was known that

the 45 811 cm−1 level emits strongly to this polyad, and it was assumed that the

other 32B2 levels should do so as well, though not necessarily to the same vibrational

components.

Because the vibration-rotation structure of the electronic ground state of acety-

lene is well understood, the patterns in SEP spectra [168] can be used to label the

rotational level of the Ã 1Au state used as an intermediate. In particular, in the

absence of axis-switching or accidental coincidences, the SEP spectrum via a J ′ > 2

R-branch PUMP transition contains 5 lines terminating on rotational levels of the

Σ+
g (`′′ = 0) and ∆g(`

′′ = 2) components of every ground state vibrational level to

which transitions are allowed. Q-branch PUMP transitions (J ′ > 2) give rise to 4

lines in the SEP spectrum. At lower values of J ′, there are fewer lines because of the

restriction J ′′ ≥ `′′. In all cases, the upper-state assignment follows from the final-

state combination differences observed in the spectrum. The three isolated lines in the

LIF spectrum described above could be identified as R(0–2) since their SEP spectra

contain intervals of approximately 6B′′, 10B′′, and 14B′′, where B′′ is the rotational

constant for the ground vibrational level of C2H2. Once the R-branch of the 45 653

cm−1 band had been recognized, the P and Q lines could be picked out, though in

many cases they are severely blended. In particular the Q(1) line, at 45 652.91 cm−1,

181



Figure 7-8: The lowest 32B2, K ′ = 1 sub-band of acetylene, overlapped by four other
sub-bands. The strong structure is the tail of the 21

032
0, K = 1 − 0 sub-band; weaker

lines belong to the H13C12CH isotopologue, the 21
032

0, K = 0 − 0 axis-switching sub-
band, and a hot band terminating on 34.
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coincides with the P(8) line of the strong 2132K1
0 band. The assignment of Q(1) has

been confirmed by recording an SEP spectrum using it as a PUMP transition.

The six observed sublevels of the 32B2 polyad (of the nine with K ′ = 0− 2) have

been fitted to the Hamiltonian given in Eqs. 5.8 and 5.9. The results of the fit are

given in Table 7.4. Addition of a second quantum of ν ′3 continues the trend noted

in the 31B2 polyad: the Darling–Dennison and a-axis Coriolis coupling parameters

increase yet further, while the b-axis coupling is slightly reduced. The increase in

the Darling–Dennison parameter is more than offset by the increased separation of

the 3242 and 3262 basis states as a result of anharmonicity, so that the mixing of the

basis states by the Darling-Dennison resonance is actually less than it is in the B2

polyad. To be exact, the J ′ = K ′ = 0 eigenstates receive over 90% of their character

from a single basis state. The fit model indicates only slightly more mixing for the

lowest J ′ = K ′ = 1 eigenstate, though the upper two states form a very strongly

Coriolis-coupled ag/bg pair.

Table 7.4: Rotational and Coriolis constants from a least squares fit of the Ã, 32B2

polyad. Values in cm−1.

Level 3262 324161 3242

T0 45 653.95 ±0.40 45 736.07 ±0.02 45 756.86 ±0.40
A 16.178 0.208 15.395 fixed 14.611 0.212
B̄ 1.0808 0.0012 1.0768 fixed 1.0727 0.0012
B − C 0.1080 0.0043 0.1034 fixed 0.0989 0.0027

2Aζ46
a 23.559 ±0.112

Bζ46
b 0.808 0.014

K4466 −66.502 0.122

r.m.s. error 0.024 cm−1

The J ′ = K ′ = 0 levels are calculated to lie at 45 644.14 (3262), 45 736.07 (324161) and
45 766.67 (3242) cm−1.

A further advantage of SEP spectra is that they give the distribution of bg vibra-

tional character among the polyad members. Since ag and bg correlate respectively

with the Σ+
g and Σ−g representations of D∞h, the Franck–Condon-allowed levels of
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the Ã 1Au state, with ag vibrational symmetry, will emit to `′′ = 0 states with Σ+
g

(e) symmetry, while levels with bg vibrational symmetry will emit to `′′ = 0 states

with Σ−g (f) symmetry. Since the e/f symmetry is reversed in Σ−g states, compared

to Σ+
g states, the pattern of emission lines in transitions to them is also reversed: for

J ′ > 2, Q-branch pumping gives a five-line pattern and R-branch pumping a four-line

pattern. It is therefore simple to identify Σ−g vibrational levels in SEP spectra, and

thereby assess the amount of bg character in a given vibrational level of the Ã 1Au

state.

SEP spectra have been recorded via the J ′ = 1f (Q(1)-pumped) levels of the three

K ′ = 1 stacks of the 32B2 polyad. In all three SEP spectra, a feature is observed

near an internal energy of 8320 cm−1, terminating on what is believed to be a J ′′ = 2,

`′′ = 2 state. Just above this transition, but only in the spectra from the two highest

energy K ′ = 1 intermediate levels, are two lines separated by approximately 6B′′. The

final states of these transitions are assigned as J ′′ = 0 and 2 of a Σ−g vibrational level

with an energy of 8322.3 cm−1. To our knowledge, this state has not previously been

observed, though the predictions of the multiresonant polyad Hamiltonian place a Σ−g

member of the [13, 1] polyad at 8322.5 cm−1 [169], in excellent agreement with our

observation. The lack of intensity into this final state from the lowest K ′ = 1 polyad

member is consistent with our model, which predicts < 10% bg character in this

sublevel. In general, levels of the Ã 1Au state with dominant bg vibrational character

could prove useful in SEP experiments for identifying further Σ−g vibrational levels of

the ground state, which are presently undersampled relative to the other symmetry

species.

A final note on this polyad is that many of the lines in the highest K ′ = 1 sub-

band (45 811 cm−1) appear to be significantly broadened and structured, presumably

because of interactions with the manifold of low-lying triplet states. While all lines

are affected to some degree, the broadening is particularly severe for J ′ = 5− 8, with
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the FWHM of the observed linewidth increasing to over 0.3 cm−1 at J ′ = 6, compared

to the width of 0.06 cm−1 in the narrowest lines observed in our study. The splittings

in the higher-J R lines of this band are illustrated in Fig. 7-9.

Figure 7-9: LIF spectrum of jet-cooled acetylene in the region of 45 819–45 857 cm−1.
At the low frequency (left) side are the higher-J R lines of the 3242 band (45 811
cm−1), showing structure resulting from perturbations by triplet states. The central
part of the spectrum contains the 5161, K ′ = 1 sub-band, and the two sub-bands at
the high frequency side are K = 0 − 1 hot bands going to the interacting 22B2 and
1121, K ′ = 0 levels; these hot bands are labeled by the energies of their upper states
(45 461 and 45 468 cm−1).

7.4.3 The 33B2 polyad

The 33B2 polyad lies above the onset of predissociation, and experiments with a

warmed jet have not so far been carried out in this region. However, spectra taken

with a cold jet have allowed assignment of the upper two K ′ = 1 sub-bands for this

polyad. As in the 31B2 and 32B2 polyads, the lowest K ′ = 1 sub-band is weaker

than the other two and has not been identified yet. Bands from three other polyads,

185



11B2, 21B4 and B6, are expected in the same region, making vibrational assignments

challenging.

The highest energy K ′ = 1 sub-band, at 46 794.29 cm−1, was already recognized

in Ref. [139]. It is a fairly strong band which continues the obvious 3n42 progression

found in the 31B2 and 32B2 polyads. Because it lies so far above the other K ′ = 1

stacks of its polyad, the asymmetry splitting of the upper state is only minimally

affected by the a-axis Coriolis coupling, and its magnitude (B − C = 0.074 cm−1) is

not much reduced from that of the zero-point level. Another, rather weaker, K ′ = 1

sub-band (as yet unassigned vibrationally) lies just below it, at 46 790.74 cm−1. No

local interactions between the two upper states occur in the observable range of J ′

values, though an avoided crossing between the f -symmetry components is predicted

to occur at much higher J . In contrast to the 45 811 cm−1 band, discussed in the

previous section, the 46 794 cm−1 band does not appear to be strongly affected by

triplet perturbations.

The middle K ′ = 1 sub-band, at 46 692 cm−1, lies 5 cm−1 above the 2133K1
0 sub-

band, and appears to have caused some confusion in the rotational assignment of the

latter [119]. With the advantage of jet-cooling it is possible to recognize that two

bands are present, though their branches overlap severely. The reduced upper state

energies are shown plotted against J(J + 1) in Fig. 7-10. It is clear from this figure

that the senses of the asymmetry splitting are opposite in the two levels. This is

as expected, since the 33B2 level in question is the middle component of its polyad.

The largest contributor to its wavefunction is the 334161 basis state, which has bg

vibrational symmetry; the sense of its asymmetry splitting is therefore opposite to

that of the 2133 level, which has ag symmetry. The figure shows that, in contrast

to the analysis of Ref. [119], the asymmetry splitting of the 2133, K ′ = 1 level is

quite small at low J . Blending has made some of the measurements for the 334161

levels less certain, but it appears that the K ′c = J ′ − 1 (e-symmetry) components
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of the two vibrational levels undergo an avoided crossing at about J ′ = 5, with an

interaction matrix element of roughly 1.6 cm−1, while the separation of the K ′c = J ′

(f -symmetry) components changes only slightly with J . The size of the interaction

matrix element is consistent with the energies of the K-stacks of the 2133 level given

in Table XI of Ref. [119], where it can be seen that the K ′ = 1 level is about 1 cm−1

lower than would be expected from the energies of the K ′ = 0 and 2 stacks because

they will be more detuned from resonance.

Figure 7-10: Rotational energies of the interacting 2133 and 334161, K ′ = 1 levels, less
1.05J(J + 1), plotted against J(J + 1). The levels of e symmetry undergo an avoided
crossing near J ′ = 5. Open circles represent data points from blended lines.

If there were no a-axis Coriolis coupling in the 33B2 polyad, there would be no

perturbation, since the 2133 level has ag vibrational symmetry and the 334161 level

has bg symmetry. However the Coriolis coupling mixes 3342 and 3362 character into

the nominal 334161 level for K ′ 6= 0, which then allows the Fermi resonance operators

of Eq. (4) to cause local perturbations. Since the K-structure of the 33B2 polyad

is very different from that of the 2133 level, the other K-stacks of 2133 will be less

affected.

Rotational constants from a band-by-band fit to the K ′ = 1 sub-band at 46 795

cm−1 are listed in Table 7.5.
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Table 7.5: Rotational constants from band-by-band fits to miscellaneous levels of the
Ã 1Au state of acetylene. Values in cm−1.

T0
1
2
(B + C) B − C rms

5161, K ′ = 1 45 839.52 ±0.02 1.0867 ±0.0014 0.0426 ±0.0014 0.014
22B2/1121, K ′ = 0,I(a) 46 460.58 0.04 1.1112 0.0016 0.076
22B2/1121, K ′ = 0,II(a) 46 467.83 0.02 1.0843 0.0010 0.027
22B2, K ′ = 1,III 46 505.46 0.02 1.0757 0.0011 0.0285 0.0011 0.016
33B2, K ′ = 1,III 46 794.29 0.03 1.0869 0.0041 0.074 0.006 0.026

(a) These two levels arise from anharmonic interaction between the upper K ′ = 0 level of
22B2 and K ′ = 0 of 1121; the mixing is almost 50:50.

7.4.4 The 21B2 and 22B2 polyads

The 21B2 and 22B2 polyads were discussed briefly by in Chapter 6. The 21B2 polyad is

of interest because the ν ′1 fundamental lies near its center and causes perturbations as

a result of anharmonic resonance. The rotational structure is unusually complicated

because the K ′ = 1 stack of the ν ′1 fundamental happens to lie exactly where the

middle K ′ = 1 and the lowest K ′ = 2 stacks of 21B2 are involved in a very strong

b-axis Coriolis resonance so that, with the two resonances competing, the resulting

level pattern is very disorganized. We could only assign this region with the help

of population labeling, where an IR laser was used to deplete the population of a

selected rotational level of the ground state, modulating the fluorescence excited by

the UV laser for those lines coming from the selected level. Analysis of the hot bands

showed that further small perturbations occur between the K ′ = 0 stack of ν ′1 and

the lowest K ′ = 1 stack of 21B2, but that the K ′ = 2 stack of ν1 lies about 10 cm−1

above the middle K ′ = 2 stack of 21B2 and is not locally perturbed. An energy level

diagram and the results of least squares fitting are given in Chapter 6.

The 22B2 polyad is weaker than the 21B2 polyad, and only two of its sub-bands

can be securely identified. These are the highest and lowest K ′ = 1 sub-bands, at

46 505.46 and 46 419.04 cm−1. It is clear that the 46 419 cm−1 level undergoes strong

Coriolis interactions with unseen K = 0 and 2 levels because it has an unusually low
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B value, and its asymmetry splitting is highly irregular, reversing its sense at J ′ = 6.

Some unusual structure near 45 850 cm−1 had prompted us to carry out experiments

with a warmed beam in that region, and led to the assignment of two K = 0− 1 hot

bands, with upper states at 46 460.58 and 46 467.83 cm−1. The Q and P branches

of these hot bands are illustrated in Fig. 7-9. As explained in our Chapter 6, these

result from anharmonic resonance between the highest K ′ = 0 stack of 22B2 and the

K ′ = 0 stack of 1121. The K ′ = 1 and 2 stacks of 1121 appear to be unperturbed,

and a least squares fit to them alone predicts that the 1121, K ′ = 0 stack should lie

at 46 463.48 cm−1. This would place the highest K ′ = 0 stack of 22B2 at 46 464.93

cm−1 in zero order, with an interaction matrix element of 3.6 cm−1.

A global least squares fit to the 22B2 polyad has been attempted, but with only

three K-stacks observed, one of which is involved in an anharmonic resonance, it is of

limited value. Somewhat surprisingly though, the fit is very good (σ = 0.011 cm−1),

and reproduces the unusual asymmetry splitting of the 46 419 cm−1 level faithfully.

The position predicted by the fit for the middle K ′ = 1 sub-band coincides with

the highest K ′ = 1 sub-band of the 31B4 polyad, at 46 434.37 cm−1. This is quite

a strong band, but there are not enough unassigned lines remaining to allow clear

assignments of the 22B2 branches. Rotational constants from a band-by-band fit to

the uppermost K ′ = 1 level (46505 cm−1) are given in Table 7.5. Interestingly, it is

not possible to give sensible rotational constants for the lower K ′ = 1 stack from a

band-by-band fit because Coriolis couplings with unseen levels affect the asymmetry

splitting so strongly.

7.4.5 The 2131B2 and 31B4 polyads

The 2131B2 and 31B4 polyads, together with the 1131 level, form a complex of nine

interacting vibrational levels, of which the lowestK-stacks lie near 46 060 cm−1. Fermi

resonance is expected between the 2131B2 and 31B4 polyads, and perturbations are
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expected between the 1131 level and the 2131B2 polyad, in similar fashion to the

perturbations between the ν ′1 fundamental and the 21B2 polyad. As it turns out, the

K-stacks of the 1131 level mostly fall in gaps in the K-structure of the 2131B2 polyad,

so that the effect of the anharmonic resonances is quite small and can be absorbed

into effective constants for the levels involved. An analysis of the 1131 band was given

in Ref. [139]. A number of small perturbations were found in the 1131 level, but none

of them can be attributed to the 2131B2 polyad.

Although only nine vibrational levels are expected in this energy region, tenK ′ = 1

stacks are found, showing that an “extra” level, of the type discussed in parts 7.3.2

and 7.3.3, is present. It is important to establish the detailed K-structures of these

polyads so that the “extra” level can be identified securely. However, this is more

difficult in one-photon spectra than it is in double resonance spectra. The K ′ = 1

levels are usually easy to find because they appear in excitation spectra from the

ground level. The K ′ = 0 and 2 levels require warmed jet spectra, which are more

capricious experimentally, and lack the selectivity of double resonance spectra. As a

result, the weaker K ′ = 0 and 2 sub-bands are not always seen, so that there can be

some uncertainty in identifying what is actually observed. Careful predictions of the

K-structure are needed, basing them soundly on the levels observed at lower energy.

Comparison of the 21B1 and B1 polyads shows that the anharmonicity parameters

x′24 and x′26 are quite similar. Also x′23 is only −0.24 cm−1. It should therefore be

possible to predict the structure of the 2131B2 polyad to within a few cm−1 by adding

the observed differences between corresponding levels of the 21B2 and B2 polyads to

the observed energies of the 31B2 polyad. This procedure assumes that x′23 is zero,

and ignores the small shifts of up to about 3 cm−1 in the 21B2 structure caused by

the 11 level, but otherwise follows the usual Dunham expressions for the vibrational

energies.

Because of the ν ′3/ν
′
6 anharmonicity, the structure of the 31B4 polyad cannot be
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predicted in similar fashion by adding the ν ′3 interval to the energies of the B4 polyad.

(In any case only eight of the 15 stacks in the B4 polyad with K ′ = 0− 2 have been

located. See Chapter 5.) Instead, a calculation based on Eqs. 5.8 and 5.9 is needed,

with the zero-order vibrational energies extrapolated from anharmonicity constants

derived from the 31Bn polyads, where n = 0 − 3. The Fermi resonance between the

2131B2 and 31B4 polyads will make small random corrections to the energies, but is

probably not important for the predictions since there appear to be no pathological

near-degeneracies between levels of the two polyads, of the type seen in Fig. 7-3.

To calculate the 31B4 levels, the energies of the basis states of the 31Bn polyads,

n = 0− 3, were reduced to a set of vibrational parameters where the anharmonicity

in ν ′3 is folded into effective bending parameters. These parameters, which are listed

below Table 7.6, were then used to calculate the rotational structure. A comparison

of the observed and calculated level structures of the 2131B2 and 31B4 polyads is

given in Table 7.6. Included in the data set are two levels, with K ′ = 1 and 3, which

are not seen in the jet spectra, but which cause perturbations in the 34 level at higher

J values; they are described in Ref. [170]. It can be seen that the match between the

observed and calculated level positions is very good, with 12 of the 18 observed levels

predicted to within 3 cm−1, and the other six predicted to within 10 cm−1.

Confirmation of the K ′ = 1 assignments comes from the asymmetry splittings,

where the observed and calculated values of the asymmetry parameter B − C, listed

in Table 7.6, are seen to agree to within about 0.01 cm−1. At first sight it may seem

that there are two exceptions to this statement, but there are simple explanations for

them. One of the exceptions is the 46 152.4 cm−1 level, where the calculations predict

the large magnitude of B −C correctly, but with the wrong sign. The reason is that

the nearby K ′ = 0 level, which causes the large splitting (by b-axis Coriolis coupling),

is calculated to lie just below it, rather than just above it. Since the b-axis coupling

is almost a first order effect in this instance, the correct magnitude but incorrect sign
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follow at once.

The other exception is the lowestK ′ = 1 level of the 31B4 polyad, at 46 086.8 cm−1,

where the calculation predicts B−C = −0.002 cm−1 while the observed splitting gives

B − C = 0.067 cm−1. It turns out that the reason for the discrepancy is that the

calculation places this K ′ = 1 level 5.5 cm−1 too low. We find that the apparent

asymmetry splitting in the lowest K ′ = 1 level of a B4 polyad is a very sensitive

function of the energy separation between it and the lowest K ′ = 0 level. When the

input parameters for the calculation are adjusted so that the “J = 0” energies of the

two levels are reproduced exactly, the calculated value of B − C changes to 0.069

cm−1, in excellent agreement with the observed value.

No attempt has been made to obtain a full least squares fit to the nine interacting

vibrational levels, comparable to that in Table 7.3.2. The data are by no means as

complete, while preliminary fits to the individual polyads show that many correction

terms would have to be added to cope with the ν ′3/ν
′
6 anharmonicity effects. Instead,

band-by-band fits have been carried out. The resulting parameters are given in Table

7.7, and the assigned rotational levels are shown plotted against J(J+1) in Fig. 7-11.

Figure 7-12 illustrates two elegant examples of Coriolis coupling from the 31B4

polyad. One is the pair of K ′ = 0 and 1 levels near 46 153 cm−1, discussed above. The

K ′ = 0 level has bg vibrational symmetry, which is an unusual observation. In other

gerade bending polyads the K ′ = 0 levels of bg vibrational symmetry are not seen

because transitions to them are forbidden by the symmetry selection rules. However,

in this instance the strong b-axis coupling transfers intensity to the K ′ = 0 sub-band

and generates an apparent asymmetry splitting in the K ′ = 1 level that is more

than twice as large as that in the zero-point level. The bg vibrational symmetry of

the K ′ = 0 stack (e rotational symmetry) follows at once from the P- and R-branch

structure of the K = 0 − 0 sub-band. The other example illustrated is the pair of

K ′ = 1 and 2 levels near 46 239.5 cm−1. For zero rotation these lie within 0.6 cm−1
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Table 7.6: Calculated and observed K-structures of the 2131B2 and 31B4 polyads in
the Ã 1Au state of acetylene. For the K ′ = 1 levels, the second entry is the value of
(B − C). Values in cm−1.

Calculateda Observedb

K ′ = 0 K ′ = 1 K ′ = 2 K ′ = 3 K ′ = 0 K ′ = 1 K ′ = 2 K ′ = 3

46 347 ag 46 434 46 550 – 46 434.4 46 559.2
0.003 0.003

46 343 bg 46 248 46 314 46 413 – 46 294.5d – 46 419.7d

0.006 ∼ 0
46 211 ag 46 238 46 255c 46 209.7 46 240.2e –

0.060 0.061
46 150 bg 46 177 46 247 46 153.3f 46 176.3 46 239.6e

0.024 0.033
46 133 ag 46 152 46 172 46 129.5 46 152.2 46 174.0

0.234g −0.239
46 116 bg 46 103 46 122 – 46 097.0 46 121.3

−0.030 −0.017
46 074 ag 46 081 46 100 46 075.4 46 086.8 –

−0.002g 0.067
46 059 ag 46 067 46 079 46 058.7 46 068.5 –

0.056 0.060

(a) Parameters for the calculation of the 31B4 levels: K4466 = −57.86, ω′4 = 752.00,
ω′6 = 742.47, x′44 = −0.405, x′46 = 15.425, x′66 = −3.695, y′444 = 0.173, y′446 = 0.55,
y′466 = −1.245, y′666 = −0.798, A = 14.0 cm−1, ζa46 = 0.7028.
(b) Values for K > 0 extrapolated to “J = 0”.
(c) Values in bold face type belong to the 2131B2 polyad.
(d) Values from deperturbation of avoided crossings in 34 (see Ref. [170]).
(e) Very strongly Coriolis-coupled.
(f) Vibrational bg level, obtaining its intensity from the K ′ = 1 level at 46 152.4 cm−1 by
b-axis coupling.
(g) See text for explanation of the discrepancy between calculated and observed structure.
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Figure 7-11: Observed rotational levels of the 1131, 2131B2 and 31B4 vibrational
states, less 1.05J(J + 1), plotted against J(J + 1). The lines in the figure are drawn
only to guide the eye because a full least squares fit has not been carried out. The
four highest assigned vibrational states are not shown. These are the K ′ = 1 state at
46294.49 cm−1 and the K ′ = 3 state at 46 419.67 cm−1 (both of which perturb 34),
the topmost K ′ = 1 state (46 434.37 cm−1) and the topmost K ′ = 2 state (46 559.22
cm−1).
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Table 7.7: Rotational constants for the 2131B2 and 31B4 polyads from band-by-band
least squares fits. Values in cm−1.

K ′ T0
1
2
(B + C) qc D rms

2131B2

0f 46 058.69 ±0.04 1.0540 ±0.0025 0.018
1 46 068.47 0.02 1.0258 0.0018 0.0302 ±0.0020 0.011
1 46 248 0.14 1.0025 0.0129 −0.0084 0.0046 −0.00026 ±0.00024 0.064
2 0.006 0.03 1.0813 0.0018 0.011
0f 46 238 0.17 1.1136 0.0125 0.000057 0.000056 0.073
1 0.060 0.06 1.0811 0.0021 0.0163 0.0027 0.047

31B4

0f 46 075.38 0.05 1.0646 0.0031 0.023
1 46 086.84 0.04 1.0437 0.0010 0.0333 0.0014 0.034
1e 46 151.94a 0.32 0.8987 0.0507 −0.0022 0.0015 0.092
1f 46 152.48 0.11 1.0183 0.0178 −0.00046 0.00054 0.033
0e 46 153.30a 0.29 1.1847 0.0460 0.0022 0.0014 0.083
2 46 174.04 0.03 1.0639 0.0037 0.00012 0.00004 0.00012 0.00009 0.009
0f 46 209.70 0.05 1.1039 0.0015 0.026
2 46 239.59b 0.21 0.8718 0.0364 0.00035 0.00025 −0.0016 0.0014 0.025
1 46 240.16b 0.34 1.1368 0.0241 0.0306 0.0116 0.0004 0.0004 0.164
1 46 434.40 0.03 1.0099 0.0013 0.0015 0.0017 0.019
2 46 559.23 0.04 1.0342 0.0094 −0.0004 0.0005 0.019

(a) Strong b-axis Coriolis coupling between these levels leads to uncertainties in the
parameters; the K ′ = 1e and 1f levels have been fitted separately.
(b) Strongly interacting levels; the parameters are not well determined.
(c) The K-doubling has been taken as ±1

2q[J(J + 1)]K for the e/f levels; q corresponds to
1
2(B − C) for the K ′ = 1 levels.
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of each other, and repel each other exceptionally strongly. The asymmetry splitting

of this K ′ = 1 level is not affected by the interaction and is calculated correctly.

Not counting the 34, 23 and 1131 levels (which have been reported elsewhere), and

the lowest K ′ = 1 component of 22B2 at 46 419 cm−1, the structure listed in Table 7.6

accounts for every observed level in this region except for a K ′ = 1 level at 46 192.20

cm−1 (mentioned above) and a K ′ = 0 (ag) level at 46 113.78 cm−1. These two appear

to be “extra” levels, since no other S1-trans levels are expected in the region.

7.4.6 The 51B1 polyad

Just to the high energy side of the intense 45 811 cm−1 band (3242, K ′ = 1), and

partially overlapping the hot bands of the 22B2 polyad, is a comparatively weak

K ′ = 1 sub-band that can be identified as belonging to the 51B1 polyad. It is

illustrated in Fig. 7-9.

The 51B1 polyad should have two components, 4151 and 5161, with vibrational

symmetries bg and ag, respectively. The “J = 0” energy of the observed upper state

is 45 839.52 cm−1 (T00 + 3641.95 cm−1), and the sense of its asymmetry splitting is

that the e-symmetry component lies above the f -component, with an apparent value

of B−C = 0.045 cm−1. This value of B−C is about half what would be expected for

a level that is free from Coriolis effects, and shows that the upper state is part of a

bending polyad. Since the position of the band rules out a combination involving ν ′1,

ν ′2 or ν ′3, the only other combinations that could appear in one-photon laser excitation

spectra according to the g/u selection rules are those involving the antisymmetric C–

H stretching vibration ν ′5 (bu) with the ungerade bending vibrations. The sum of the

ν ′5 frequency (2857.47 cm−1 [157]) and the mean of the two bending frequencies, ν ′4

and ν ′6 [2], is 3624.05 cm−1, so that the observed band has to be the upper K ′ = 1 sub-

band of the 51B1 polyad. The sense of the asymmetry splitting, which is consistent

with a vibrational level of ag symmetry, indicates that the upper state has the zero
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Figure 7-12: Coriolis interactions in the 31B4 polyad of acetylene. (a) Interacting
K ′ = 0 (bg) and K ′ = 1 levels near 46 150 cm−1; transitions to the K ′ = 0 (bg)
upper state are forbidden by the vibrational selection rules, but are induced by b-axis
Coriolis interaction with the K ′ = 1 level. (b) Interacting K ′ = 1 and 2 levels near
46240 cm−1; the two K stacks are almost degenerate for zero rotation. The spectra
in (a) and (b) are at the same horizontal scale.
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order vibrational assignment 5161. The energy order of the vibrational components

of the 51B1 polyad, with 5161 above 4151, is the same as the energy order of the

fundamentals and the 21B1 polyad, where the 2161 level lies above the 2141 level.

We are not able to assign the lower K ′ = 1 sub-band from our spectra. Assuming

that the Coriolis coupling parameters are similar to those in other B1 polyads, this

band should lie near 45801 cm−1. There are a few weak lines in this region, but it is

not possible to pick out definite branches in between the very intense P and Q lines

of the 45811 cm−1 band. With only one sub-band observed, little more can be said

about the 51B1 polyad, except that it lies slightly lower than expected; the sum of

the x′45 and x′56 parameters is roughly 25 cm−1.

7.4.7 13C isotope shift of the K ′ = 1 sub-bands

For some of the strong K ′ = 1 sub-bands, particularly those involving excitation of

the C–C stretching vibration, ν ′2, it is possible to assign the corresponding bands

of H13C12CH in natural abundance. A clear example is the 22
0 band, illustrated in

Chapter 6. To our knowledge this was the first observation of a level of the Ã 1Au

state of H13C12CH, although its electronic ground state has been extensively studied.

Table 7.8 lists the bands of H13C12CH that have been identified in this work, and the

corresponding isotope shifts. The largest isotope shifts are found for bands where

quanta of ν ′2 are excited. It is fairly easy to pick out the H13C12CH bands in these

cases because they have no intensity alternation and the isotope shifts bring them

well clear of the strong low-J P lines of the main bands, which are usually saturated

under conditions where the H13C12CH lines are observable. Since the saturated lines

are often very wide, it can be difficult to pick out branches in the gaps between them.

For bands with smaller isotope shifts it is not always straightforward to distinguish

the isotopic lines from the axis-switching sub-bands [121] that lie in the same region.

These latter are ∆K = 0 sub-bands that arise because of a small rotation of the
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inertial axis system on electronic excitation. In particular, the strong Franck–Condon-

allowed K = 1− 0 sub-bands of the principal progressions always have a K = 0− 0

axis-switching sub-band just below them, separated from them by the rotational

constant A− 1
2
(B + C).

Table 7.8: 13C isotope shifts for the K ′ = 1 sub-bands for the Ã 1Au− X̃ 1Σ+
g system

of acetylene identified in this work. Values in cm−1.

Assignment T0 ∆ν
(H12C12CH–H13C12CH)

42 43 801.77 −5.10
2131 44 622.26 22.20
3142 44 810.71 0.43
22 44 920.46 39.91 (Chap. 6)
2132 45 644.49 32.09
3242 45 805.16 5.43 (12C perturbed)
2231 45 962.58 45.58
1131 46 125.54 1.61
34 46 274.20 13.99 (perturbed)
1121 46 453.92 21.07
2133 46 654.53 32.39 (12C perturbed)

The T0 values refer to the bands of H13C12CH.
Derived shifts per quantum: ν ′1 : 3.8 cm−1; ν ′2 : 23.4 cm−1; ν ′3 : 5.3 cm−1; ν ′4 : 0.9 cm−1.
Zero-point level shift (K ′ = 1): −6.8 cm−1.
A very weak band at 46049.07 cm−1 appears to be the 13C analog of the 2131B2 band at
46068.47 cm−1, though the assignment is not certain.

Three of the bands for which the isotope lines were easy to identify were 42, 3142

and 3242. These are comparatively intense isolated bands and, since they are the

highest K ′ = 1 members of B2 polyads, where the K-structure is distorted by the

a-axis Coriolis interaction, they have no accompanying K = 0 − 0 axis-switching

sub-bands. We have also identified the 34 band of H13C12CH. The reason for interest

in this band was to locate a component of the 31B4 polyad that is predicted to lie

nearby. Because of the great intensity of the 34 band and its axis-switching structure,

special experiments with a seeded beam were carried out in order to cool the acetylene

as much as possible. It turns out that the 34 band of H13C12CH contains triplet
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perturbations at low J values, of the type identified by Drabbels et al.[155] in the

33 and 34 levels of H12C12CH. As a result it is only possible to give an approximate

value for the isotope shift.

Comparison of the shifts in Table 7.8 shows that, with the exception of that

for 2132, the observed shifts are additive to within 1–2 cm−1. Discounting the 2132

level, where the line assignments are not in doubt, but the isotope shift is anomalous

for reasons that we do not understand, the values in Table 7.8 allow the shifts per

quantum to be derived for ν ′1 through ν ′4; these are listed below the table, along with

the electronic isotope shift. The derived shifts agree quite closely with the values we

calculate from the harmonic force field of Tobiason et al.[137] For example, the shift

per quantum of ν ′2 (23.38 cm−1) compares well with the harmonic force field value

(23.1 cm−1). For ν ′3 the harmonic force field value (7.9 cm−1) is possibly slightly too

large, since the majority of the numbers in Table 7.8 indicate a shift per quantum of

close to 5.3 cm−1.

It can be argued that the shift per quantum for ν ′4, which has been derived from

levels of B2 polyads where Darling-Dennison resonance is known to be strong, should

be corrected for the effects of this resonance. In fact, any such correction must

be very small, since the ν ′4 and ν ′6 vibrations have almost the same frequency, and

their harmonic force field isotope shifts are calculated to be the same to within 0.1

cm−1. Different degrees of mixing of the ν ′4 and ν ′6 basis states caused by the Darling-

Dennison resonance will therefore have almost no effect on their isotope shifts.

7.5 Discussion

This work was motivated by ab initio calculations [114, 116] that the S1 state of

acetylene has a comparatively low barrier to trans-cis isomerization of about 4700

cm−1. Only the trans well of the S1 state ( Ã 1Au) is observable spectroscopically,
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since the cis well transforms as 1A2, to which absorption transitions from the ground

state are forbidden. Nevertheless, the possibility exists that levels of the cis well

near the top of the barrier can tunnel through it and give rise to observable bands,

picking up intensity by interaction with nearby trans-well levels. Obviously a search

for levels of this type requires a very detailed understanding of the level structure

of the Ã 1Au state in order to identify any “extra” levels that do not belong to the

trans isomer. With this aim in mind we report rotational analyses of a number of

newly-discovered vibrational bands at the long wavelength end of the Ã 1Au− X̃ 1Σ+
g

system of acetylene. Specifically we have focused on the combination levels involving

the ag vibrations of the Ã state with the low-lying bending vibrations, ν ′4 and ν ′6.

Together with the results from previous work, analyses are now available for some

parts of more than 75 vibrational levels of the Ã state, including every predicted

level up to a vibrational energy of 3500 cm−1. Four suspected cis-well levels have

been found, but further studies are required to confirm their identities and give their

vibrational assignments.

There are various reasons why such a complete cataloguing of the vibrational

structure has been possible. On the experimental side, the main reason has been

the very large dynamic range of the recorded spectra, which results from the way

the laser-induced fluorescence has been gated so as to minimize the scattered laser

light. Without this, the very weak bands at the long wavelength end of the band

system would never have been detected. We have also made certain that full rota-

tional analyses were carried out for those bands where pattern recognition methods

break down because of the complexity of the rotational structure. In these cases

the rotational assignments were made by stimulated emission pumping and popula-

tion labeling experiments. On the theoretical side, we have gone to some length to

understand the details of the Coriolis and Darling-Dennison resonances, which have

allowed us to obtain good quality constants from the lower energy bending polyads
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that could be used to predict, reasonably accurately, the structures of some of the

higher bending polyads. For the purpose of understanding these details, it has been

essential to put equal weight on data from the one-photon UV spectra and the IR-UV

double resonance spectra, since g/u symmetry considerations cause the members of

a Bn progression to alternate between the two types of spectra. However, probably

the most important reason for the completeness of the results is the emphasis we

have placed on obtaining spectra of the K ′ = 0 and 2 rotational levels, both in the

one-photon and the double resonance experiments. The c-type rotational selection

rules (K ′ − `′′ = ±1) strongly favor the collection of K ′ = 1 data, whether in cold

jet one-photon spectra from the v′′ = 0 level or via the intense v′′3 fundamental in

double resonance, but without K ′ = 0 and 2 data it would have been impossible to

understand the Coriolis effects and, therefore, to make any sensible predictions of the

structure at higher energy.

The most interesting result from the present work has been the surprising an-

harmonicity in the combinations of ν ′3 (trans bend, ag) and ν ′6 (in-plane cis bend,

bu). This is shown very clearly by the structures of the 3nB2 polyads. Figure 7-13

illustrates the three K = 1 sub-bands of the 3nB2, n = 0 − 3 polyads, showing how

the compact structure of the B2 polyad opens up with excitation of ν ′3. (The lowest

frequency component of 33B2 has not been securely identified yet, but probably lies

near 46 550 cm−1.) The high frequency members of the polyads, nominally 3n42, form

a normal progression with regularly decreasing spacing, but the low frequency mem-

bers (3n62) drop rapidly below the rest of the polyad: for example, the separation of

the two lower K ′ = 1 sub-bands increases from 9 cm−1 in B2 to 73 cm−1 in 32B2. It

is not easy to obtain the vibrational energies directly from the positions of the K = 1

sub-bands because of the Darling–Dennison and Coriolis resonances, but deperturbed

values are given by the least squares fits of Tables 7.3 and 7.4 and those in Chap. 5.

The results show that, while the 42 level lies 2.09 cm−1 above the 62 level in zeroth
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order, the 3242 level lies 102.91 cm−1 above the 3262 level in zeroth order.

Figure 7-13: Jet-cooled excitation spectra showing the three K ′ = 1 sub-bands of
each of the 3nB2, n = 0 − 3 polyads. (The lowest energy sub-band of 33B2 has
not been definitely identified yet.) The spectra are all to the same horizontal scale,
and arranged so that the highest frequency sub-bands (nominally 3n42) are aligned
vertically. Thick lines join the positions of the sub-band origins. The assignments of
the overlapping bands are not marked.

The shape of the molecule at the trans-cis isomerization barrier is calculated to

be half-linear [114, 116], which would correspond to simultaneous excitation of the ν ′3

and ν ′6 vibrations. Clearly the anharmonicity represents the molecule approaching the

barrier, presumably with a change in the nature of the vibrational coordinates which

contributes to the variation of K4466 with ν ′3. The need for the many small correction

terms in the least squares fits to the combination polyads, particularly 2131B1 and

31B3, must arise from the same cause.

The resonance parameters 2Aζa46 and K4466 increase unexpectedly quickly with

excitation of ν ′3. For example, the fitted value of 2Aζa46 rises from 18.45 cm−1 in the

B2 polyad to 23.56 cm−1 in the 32B2 polyad. However this increase is not related
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to the ν ′3/ν
′
6 anharmonicity (since the Coriolis constants are independent of the force

field), but arises instead from the increase in the average ∠HCC bond angle with

excitation of ν ′3. With rCC = 1.375 Å and rCH = 1.097 Å[120], the effective ∠HCC

bond angles for the members of the v′3 progression can be calculated from the A

rotational constants reported by Watson et al.[118] The ζ46 constants corresponding

to these angles can then be obtained by standard methods [171, 172]. For v′3 = 0

and 2 the calculated values of ζa46 are 0.680 and 0.736, giving 2Aζa46 = 17.76 and

22.32 cm−1, respectively. Although these calculated values are slightly lower than the

observed, the trend is reproduced correctly: the large increase in 2Aζa46 with v′3 occurs

because both A and ζa46 increase as the molecule becomes more nearly linear.

The Darling-Dennison parameter, K4466, depends on the force field as well as the

A and B rotational constants and the Coriolis ζ parameters. To second order [152]

it is given by

K4466 = 1
4
φ4466−4[A(ζa46)2 +B(ζb46)2]Ω2 + 1

8

∑
k

φk44φk66ωk×
[

1

4ω2
4 − ω2

k

+
1

4ω2
6 − ω2

k

]
.

(7.7)

The methods of the previous paragraph allow the Coriolis contribution to be calcu-

lated; it accounts for only about two thirds of the change in the value of K4466, which

implies that the second-order expression is beginning to break down. Specifically, the

values of K4466 for the B2 and 32B2 polyads are −51.68 and −66.50 cm−1, respec-

tively, while the calculated values of −4[A(ζa46)2 + B(ζb46)2]Ω2 for v′3 = 0 and 2 are

−28.48 and −38.73 cm−1. It is remarkable that the Coriolis effects make up more

than half the value of K4466, and also that this fraction increases with v′3.

Several perturbations attributed to triplet electronic states have been identified in

the course of this work. A summary of the most prominent perturbations is given in

Table 7.9. Of the states that manifest splitting of the observed lines, anomalously long

fluorescence lifetimes, or significant zero-field quantum beats, most have been subse-
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quently studied by a combination of time-gated fluorescence and SEELEM (surface

electron ejection by laser-excited metastables) techniques, demonstrating a variety of

dynamics associated with vibrational state-specific intersystem crossing [173].

A number of exciting avenues for future work are suggested by the present re-

sults. One of the most interesting will be the vibrational assignment of the “extra”

vibrational levels that have no place in the manifold of the S1-trans state. Already

we have found that the H13C12CH – H12C12CH isotope shift of the “extra” level at

46 192 cm−1 is completely at odds with its apparent position in the trans well, sug-

gesting that it lies at quite low energy in a state whose potential minimum lies above

that of the trans well. A combination of isotope data with vibrational symmetry

arguments, based on the rotational selection rules, should allow assignments to be

made and give an estimate of the relative energies of the cis and trans wells. After

that comes the problem of exactly what is the energy of the trans–cis isomerization

barrier. The 46 192 cm−1 “extra” level, which is the highest-energy “extra” level that

we have found, appears to have an even-odd staggering in its K-structure of the type

expected for tunneling through the barrier. The size of the staggering will be related

to the classical frequency of this tunneling, carrying information about where the

level lies relative to the top of the barrier. The spectra become increasingly confused

in this energy region and the effects of predissociation start to become troublesome

but, with careful systematic analyses, progress should be possible.
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Table 7.9: Summary of Ã-state vibrational levels believed to be perturbed by triplet
states in the absence of a magnetic field. Evidence (apart from observable splitting in
the LIF spectrum) for the nature of the perturbation is provided by the experiments
listed in the rightmost column. No claim of completeness is made, as the existing
experiments are biased towards the strongest transitions and those perturbations
observable at low J .

T0 Assignment Experiments

45300 33, K ′ = 1 high-resolution LIFa

Zeeman quantum beatsb

SEELEMc

45347 33, K ′ = 2 SEELEMd

45423 33, K ′ = 3, J ′ = 3− 6, 8
45676 2132, K ′ = 1 SEELEMd

46008 2231, K ′ = 1 SEELEMd

46288e 34, K ′ = 1 high-resolution LIFa

Zeeman quantum beatsb

44811f 31B2, K ′ = 1, III, J ′ = 2e Zero-field quantum beats
45811g 32B2, K ′ = 1, III SEELEMd

46192 “Extra”, K ′ = 1 SEELEMh

45539i 31B3, K ′ = 0f, II
45938 33B1, K ′ = 0f SEELEMd

45947 33B1, K ′ = 1, I Zeeman quantum beatsj

46040 33B1, K ′ = 0e SEELEMd

SEELEM = Surface Electron Ejecttion by Laser-Excited Metastables
Roman numerals represent energy rank of a given K sublevel within a polyad.
aRef. [155]
bRef. [174]
cRef. [175]
dRef. [173]
eTriplet perturbations also noted in H13C12CH: see Section 7.4.7
f see Section 7.4.1
gsee Section 7.4.2
hRef. [161]. This state was preliminarily assigned as 2131B2, K ′ = 1, III.

See analysis in Section 7.4.5 for reassignment.
iSee Section 7.3.2
jRef. [159]
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Chapter 8

Observation of large amplitude

bending eigenstates in S0 acetylene

8.1 Motivation

The long-term goal of this research is to understand how the existence and ener-

getics of the vinylidene minimum are encoded in the vibrational spectrum of acety-

lene. The acetylene vibrational levels most strongly affected by the presence of the

vinylidene isomeric minimum will be those that are spatially localized near the iso-

merization barrier separating the acetylene and vinylidene regions of the potential

energy surface. The barrier maximum is calculated to have a half-linear geometry,

where one of the hydrogen atoms has migrated off-axis to a position above the C–

C bond, while the other has remained essentially stationary. Large amplitude local

vibrational motions have been predicted to exist on the acetylene S0 surface by a

number of techniques[176, 177, 178, 179, 180, 181]. If these states could be experi-

mentally observed, they would serve as exquisite probes of the energetics along the

acteylene↔vinylidene isomerization path.

Our current knowledge about these local-bending states is derived largely from
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extrapolation. Though they are not directly observed, the local-bending eigenstates

arise naturally from a spectroscopic effective Hamiltonian fit to the available data

describing the bending vibrational dynamics of acetylene. Developing techniques by

which these local-bending eigenstates may be experimentally probed is the primary

motivation of this work.

Acetylene and vinylidene are very different chemical entities, yet their minima lie

on the same electronic surface. It can be expected that, by exciting large amplitude

vibrational motions, the electronic wavefunction (and therefore electronic properties)

of the system can be highly distorted from that of its equilibrium configuration. The

local-mode nature of the large amplitude vibrational states provides a further advan-

tage in that the vast majority of vibrational eigenstates, particularly at low energy,

are not well described in the local mode limit. The special properties of local mode

vibrations can be used alongside the predicted electronic distortion to identify elec-

tronic signatures unique to these large amplitude motion states: dynamical symmetry

breaking[182], a result of the systematic degeneracy of states possessing different rig-

orous symmetries, makes states in the local-mode limit unique; large distortions of

the electronic wavefunctions guarantee that the electric dipole moments, normally

zero by virtue of the molecular symmetry, will be large.

8.2 A local-bender reaction coordinate

Using the internal coordinate path method of Tew et al.[183], a one-dimensional

reaction coordinate describing the acetylene↔vinylidene isomerization has been con-

structed. The internal coordinate path is defined in terms of a single large amplitude

internal coordinate, which, for the current case of acetylene, is chosen to be the

∠HCC bond angle. The large amplitude coordinate is scanned over a range of values.

At each value of the large amplitude coordinate, all of the other internal degrees of
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freedom are adjusted to minimize the energy. While retaining conceptual similarity

with the true minimum energy path, the internal coordinate path has the advantage

of numerical simplicity. Because of this formulation, the potential energy will be a

single-valued function of the selected large amplitude degree of freedom. Results of

applying this technique to the acetylene↔vinylidene isomerization have recently been

reported[184], and the results of those calculations are summarized here.

Figure 8-1: One-dimensional potential for acetylene↔vinylidene isomerization.

The one-dimensional internal coordinate path for the acetylene↔vinylidene iso-

merization is shown in Figure 8-1. In Fig. 8-1a, the vibrational potential energy,

relative to the energy at the equilibrium geometry for HCCH, is plotted as a function

of the ∠HCC bond angle parameter. The definition of the path, colored-coded to

match the motion along the potential energy curve, is shown in Fig. 8-1b. Several

important geometries along the path are noted. Between the equilibrium geometry

(1), and the top of the barrier (2), the path consists almost exclusively of one hy-

drogen pivoting around the carbon atom to which it is bound. Between points (2)

and (3), the hydrogen atom is transferred from the bonding sphere of its original

carbon atom to the bonding sphere of the other carbon. Finally, between (3) and

(4), the second hydrogen moves well off of the C-C axis, to a position associated with

sp2 hybridization of the CH2 carbon. The most salient point of this analysis is that,
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in the angular range ∠HCC = 0 − 120◦, essentially all of the vibrational motion is

localized in one HCC bending motion, while the other CCH angle barely changes.

Furthermore, the C-C distance is surprisingly constant. Over a large portion of its

angular domain, the internal coordinate path description of the acetylene↔vinylidene

isomerization closely resembles the type of motion expected in the local-mode picture

of bending vibrations.

8.2.1 Local-bending energies from theory and experiment

Reduction of the reaction coordinate to a one-dimensional path is extremely useful,

because it is straightforward to solve the vibrational problem for an arbitrary one-

dimensional potential. What is not guaranteed is that the calculated eigenvalues

and their associated vibrational wavefunctions have any bearing on the dynamics

of the full-dimensional molecular system; the vibrational states obtained from this

one-dimensional treatment may be diluted over an arbitrarily large number of full-

dimensional vibrational eigenstates of the molecule. In acetylene, it has been shown

that local-bending vibrations correspond to stable trajectories over a wide energy

range and organize a considerable amount of the bending vibrational phase space

[185]. As a result, many eigenstates of the spectroscopic effective Hamiltonian can be

identified as possessing local-bending character.

In order to ascertain whether the local-bending eigenstates derived from the spec-

troscopic effective Hamiltonian are equivalent to the eigenstates of the internal coor-

dinate path Hamiltonian, we compare the effective vibrational frequencies (energetic

intervals) for the two representations of this large amplitude motion (Figure 8-2).1

We find that the agreement is good despite the vastly different nature of these two

models. Over the range of quantum numbers within which both models represent a

local-bending motion of the the acetylene molecule, the approximate bending frequen-

1For the full-dimension molecular system, eigenstates with ` = 0 exist for only even values of
Nbend. The vibrational frequencies are, therefore, determined by 1

2 [E(Nbend + 1)− E(Nbend − 1)].
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cies agree to within 5%. The agreement breaks down at low energy, below Nb = 14,

where the local-bending frequency is not well-defined in the polyad model because the

eigenstates of the polyad Hamiltonian do not possess local-bending character. At high

energy, above Nb = 18, the two models again diverge. The effective bending frequency

of the internal coordinate path Hamiltonian drops rapidly due to the softening of the

one-dimensional potential, as the molecule approaches the top of the isomerization

barrier and experiences the effect of the possibility of tunneling through the barrier.

The polyad model is fitted to data from levels that are well localized in the HCCH

well, and do not sample the isomerization barrier. It is, therefore, unsurprising that

the frequencies from this model do not mirror the steep decline observed in the ab

initio data set. It is important to stress at this point that the data from the polyad

model do not represent eigenstates that have so far been observed by experiment.

We cannot, based on the data presented to this point, draw any conclusions about

how relevant the higher energy eigenstates of the one-dimensional model are to the

full-dimensional dynamics.

8.2.2 Electronic signatures: Electric dipole moments

In previous work [184], we have calculated the electric dipole moment along the

ab initio internal coordinate path for the acetylene↔vinylidene isomerization. In

order to identify the electronic signature of large amplitude vibrational excitation, we

computed the expectation values by averaging the calculated dipole moment function

over the one-dimensional wavefunctions. As discussed in Ref. [184], the expectation

value of the dipole moment along the b inertial axis averages to zero, as the b-axis

dipole moment function has the opposite sign when the hydrogen is above the C-C

axis as it does when it is below the C-C axis. In contrast, the expectation value of the

dipole moment along the a-inertial axis does not cancel over the period of vibration.

It does not matter whether the hydrogen atom is above or below the C-C axis; at all
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Figure 8-2: Comparison of effective bend-
ing frequencies from the experimentally
polyad effective Hamiltonian and the one-
dimensional ab initio internal coordinate
path Hamiltonian. Over the quantum
number range where both models represent
local-bending of the acetylene molecule,
good agreement is observed. Below Nb =
14, the eigenstates of the polyad Hamil-
tonian are not local in character. Above
Nb = 18, the vibrational frequencies from
the 1-D Hamiltonian drop rapidly due
to the softening of the potential as the
molecule approaches the top of the isomer-
ization barrier and the effects of tunneling
through the barrier to the vinylidene min-
imum. Because the polyad Hamiltonian is
extrapolated from data representing local-
ized HCCH vibrational levels, it cannot re-
produce the effects of the barrier.

distorted geometries along the internal coordinate path, the a-axis component of the

dipole moment is nonzero and oriented towards the distorted end of the molecule. The

lowest order effect at play, for small deviations away from the equilibrium geometry,

is simply the varying projection of the C-H bond dipole on the a-axis as a function

of the CCH bend angle. However, this lowest order effect does not describe the gross

changes in electronic structure at large geometric distortion. If the projection of the

CH bond dipole was the only relevant contribution to the dipole moment function,

the a-axis dipole at a CCH angle of 90◦ (where one CH bond has no projection onto

the a axis) would be expected to be equivalent to that of the ethynyl radical (CCH).

Instead, at this geometry, the dipole moment function assumes a much larger value,

∼ 2 Debye, than that of CCH (µ = −0.75 D). This behavior indicates that global

electronic rearrangement is taking place on the way to the vinylidene configuration,

which has a dipole moment of approximately 2.3 D.

The expectation value of the electric dipole moment has been calculated for each
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eigenvalue of the one-dimensional isomerization path Hamiltonian. We find that there

is an approximately linear trend in the expectation values as a function of number

of quanta of excitation in the 1D system. Each additional quantum gives rise to an

increase of 0.07 D in the dipole moment. While this change is small in an absolute

sense, the dipole moments become quite significant (> 1 D) as the wavefunctions

approach the barrier, because the number of quanta is high (Nbend > 20). This

simple relationship is ideal because it is straightforward not only to identify that the

observed state is a local-bending state, but also which local-bending state it is. Values

for the dipole moments of vibrationally excited states have been updated since the

publication of Ref. [184]. These updated values are provided later in this chapter, in

Table 8.1.

8.2.3 Symmetry considerations for dipole moments in the

local-mode limit

As noted above, the fact that acetylene possesses a center of inversion symmetry

dictates that all of the rovibrational eigenstates of rigid acetylene (ignoring here

the possibility of bond-breaking isomerization) have a well defined gerade/ungerade

symmetry. The dipole operator has ungerade symmetry and, therefore, can only

couple states of opposite g/u symmetry. As a consequence, it seems quite impossible

for any vibrational state of acetylene to have a non-zero dipole moment. For the

1D calculations of the previous section, this aspect of the molecular symmetry has

been ignored: g/u symmetry is not conserved by our Hamiltonian as the theoretical

treatments of the two ends of the molecule are qualitatively different. In order to

connect our one-dimensional (unsymmetrized) treatment of the molecule with the

known symmetry properties of acetylene wavefunctions, we consider some results

from the local-mode picture of molecular vibrations.

The vibrational energies of a molecule with two identical oscillators may be ex-
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pressed in the conventional normal-mode picture or in the alternative local mode pic-

ture. Lehmann has shown that the two models are mathematically equivalent[148].

The local mode picture lends itself naturally to the consideration of wavefunctions

that do not possess the complete symmetry of the molecule. For simplicity, we con-

sider here the common case of a molecule with two identical bond oscillators (e.g.

the two O-H stretching vibrations in water, or the two C-H stretching vibrations in

HCCH). The treatment of bending vibrations is no different conceptually from that

for stretching vibrations, but the presence of vibrational angular momentum in the

bending modes requires additional notation. A local-mode basis function contains

labels for the quanta of vibrational excitation in the two oscillators, taken here as

the left oscillator, νl, and the right oscillator, νr. The state |vl vr〉 = |10 0〉 has ten

quanta of vibrational excitation in the left oscillator and zero quanta of excitation

in the right oscillator. The left and right oscillators are indistinguishable, so a state

of this kind does not have a well-defined symmetry with respect to the exchange of

these two oscillators. Such a basis state is called unsymmetrized.

In order to create a basis state that is properly symmetrized, we take linear com-

binations of basis states as follows:

|0 10 ±〉 =
1√
2

[|0 10〉 ± |10 0〉] (8.1)

The positive linear combination, |0 10 +〉, now is symmetric with respect to exchange

of the two oscillators. Since, in our system, the body-fixed inversion operation ex-

changes the two oscillators, |0 10 +〉 has well-defined gerade symmetry. Matrix ele-

ments of the dipole operator can be evaluated between properly symmetrized states:

〈0 10 +|µ |0 10 −〉 = 1
2

[〈0 10|µ |0 10〉 − 〈10 0|µ |10 0〉] . (8.2)

Since, by symmetry, the two diagonal elements of the dipole operator for the left and
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right local-bending states in the unsymmetrized states are of the same magnitude but

of opposite sign,

〈0 10|µ |0 10〉 = −〈10 0|µ |10 0〉 , (8.3)

the perturbation matrix element in the symmetrized basis can be expressed as a

diagonal element in the unsymmetrized left/right basis:

〈0 10 +|µ |0 10−〉 = 〈0 10|µ |0 10〉 . (8.4)

The two symmetrized states, |0 10 ±〉, make up a so-called local-mode pair and are

systematically degenerate in the local-mode limit [149]. The transition (off-diagonal)

dipole moment between the members of a local-mode pair can, as shown in Eq. 8.4, be

interpreted as the permanent (diagonal) dipole moment of an unsymmetrized state.

The fact that the pair of local-mode states are systematically degenerate and

are coupled by non-zero matrix elements of the dipole operator renders them excep-

tionally susceptible to symmetry-breaking perturbations [186]. In the presence of an

electric field, the symmetrized local-mode states mix and the eigenstates of the sys-

tem will resemble unsymmetrized local-mode basis functions. Because the vibrational

excitation can remain essentially localized in one of the two oscillators for a long time2

the associated phenomena are referred to as dynamical symmetry breaking[182]. The

local-mode excited, symmetry-broken state will behave in ways entirely analogous to

symmetry breaking by other means, such as isotopic substitution (e.g. HCCD): the

state will exhibit regular quadratic Stark shifts, and it will be possible to excite “pure

rotational” transitions3 in the millimeter-wave region.

Dynamical symmetry breaking makes eigenstates in the local mode limit unique,

and should be exploitable as a means to recognize local-mode states among the vastly

2The classical frequency of the exchange of energy between the two oscillators is 1
h times the

inverse of the energetic splitting between the two members of the local-mode pair.
3These transitions, which behave as rotational transitions in the unsymmetrized local-mode basis,

may alternatively be thought of as vibration-rotation transitions in the symmetrized basis.
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more numerous states of highly mixed, “ergodic” character.

8.3 Dipole moments from a full-dimensional

description of acetylene vibrations

One-dimensional models of vibrational behavior are physically appealing, because

they allow us to draw a direct connection between the observed states in a vibrational

spectrum and a large amplitude reaction coordinate. For acetylene, the spectroscopic

effective Hamiltonian provides evidence that local-mode states correspond to stable

classical mechanical trajectories. However, the spectroscopic effective Hamiltonian

describes the vibrations in a state space, rather than a coordinate space.4 The agree-

ment between the effective frequencies of vibration from the polyad model and from

the one-dimensional internal coordinate path model is a compelling indication that

the coordinate of the 1D model is the same as the local coordinate of the eigenfunc-

tions of the polyad model. This agreement is less obvious than it may seem, as the

local-bending vibration could follow any number of paths, whether rectilinear (mov-

ing perpendicular to the C-C axis) or curvilinear (following, for example, the circular

defined with respect to the C-C center of mass).

In order to show conclusively that the one-dimensional model captures the bend-

ing dynamics of the real molecular system, we seek to demonstrate that the properties

of the one-dimensional wavefunctions are preserved in calculations performed using

the full-dimensionality of the molecule. Our collaborators at the University of New

Mexico have obtained the solutions to the full six-dimensional vibrational Hamilto-

nian calculated using an ab initio potential energy hypersurface. As expected, the

calculations reveal local-bending behavior, as evidenced by (1) systematic degenera-

4For this reason, wavefunctions plotted from the analysis of a spectroscopic Hamiltonian are
plotted against dimensionless (and often unlabeled) coordinates.
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cies between wavefunctions of opposite g/u symmetry and (2) the qualitative shape of

the associated wavefunctions, slices of which are shown in the top panels of Figure 8-

3. These pictures resemble the wavefunctions derived from the spectroscopic effective

Hamiltonian, as reported by Jacobson et al.[187] The vibrational normal coordinates,

corresponding to the cis and trans bending modes, lie along the diagonals of these

plots. It is clear that the nodal structure does not remotely resemble that of the

normal mode basis states but rather lies along the isolated bond angle coordinates.

Unlike our reduced-dimension model of the bending dynamics, the 6D Hamiltonian

properly obeys the symmetry of the molecular Hamiltonian, with eigenfunctions that

possess well-defined g/u symmetry. However, the local-mode nature is most easily

visualized by forming unsymmetrized states from the positive and negative linear

combinations of the computed eigenfunctions. The unsymmetrized states are shown

in the bottom panels of Fig. 8-3.

Our one-dimensional model has identified the electric dipole moment as a property

that will serve as a spectroscopic probe of progress along the isomerization path. The

transition dipole moments are calculated between the members of a given polyad of

gerade symmetry and the corresponding (same Nbend) polyad of ungerade symmetry.

These dipole moments are given in Table 8.1 along with the corresponding values

from the one-dimensional model. During the course of these calculations, it was

realized that quantitative agreement for the dipole moment required using the same ab

initio method for the six-dimensional and one-dimensional calculations. The primary

difference between the results using different ab initio methods is the shape of the

dipole moment surface at highly distorted geometries, far from both the acetylene and

vinylidene minima. We note good agreement, within approximately 10%, over the

range of expected validity of the 1D model. Perhaps the most significant difference

between the calculated dipole moments from the 6D and 1D models is that in the

full-dimensional calculations the dipole increases at a decreasing rate at higher Nbend,
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Figure 8-3: Symmetrized and unsymmetrized local-bending wavefunctions from a
full-dimensional ab initio calculation at Nbend = 20. The symmetrized wavefunctions
belong to the Σ+

g (left) and Σ+
u (right) representations of D∞h. The sum and difference

of the symmetrized wavefunctions do not have well-defined g/u symmetry and are best
thought of as left and right local-bender wavefunctions. Calculations were performed
by our collaborator, Prof. Hua Guo, Professor of Chemistry at the University of New
Mexico.
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while the trend in the 1D model is essentially linear over the range studied. This

discrepancy is a point of continuing interest.

Table 8.1: Dipole moments calculated using six-dimensional and one-dimensional
Hamiltonians for the local-bending levels of S0 acetylene. Energies are in cm−1.
Dipoles are in units of Debye.

E6D 〈ΨΣ+
g
|µ |ΨΣ+

u
〉
6D

〈ΨΣ+
g
|µ |ΨΣ+

u
〉
1D

Nbend g u CCSD(T) CASSCF CCSD(T) CASSCF

6 3769.17 3819.38 0.175 0.171 - -
8 5076.40 5107.75 0.199 0.195 - -
10 6405.51 6483.71 0.240 - -
12 7749.08 7750.69 0.398 0.389 - -
14 9087.78 9087.78 0.586 0.572 0.657 0.600
16 10422.13 10422.13 0.716 0.697 0.761 0.703
18 11753.85 11753.85 0.822 0.800 0.875 0.780
20 13083.30 13083.30 0.913 0.887 0.996 0.905

The full-dimensional calculations also enable us to test the assertion that the

local-bending states have distinct signatures in the electric dipole moments. The

wavefunctions of the six-dimensional calculation have been used to calculate the

transition dipole moments between each member of a g-symmetry polyad and all

of the members of the corresponding u-symmetry polyad. This has been carried out

in energy regions both below and above the expected onset of the normal-to-local

transition, with vastly different results (Figure 8-4). In the low energy region (left)

the calculation transition dipoles all have relatively small magnitudes. As none of

the members of this polyad possess large amplitude bending character, no charac-

teristically large dipole moments are noted. Additionally, there are no systematic

degeneracies in this region, so the resulting Stark coefficients for the tuning of the

states in an electric field will be exceedingly small. The behavior in the high energy

region is precisely as predicted by qualitative arguments. A single transition dipole

moment stands out, that between the lowest energy members of the N = 20g and

N = 20u polyads, corresponding to the expectation value of the unsymmetrized local
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mode wavefunction.

Figure 8-4: Transition dipole moments between g- and u-symmetry polyads at low
(left, Nb = 10) and high (right, Nb = 20) vibrational excitation. The transition dipole
matrix elements are shown graphically, with the energetic ranks the states shown
on the horizontal axes. Only the low energy end of the Nb = 20 polyad is shown.
Transition dipole moments between the members of Σ+

g and the corresponding Σ+
u

polyads are small and random at low vibrational excitation. In the local mode limit,
all of the dipole intensity is focussed into a transition connecting the lowest states of
g- and u-symmetry polyads. Calculations were performed by our collaborator, Prof.
Hua Guo, Professor of Chemistry at the University of New Mexico.

8.4 Experimental observation of the local-bending

eigenstates

In the investigation of large amplitude vibrational dynamics, the nature of the spec-

troscopic “pluck” is crucial. The character of the pluck, that is which basis states

are “bright” in a spectrum, is determined by both the experimental technique (and

its associated selection rules) and by the nature of the initial, or “launch”, state of

the transition. The flexibility of the pluck in determining what dynamics are sam-

pled is one of the primary advantages of the stimulated emission pumping technique

(SEP) over the more restrictive conventional techniques of infrared absorption and

220



raman spectroscopy [95]. In an SEP experiment, the change in geometry between the

ground and excited (intermediate) electronic states is generally thought to determine

the dynamics sampled in the spectrum. As the S1 state of acetylene is trans-bent

(∠CCH = 122.5◦) with an elongated C-C bond (rCC = 1.375 Å) at its equilibrium

geometry [120], large amplitude trans-bending dynamics are sampled in the SEP spec-

trum recorded from this intermediate state. That is, in SEP spectra, the zero-order

bright states have excitation in the trans-bending mode (ν ′′4 , πg) and to a lesser extent

the C-C stretching mode (ν ′′2 , σ
+
g ).

The trans-bending dynamics are not, ultimately, what we wish to study. Conse-

quently, it becomes necessary to discard the Franck–Condon-active vibrational levels

as the intermediate states in our experiments. The study of the weakly-allowed tran-

sitions into Franck-Condon-forbidden vibrational levels of the Ã state, described in

previous chapters of this thesis, provides us with a wealth of possible intermediate

states and, therefore, dramatically extends the range of the dynamics that we are

able to sample on the ground standing surface.

8.4.1 A local-bender pluck of X̃-state dynamics

Dispersed fluorescence spectra have been recorded using one of the Franck–Condon-

forbidden intermediate levels of the Ã 1Au state described in Chapter 7, 32B2, III. As

the low-frequency bending modes ν ′4 and ν ′6 both correlate with the linear molecule

cis-bending mode, ν ′′5 , we anticipate a propensity rule for transitions between S0 and

S1 that will conserve the number of quanta of these modes, that is: v′4 +v′6 = v′′5 . This

propensity rule is borne out in the absorption spectra of the Ã 1Au−X̃ 1Σ+
g transition

reported by Watson et al.[118]; by far the strongest transitions from the vibrationless

level of the ground state (v′′5 = 0) go to vibrational levels of the excited state with no

excitation in the low-frequency modes. Recall that it required sensitive LIF measure-

ments, described earlier in this thesis, to locate the much weaker transitions into the
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Figure 8-5: Dispersed fluorescence spectra
of the Nb = 10 polyad recorded from a
normal Franck–Condon-active vibrational
intermediate (upward going), and from
a Franck–Condon-forbidden combination
level, 32B2, III (downward going). The
relative intensity distribution within the
polyad are different in the two spectra, re-
flecting the fact that the dynamics are ini-
tiated in different ways.

these Franck–Condon-forbidden vibrational levels. In emission, the intensities from

the Franck–Condon active progression are well-modeled by considering bright states

with v′′5 = 0.

A portion of a DF spectrum, from a member of the 2m3n progression, is shown in

Figure 8-5 (upper trace). The region shown is of a pure-bending polyad with Nb = 10.

The intensity distribution in this spectrum is well-described by the zero-order bright

state (0, 0, 0, 100/2, 00). Although these states are at an energy below the onset

of local-mode behavior, intensity is transferred by anharmonic interactions to several

members of the polyad. The lowest energy, most intense feature in the spectrum is

the eigenstate with the most overlap with the zero-order bright state. A DF spectrum

of 32B2, III (nominally 3242), in the same energy region, is shown in the lower trace

of Fig. 8-5. Several of the same eigenstates are observed in the two DF spectra,

but the intensity patterns are quite different. The DF spectrum of 32B2, III, has

essentially no intensity into the nominal bright state of the upper spectrum. The

intensity distribution of the lower spectrum is not as readily understandable as the

upper spectrum, as a single normal-mode bright state does not successfully model the

observed transition strengths. On the basis of the propensity rule, we may expect
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intensity into the 8ν ′′4 + 2ν ′′5 vibrational level. The presence of vibrational angular

momentum results in multiple basis states with this vibrational character, namely

(0, 0, 0, 80, 20) and (0, 0, 0, 82, 2−2). Each of these states may carry intensity in the

spectrum, and the total intensity of an eigenstate can contain interfering contributions

from multiple bright states[126].

Although we lack a complete model for the intensity distribution in the DF spectra

of Franck–Condon forbidden levels, we observe that the intensity distribution resem-

bles that predicted by a local-bending zero-order bright state (see Chapter 7 of Ref.

[188]). This observation indicates that the Franck–Condon forbidden vibrational lev-

els may serve as effective intermediates for populating the local-bending levels, once

they emerge at higher energy. However, the relatively low resolution and complexity

of the DF spectra prevent definitive identification of the local-bending levels. The dis-

persed fluorescence spectra previously recorded in this research group, for example,

have a typical frequency resolution of approximately 7 cm−1. Under these experi-

mental conditions, transitions into the Σ (`′′ = 0) and ∆ (`′′ = 2) components of a

vibrational level are typically unresolved.

8.4.2 Stimulated emission pumping from Franck–Condon

forbidden vibrational levels

High resolution SEP has the advantage over dispersed fluorescence that the rotational

structure enables definitive assignment of the symmetry and vibrational angular mo-

mentum of each observed state. In order to record SEP spectra from the Franck–

Condon forbidden vibrational levels, we have had to adopt a different experimental

methodology from that previously used in our group[189]. Earlier experiments on

acetylene[168, 190, 131] used two matched room temperature cells, both of which

were PUMPed by one UV laser in order to promote transitions into the electronically

excited state. A second DUMP laser was introduced into one of the two cells in order
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to stimulate emission back to a ground state vibrational level and therefore reduce

the intensity of observed spontaneous fluorescence. The SEP signal was derived from

the difference in the fluorescence intensities in the two cells. As described earlier in

this thesis, the majority of the Franck–Condon-forbidden vibrational bands are ob-

scured in the LIF spectra recorded in a cell at room temperature. It is only with

the simplification due to jet-cooling that these bands become observable. Therefore,

the majority the Franck-Condon-forbidden levels are unusable in the standard SEP

experiment.5 A common normalization technique in jet-cooled experiments is to use

temporally separated PUMP and DUMP pulses[191], either by using an optical de-

lay line or independently triggered lasers. The fluorescence decay, detected by a the

PMT, is gated twice: once before the DUMP laser and once after. In the absence of

a resonant DUMP transition, the intensities recorded by the two gates are trivially

related to the properties of the (usually exponential) fluorescence decay. On reso-

nance, the ratio of observed post-DUMP fluorescence to the expected level based on

the pre-DUMP gate is used to determine the SEP signal (% dip).

In our experiments, the PUMP and DUMP dye lasers are pumped by two inde-

pendent Nd:YAG lasers. The PUMP radiation is generated by an etalon-narrowed

Lambda Physik 3002E, pumped by a Quanta-Ray DCR-3. The DUMP radiation is

generated by a Sirah Cobra-Stretch dye laser, pumped by a Spectra-Physics PRO-270.

The delay between the two lasers is set to approximately 100 ns, so that a reasonable

pre-DUMP gate may be collected.

The transitions previously described in DF have been recorded by SEP, and the

resulting spectra are displayed in Figure 8-6. In addition to (Franck–Condon active)

2132 and 32B2, III, spectra are shown for the other two members of the 32B2 poyad.

While the spectra from the three polyad members are more similar to each other than

they are to the spectrum from the Franck–Condon active level, the intensity patterns

5Some notable exceptions are: B4 K ′ = 1, IV at 45301 cm−1, and 32B2 K ′ = 1, III at 45811
cm−1.
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indicate that the different upper-state polyad members sample the bending dynamics

of the ground state in different ways, though the propensity rule given above would

treat all of the members of an upper-state polyad as identical. Rather, the differences

between these spectra arise from two factors. As discussed in Chapter 7, the upper-

state polyad basis states with bg vibrational symmetry should give transitions into

ground state levels of Σ−g symmetry, while the normal Franck–Condon active states

and the Franck–Condon forbidden levels with ag vibrational symmetry should give

transitions into levels of Σ+
g symmetry. The levels observed near 6460 cm−1 are due to

a Σ−g -symmetry state. The second factor consists of the unknown transition intensities

into the multiple basis states that may carry the brightness in these experiments, as

well as the the signs of interference effects between multiple intensity mechanisms for

a given eigenstate.

Figure 8-6: SEP spectra recorded from each member of the 32B2 polyad, as well as
from the 2132 vibrational level. Roman numerals on the right hand side of the figure
represent the energy rank of the K = 1 levels within the polyad.
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The normal-to-local transition is calculated to occur in the range of Nb = 10−14.

Over this range, the lowest member of a polyad shifts from primarily trans-bending

in character to primarily local-bending. This shift coincides with a decrease of the

intensity of the lowest polyad member, as observed from a Franck–Condon active

vibrational level. The lowest member of the Nb = 10 and 12 polyads were easily

observed in previous dispersed fluorescence experiments in our group[192], while the

lowest member of the Nb = 14 polyad was too weak to be observed in these spectra.

The Nb = 14 level is the lowest-energy level believed to possess primarily local-mode

character, and therefore its observation is crucial to the understanding of the normal-

to-local transition.

Although this crucial state has not previously been observed, the spectroscopic ef-

fective Hamiltonian that describes all of the observed data provides useful predictions

of the Nb = 14 local-bender state. Using the 31B4, I level as an intermediate,6 SEP

spectra were recorded over the predicted position of the lowest-energy local-bender

state. Strong signals were observed relatively easily, and spectra were recorded from

a number of rotational levels in order to establish the rotational assignments of the

lower state (Fig. 8-7). These measurements identify a Σ+
g (` = 0) state, at an energy

(J = 0) of 8971.69 cm−1, as well as its corresponding ∆g(` = 2) state. A complete

prediction of the energy levels in this region[169] gives four expected Σ+
g states in the

energy region of 8960–8990 cm−1, with the local-bender state predicted at the top

end of this range, 8983 cm−1.

Because the prediction of the local-bending energy is over ten cm−1 higher than

our observed state, one critical observation is required to verify the assignment of the

Nb = 14 local-bending level. This observation is related to the systematic degeneracy

that is a hallmark of local mode behavior. Of the Σ+
g states predicted in this energy

region, the only one predicted to be degenerate with a Σ+
u level is the local-bender.

6At the time of the of these experiments, the vibrational level at 46087 cm−1 was assigned as
2131B2, I. The reasons for the reassignment are given in Section 7.4.5.
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IR-UV dispersed fluorescence has identified a level with Σ+
u symmetry at 8971.76

cm−1 [126], however the authors of that work do not comment on the local-mode

character of this state. Through these complementary experiments, two states are

observed that are degenerate (within the experimental error) but possess opposite g/u

symmetry. On this basis, these states can be assigned conclusively as the Nb = 14

local-bender pair.

!
"

Figure 8-7: SEP spectra of the Nb = 14 local-bender state recorded from 31B4, I.
Spectra are recorded from several rotational levels of the intermediate in order to
label the lower-state J values.

Unfortunately, the information available for the ungerade manifold does not in-

clude local bender states of higher lying pure-bending polyads, so that assignments

made on the basis of systematic degeneracies cannot be extended. We also note that

the discrepancy between the observed energy of the local bender and that predicted
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by a polyad model[169] is relatively large and expected to increase further for the

higher energy states. Even the results of the model, which is fitted to data that

includes the ungerade Nb = 14 local bender state, give this state as an outlier with

a residual of over 3 cm−1. Therefore we are somewhat unlikely to be able to make

assignments based on extrapolation of the polyad model, particularly a model that is

based on expansion of the force field in the normal coordinates. These models seem

to predict systematically too high energies for the local-bending states. It is possible

that the diagonal anharmonicity along the local-bending coordinate is poorly param-

eterized in such a model. Recently, Amano et al.[193] have proposed a spectroscopic

fit model based on an expansion of the linear molecule Hamiltonian, which directly

incorporates the vibrational angular momentum structure. The authors of that work

have reported data up to Nb = 12, with excellent agreement, but it is not immediately

clear that such a model will extrapolate well into the local-mode regime, since it is

constructed from normal mode basis states. Alternatively, the data may be fitted to

a Hamiltonian expressed in the local-mode basis[187]. Such a treatment should not

be plagued with the systematic overestimation of the energies of local-bending states,

but since so few local-bending states have been observed, the model will need to be

parameterized to the energies of the low energy normal-mode states.

We have searched for the local-bend state in the Nb = 16 polyad using the same

intermediate state as was used to observe the Nb = 14 local-bender state. The

region 10 200–10 250 cm−1 was searched by SEP, but only very weak features were

located and these could not be assembled into meaningful rotational band structure.

Unfortunately, this indicates that the 31B4, I state cannot serve as a universal gateway

into all of the local-bender levels: there is no universal local-bender pluck. This

should not be surprising because higher energy local-mode basis states, expressed in

the normal mode basis, require basis states with large numbers of quanta in both

modes ν ′′4 and ν ′′5 . Based on the propensity rules expressed earlier in this chapter, the
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brightness of states with a large number of quanta in ν ′′5 necessitates an equal number

of quanta in the two low-frequency bending modes in the excited state.

An alternative intermediate state, B4, I was also used in the attempt to locate

the lowest Nb = 16 polyad member. The SEP spectra contained many of the weak

features found in SEP from 31B4, indicating that they are real SEP features and not

upward-going double resonance transitions. In addition, a new band is observed at

an energy (J = 0) of 10 218.9 cm−1. Clear branch structure is found in SEP spectra

from multiple rotational levels of the intermediate state. Transitions into the lowest

rotational levels of this state are shown in Figure 8-8d. While it is difficult to make a

definitive vibrational assignment of this band, we tentatively assign it as the Nb = 16

local bender state. Evidence for this assignment is presented in Figure 8-8. The

splitting between the Σ(` = 0) and ∆(` = 2) components increases regularly for the

series Nb = 10, 12, 14, as the bending structure makes the transition from being

well-described in the normal-mode basis to being well-described in the local-mode

basis. This large splitting can be rationalized in the local-mode limit as the molecule

approaches the isomerization barrier. For a state with two quanta of vibrational

angular momentum, some of the kinetic energy is directed perpendicular to the in-

plane bending coordinate. This energy is “wasted” from the point of view of the

isomerization reaction, so the wavefunction cannot explore the identical range of

bending angle as the Σ state. As a result, the ∆ state falls in energy less rapidly in

response to softening of the potential along the local-bending coordinate. This pattern

of increasing Σ − ∆ separation provides some evidence that the state at 10 218.9

cm−1 is the next member of the local-bender progression, though this assignment

should be treated as somewhat speculative. We note that this is just under 30 cm−1

beneath the energy predicted by one of the commonly used spectroscopic effective

Hamiltonians[169]. If our assignment is correct, this suggests a large deficiency in the

predictive capability of this particular Hamiltonian.
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The observation of the lowest local-bender state provides assurance that it is

possible, by using SEP from a carefully chosen intermediate, to selectively populate

this special class of large amplitude bending eigenstates. In order to extend these

observations to the higher-lying local benders, spectroscopic signatures of the large-

amplitude bending are required. The framework presented for using the electric dipole

moment to identify the local-bending states will be useful for this purpose. The most

direct method for determining the electric dipole moment of a highly vibrationally

excited state, populated by SEP, is through the optical Stark effect. The Σ-symmetry

states, which embody the large amplitude local-bending motions, are, despite the

dynamical symmetry breaking in the local-mode limit, characterized by a quadratic

Stark effect. Due to the nature of the quadratic Stark effect over a large energy gap

(2B′′ ≈ 2.4 cm−1), very large fields (several tens of kV/cm) will be required to induce

measureable energy shifts or to induce transitions into zero-field forbidden states. At

the current time, we are incapable of generating large electric fields in our apparatus

without causing breakdown of the gaseous sample. An alternative method, which will

employ relatively low electric field strengths, is presented in the following section.

8.5 Chirped-pulse millimeter-wave spectroscopy

In the first half of this thesis, millimeter-wave spectroscopy was used to measure

electronic signatures of large amplitude vibrational dynamics of HCN and HNC. The

spectrometer used in that work was based on traditional, robust, relatively easy-to-

use technology. However, it was unsuited to the task of recording large quantities

of millimeter-wave spectra, particularly when used in combination with relatively

unstable pulsed laser sources. In this section, a new spectrometer based on broad-

band chirped-frequency sources is described.

In the last several years, Brooks Pate and his group at the University of Virginia
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Figure 8-8: SEP spectra of the lowest members of the Nb = 10 − 16 polyads. Tran-
sitions into the Nb = 10 and 12 polyads are recorded from Franck–Condon-active
intermediate levels. Transitions into the Nb = 14 and 16 polyads use Franck–Condon-
forbidden levels as intermediates: the spectra of Nb = 14 is recorded from 31B4, I, and
that for Nb = 16 is recorded from B4, I. The pattern of the Σ/∆ splittings suggests
that the state observed at 10 218.9 cm−1 is the Nb = 16 local-bender Σ state.
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have developed a revolutionary microwave spectrometer, capable of recording over 10

GHz of spectra in a single gas pulse[194, 195, 8]. The cavity-free chirped-pulse mi-

crowave (CPMW) spectrometer differs from the standard Balle-Flygare spectrometer

by utilizing a linearly chirped microwave pulse to polarize the sample. As a chirped

pulse is used to polarize the sample, rather than the standard fourier transform-

limited pulse, the frequency bandwidth of the spectrometer is decoupled from the

pulse duration and, therefore, the available power. The chief advantages of this

spectrometer are an extremely high data rate and accurate relative intensity infor-

mation across a wide spectral region.

Recently, in collaboration with Brooks Pate’s research group, Barratt Park has

constructed a chirped-pulse spectrometer at MIT operating in the millimeter-wave

region (∼ 70 − 100 GHz). A schematic of the spectrometer is shown in Figure 8-

9. The details of this spectrometer will be reported at a later time, but the a brief

overview is given here. An arbitrary waveform generator outputs a linearly chirped

pulse of a frequency up to 2 GHz. The output of the arbitrary waveform generator

is mixed with a stable oscillator, and one of the sidebands is selected and actively

multiplied ×8 (that is, multiplied and amplified) into the millimeter-wave frequency

region. In the process of the frequency multiplication, the frequency bandwidth of

the experiment is also multiplied, enabling up to 10 GHz of spectra to be recorded

simultaneously. The molecular sample, having been polarized by the chirped pulse,

emits a free-induction decay that is detected by heterodyne mixing with the output

from a Gunn oscillator. The downconverted signal is amplified and directly fed into

a fast digital oscilloscope. The entire apparatus is locked to the output of a rubidium

frequency standard so that each FID event can be detected in-phase and therefore

coherently averaged in the time domain.

This spectrometer has been tested by recording rotational transitions of several

small molecules, such as CH3CN and SO2. We have found that the spectra of equiv-
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Figure 8-9: Schematic of the chirped-pulse millimeter-wave spectrometer.

alent quality to those recorded with the cw millimeter-wave spectrometer described

earlier in this thesis can be recorded in 100–1000× shorter times using the chirped-

pulse method. The broad bandwidth of the spectrometer makes it ideal for studying

pure rotational spectra of optically populated states. As a demonstration of the

chirped pulse technique, we have repeated the experiment described in Section 2.3.3,

in which we populate an excited triplet electronic state of CS with a UV laser beam

and then record the rotational spectrum of the laser-excited state. The resulting

spectra are shown in Figure 8-10. With a 1 GHz spectral bandwidth, the transition is

easily recognized in fewer than 100 laser shots. Further averaging of the signal causes

the incoherent baseline noise to average away, improving the signal-to-noise ratio to

the desired level at a rate consistent with the expectations for coherent averaging.

Ultimately, this technique will be applied to SEP-populated vibrationally excited

states of acetylene. As discussed earlier, dynamical symmetry breaking in the large

amplitude local-mode bending levels will lead to the appearance of pure rotational

transitions for these states. The magnitude of the dipole moment, which indicates

the distortion of the electronic wavefunction and, therefore, the progress along the
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Figure 8-10: UV-CPmmW double resonance spectra of the J ′ = 2, N ′ = 2 ← J ′ =
1, N ′ = 1 transition of the e 3Σ− state of CS. The acquired free induction decays
are averaged phase-coherently in the time-domain for each laser pulse. The 1GHz
spectral bandwidth of these spectra is sufficient to cover the uncertainty in predicted
transition frequencies based on pulsed laser measurements.

isomerization path, can be readily measured by applying a modest electric field to

the interaction region in order to determine the Stark effect for the millimeter-wave

transition. For the Σ (`′′ = 0) components of the local-bender levels, the second-

order Stark shift of the J = 1− 0 transition is given by the expression used for linear

molecules [6]:

∆ν(2)(∆MJ = 0, J = 0→ 1) =
8

15

µ2E 2

h2ν0

. (8.5)

The predicted value of the dipole moment of the Nb = 14 local-bending level is

approximately 0.6 D (Table 8.1). To shift the observed transition frequency by 100

kHz, an electric field of approximately 400 V/cm is required. Initial attempts have

been made to observe the pure rotation transition in the Nb = 14 local-bender state,

populated by SEP, but these experiments have not yet been successful in identifying

transitions due to vibrationally excited acetylene.
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Chapter 9

Ongoing work

9.1 Global vibrational structure of S1 acetylene

In this thesis, we have described over 30 newly observed vibrational levels of the

Ã 1Au state of acetylene with the twin aims of (1) elucidating the effects of trans–cis

isomerization in the S1 state and (2) identifying suitable intermediate states from

which to probe the local-bending levels most relevant to bond-breaking isomerization

in the S0 state. A few anharmonic resonances have been identified, but only one,

K4466, is large enough to have an effect on the global appearance of the spectra. The

others, K12bb and k2bb, are small enough that they only disrupt the observed level

structures locally, as has been observed in the 11 fundamental level. None of these

anharmonic interactions resemble those expected to arise from the presence of a low

barrier to trans–cis isomerization. Rather, we anticipate the existence of interactions

between the trans- (ν ′3) and cis-bending (ν ′6) modes that give rise to motions that

project onto the minimum energy isomerization path, through the predicted half-

linear transition state [114].

The form of the interaction between modes ν ′3 and ν ′6 is not known a priori,

however, so we would hope to be able to identify the effects of this interaction in the
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spectrum. Unfortunately, unlike many anharmonic interactions, the ν ′3/ν
′
6 interaction

does not have an obvious lowest order term as a result of being nearly resonant: the

frequencies of ν ′3 (1047 cm−1 [118]) and ν ′6 (768 cm−1 [2]) are not related by the small

integer ratios associated with either Fermi (2:1) or Darling–Dennsion (2:2) resonances.

Even if the associated anharmonic force constants are large, these interactions will

be very far from resonance in the spectrum.

Because the barrier to isomerization is quite low, only a few quanta of vibrational

excitation in these modes is sufficient to reach it. In contrast to the situation in the

ground electronic state, where the high isomerization barrier results in regular spectral

patterns for many thousands of cm−1, the vibrations on the excited state surface do

not have a long region of regularity that is eventually broken by the existence of the

isomerization barrier. As a result, the anharmonic interactions between modes ν ′3 and

ν ′6 are sampled weakly and indirectly in the experimentally observed spectrum. We

have identified the anharmonicity observed in the energies of the lowest members of

the 3nB2 polyads, described in Chapter 7, as one symptom of these interactions.

In order to address the changes in level structure due to the accessibility of the

barrier to trans–cis isomerization, Josh Baraban has undertaken a series of discrete

variable representation (DVR) [196] calculations on reduced-dimension models of the

S1 surface. These models are based on high quality ab initio potential energy surfaces

calculated using equation-of-motion coupled-cluster theory [197]. The details of the

methods used will be reported later. The results include the vibrational energies

and wavefunctions of all states associated with the reduced-dimension surface. This

is in contrast to the partial picture offered by computational approaches designed

solely to simulate the observed spectrum, e.g. spectral quantization [198, 199], which

determine energies and wavefunctions only for states that have significant intensity in

excitation from an initially formed basis state (typically the vibrationless level of the

ground electronic state). Earlier work by Köppel and coworkers [198, 199] has revealed
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bifurcations in the shapes of the wavefunctions in the vicinty of the isomerization

barrier. Due to the fact the spectral quantization method does not capture the

“dark” states that lie below the isomerization barrier, forming a mechanistic picture

of the isomerization from this limited data set seems quite impossible.

The most severe reduction of the dimensionality still expected to provide insight

into the Ã-state vibrational dynamics is a planar model, where the only internal de-

grees of freedom allowed to vary are the two ∠CCH bond angles. Three wavefunctions

from the planar DVR calculation are reproduced in Figure 9-1. These wavefunctions

represent vibrationally excited states that are localized in the trans well of S1. The

two axes represent the two angle bends that give rise to the normal mode vibrations:

ν ′3 along the main diagonal (top left to bottom right) and ν ′6 along the anti-diagonal

(bottom left to top right). It is relatively easy to assign vibrational quantum numbers

to the observed wavefunctions. Shown in Figure 9-1 are the (a) 62, (b) 3164, and (c)

66. The wavefunctions plotted here, while easy to assign, are clearly not identical to

expected zero-order wavefunctions from a normal mode treatment. The nodal struc-

tures become elongated and curved, clear evidence of mixing of the normal mode

basis states.

In order to attempt to explain the mechanism of this mixing, and the general

shapes of the wavefunctions, we have fitted the assignable DVR energies to a simple

effective Hamiltonian with diagonal terms,

Ĥeff
diag = ω3n̂3 + ω3n̂3 + x33n̂

2
3 + x66n̂

2
6 + x36n̂3n̂6, (9.1)

and resonance terms,

Ĥeff
res = 1

2
√

2
K366[a3a

†
6a
†
6 + c.c. ] + 1

8
K3366[a3a3a

†
6a
†
6 + c.c. ]. (9.2)

The precise values of the fit parameters are not considered to be physically meaning-
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Figure 9-1: Three DVR wavefunctions of
planar S1 acetylene. The axes are the two
CCH bond angles, so the two normal coor-
dinates are the diagonals, top left to lower
right (ν ′3), bottom left to top right (ν ′6),
of each figure. Despite some distortions,
the wavefunctions are straightforward to
assign in the normal mode basis. (a) The
62 level. (b) The 3164 level. (c) The 66

level.

(a)

(b)

(c)
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ful, due to the reduced-dimension approach, and are not reported fully here. (The

magnitudes of the resonance parameters are approximately 158 and 66 cm−1, for K366

and K3366 respectively.) Rather, by visual inspection of wavefunctions derived from

the fitted Hamiltonian, we argue that both Fermi and Darling–Dennison resonances

are necessary to reproduce the observed qualitative features. The wavefunctions from

Figure 9-1 are reproduced as the top row of Figure 9-2. The second row are the

wavefunctions resulting from the effective Hamiltonian fit described above. The Ĥeff

wavefunctions are calculated in a normal mode basis, so that the axes are the cis-

and trans-bending normal coordinates. Accordingly, the figures have been rotated by

45◦ in order to achieve the closest resemblance between the DVR and Ĥeff wavefunc-

tions. The third and fourth rows of Figure 9-2 are the wavefunctions of the effective

Hamiltonian with the Darling–Dennison and Fermi resonance terms, respectively, set

to zero. In the wavefunctions derived from the Ĥeff without the Fermi resonance,

the nodal structure is symmetric: positive and negative displacements along the ν ′3

coordinate are identical. With the Fermi resonance set to zero, the wavefunctions are

more asymmetric than those calculated using DVR: they are strongly bent but do

not curve back onto themselves to form nearly circular nodal patterns. This analy-

sis indicates that both Fermi and Darling-Dennison anharmonic interactions between

modes ν ′3 and ν ′6 are significant in determining the nodal structure and, therefore, the

vibrational dynamics of S1 acetylene.

The fact that both anharmonic interaction mechanisms are important should not

be surprising, considering that the ratio between the two normal mode frequencies

(1:0.73) is almost exactly halfway between the Fermi (1:0.5) and Darling–Dennison

limits (1:1). If both of these interactions are important in determining the position of

the energy levels, it will have important consequences for the vibrational dynamics.

One consequence is that none of the bending quantum numbers will be related to ap-

proximately conserved polyad quantum numbers [200]. The non-existence of polyads,
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blance is lost.
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due to the action of multiple resonances between the same vibrational modes, signifies

the absence of dynamical bottlenecks in the phase space of the vibrations.

9.2 Strong, unassigned perturbing levels in S1

As noted in the previous section, spectral quantization calculations [198, 199] predict

a bifurcation in the qualitative shapes of the wavefunctions above the barrier to

isomerization. Specifically, qualitatively new types of nodal structure are observed in

the region of six quanta of the Franck-Condon active mode ν ′3. Very similar nodal

structures are observed in the DVR wavefunctions (not shown), and these structures

are a subject of current interest. Relevant to the current discussion is the observation

that the LIF and absorption spectra of acetylene have strong unassigned levels in the

energetic regions corresponding to the onset of these novel structures. The unassigned

levels, the lowest of which lies at 47 206 cm−1, were previously assigned as states

excited in the symmetric C-H stretching mode, ν ′1 [119, 122]. With the new and

definitive assignment of the ν ′1 fundamental in Chapter 6, it is clear that the previous

assignments are incorrect, and we have proposed a few possibilities for the vibrational

assignments of the previous incorrectly assigned levels. As the predicted bifurcation

and the correct assignment of these bands appear to be related to the possibility of

trans–cis isomerization, this is one of the most significant unexplained points in the

analysis of the spectrum of the Ã 1Au − X̃ 1Σ+
g transition.

What is most surprising about the band at 47 206 cm−1 is its strength. In the

overview spectra of Figure 7-1, this band appears at the very high end of the one-

photon spectrum, indicated by a question mark. It is only slightly weaker than the

Franck-Condon allowed 35 level, which lies only 50 cm−1 above it. Of course, we

have stressed in this thesis that the relative intensities in LIF are not identical to

the relative intensities observed in absorption, as a result of numerous factors includ-
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ing predissociation. However, the earlier absorption work also indicates that these

two bands have very similar intensities (see Figure 2 of Ref. [119]). If the 35 basis

state carries all of the intensity in absorption at these energies, a very reasonable as-

sumption based on the patterns observed at lower energy, the nearly equal intensities

of the bands at 47 206 and 47 260 cm−1 indicate two strongly mixed (nearly 50:50)

states with a matrix element between them of approximately 27 cm−1. Normally, the

patterns in the spectra can be usefully interpreted by shifting the entire spectrum

by an amount equal to one quantum of the trans-bending vibration. However, while

there are many weak features in the spectrum near 34, there is no uniquely strong

band which appears to steadily gain intensity as one goes from one member of the

progression to the next. In fact, the sudden jump in intensity is quite unexpected

when one considers that borrowed intensity usually varies quite smoothly from one

member of the vibrational progression to the next as an effect of the quantum number

scaling of anharmonic interaction matrix elements.

A possible explanation for the sudden intensity onset for the 47 206 cm−1 band

may be related to the presence of multiple anharmonic interactions and, therefore,

multiple pathways through which intensity may be transferred into this band. One

assignment proposed for the 47 206 cm−1 band in Chapter 6 is 34B2, I. This assign-

ment is appealing because we have argued that there exists a strong Fermi resonance

between ν ′3 and ν ′6, which would provide a large matrix element between the 35 and

3462 basis states. The assignment is challenging, however, on the basis that the 33B2,

I level has not yet been assigned. Therefore, we must extrapolate a significant way

from the assignment of the 32B2, I level to make a prediction about where the 34B2,

level is likely to be found in the spectrum. Additionally, it has been demonstrated

that the anharmonicity is strong in these polyads, pushing the lowest polyad mem-

ber well below the others, as shown in Figure 7-13. As the lowest member detunes

from the rest of the polyad, it also becomes relatively weak as compared to the other
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Figure 9-3: Effective frequencies of vibra-
tion for the trans- and cis-bending modes
as a function of v′3. Between v′3 = 4 and 5,
the effective frequencies of the two modes
passes through a 2:1 ratio.

polyad members. This is likely the cause of the non-observation of 33B2, I. As an

aid to the appropriate extrapolation of the 33B2 energies, it is useful to consider the

effective vibrational frequencies calculated from the positions of the lowest members

of the 3nB1 polyads. A plot of the effective frequencies of the trans- and cis-bending

vibrations is shown in Figure 9-3. The effective frequency of the nν ′3 progression de-

creases relatively slowly, while the effective frequency from the nν ′3 + ν ′6 progression

decreases much more rapidly. Importantly, between four and five quanta of excitation

in the ν ′3 mode, the ratio of the effective frequencies appears to pass through the 2:1

ratio, which brings the Fermi interaction into perfect resonance.

A tentative argument for the assignment of the 47 206 cm−1 level is as follows.

The lowest members of the 3nB2 progression, nominally 3n62, gets its intensity in

the spectrum from multiple sources The exact details of these intensity-borrowing

mechanisms are not known. At low trans-bending excitation (v′3 = 0, 1), 3n62 has

significant intensity because one of the intensity-borrowing mechanisms is close to

resonance. The effects of anharmonicity, likely involving the K3366 interaction, cause

the 3n62 level to drop well below the other polyad members for intermediate values

of v′3. As this occurs, the two intensity-borrowing mechanisms become comparably

strong but, having opposite signs, cancel and give 3n62 very small net intensity in
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the spectrum. At high v′3, the 3n62 energy falls below the energy of 3n+1. Once the

energetic ordering of the two basis states has been reversed, the energy denominator of

one intensity-lending interaction changes sign. The previously canceling contributions

to the intensity now have the same sign and constructively interfere to give rise to an

sudden enhancement of intensity in this state.

Three-dimensional DVR calculations have been carried out in order to capture

most of the planar vibrational dynamics associated with the observed spectral fea-

tures. The results of these calculations support assignment of the state that interacts

with 35 as either 3462 or 213262. In fact, these two states appear to perturb each

other, raising the possibility of a more complicated multi-state interaction. These

two assignment possibilities should be distinguishable on the basis of the 13C isotope

shift for this band.

9.3 “Extra” levels and the cis well of S1

The multiple minima on the S1 state have been alluded to previously. Notably, a cis-

geometry minimum exists on the S1 surface, predicted to lie only about 3000 cm−1

above the trans minimum. Despite more than 50 years of spectroscopic investigation

of the S1 state, no transitions into vibrational levels of the cis well have been assigned.

The non-observation of cis-well vibrational levels is due to symmetry restrictions on

the dipole selection rules in the C2v point group that prohibit transitions between

of electronic states of A1 and A2 symmetry. Several “extra” levels were identified

in Chapters 5 and 7 that may be due to cis-well vibrational levels that derive their

intensity via interactions with the trans-well states.

The lowest observed “extra” level lies just above the highest K ′ = 1 member of

31B3. Transitions to this level were previously observed by Nami Yamakita, prior

to the analysis of the interactions in B3-type polyads. New high resolution IR-UV
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LIF spectra of this region, recorded via several rotational levels of the ground state

ν ′′3 level, are shown in Figure 9-4. In the figure, the final states of two R-branches

are labeled: transitions terminating on the highest K ′ = 1 member of 31B3 are at

lower energy in each spectrum, and the higher energy transitions into the “extra”

vibrational level are marked by stars. The separation between the two labelled states

in each spectra is quite constant with J , ∼ 8.3 cm−1, indicating that the B and C

rotational constants are quite similar for the two vibrational levels.

45660456504564045630456204561045600
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Figure 9-4: IR-UV LIF spectra showing an “extra” vibrational level near 31B3, K ′ =
1, IV. The lines of an R branch terminating on the highest-energy member of the
31B3 polayd are labelled by the upper-state J-values. The associated transitions into
the “extra” vibrational level are marked with stars.

This observed “extra” level lies only ∼ 3430 cm−1 above the vibrationless level

of trans-S1. If the energetic separation between the trans and cis minima is close

to the expected value of ∼ 3000 cm−1, the “extra” level must lie very low in the

vibrational manifold of the cis well, likely with only one quantum of vibrational

excitation. Arguments based on which cis-well levels are allowed, by symmetry, to
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appear in the one-photon and IR-UV LIF experiments may be made, limiting the

possible vibrational symmetries of the observed “extra” levels. The development of

a model of the cis-well vibrations is ongoing. Isotope shifts are again expected to

provide valuable evidence against which to weigh proposed vibrational assignments.
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Appendix A

Cavity-ringdown spectroscopy of

the Ã− X̃ transition of C2H2

[Cavity-ringdown spectroscopy of the Ã− X̃ transition of C2H2 ]

Quantitative understanding of the intensities of molecular transitions is desirable

for a number of reasons. Chief among these is the ability to determine absolute

number densities of species involved in a complex network of chemical reactions, for

example, in a flame. Absolute intensity measurements also provide a means to ad-

dress the fundamental interactions between molecules and radiation and the coupling

between electronic and nuclear degrees of freedom within a molecule.

During the 1990s, cavity-ringdown spectroscopy (CRDS) emerged as an extremely

popular tool for performing absolute intensity measurements on very weakly absorb-

ing or highly rarefied samples. In CRDS,1 the measured quantity is the decay rate

of a high-finesse optical cavity. This decay rate is determined by the losses of the

cavity mirrors and by any absorption or scattering of radiation by a molecular sam-

ple within the cavity. Being a direct measurement of the absorption by a molecular

sample, CRDS is immune to the nonradiative processes (predissociation, fluorescence

1See Ref. [201] for a review of techniques and applications.
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quenching, intersystem crossing, internal conversion) that plague other highly sensi-

tive measurement techniques based on fluorescence or ionization.

Ilya Dubinsky[202], Leah Ruslen[203], and Michelle Silva[204] implemented a mod-

ified version of the conventional CRDS experiment in order to extend the application

of this technique into the ultraviolet region, where broadband dielectric coatings do

not typically have the same high reflectivities available in the visible region. The

primary modification consisted of the use of a fast detector (biplanar phototube,

subnanosecond response) that enabled time resolution of each round trip of the laser

pulse within the ringdown cavity. As a result, the cavity could be aligned to minimize

the effects of spatial variations in gain across the detector surface. These authors re-

port high sensitivity measurements of cavity loss despite the relatively short (∼ 1 µs)

cavity decay times.

Silva has applied this UV-CRDS technique to the determination of the absorption

cross sections of several vibronic bands in the Ã 1Au − X̃ 1Σ+
g system of C2H2 [204],

which had been previously measured using classical techniques in the seminal work

on acetylene by Ingold and King[108]. The intensity of this electronic transition is

of considerable interest because it is forbidden at the Franck–Condon point (linear,

D∞h) as well as at other high-symmetry geometries (cis-bent, C2v; diamond shaped,

D2d). Thus, the transition strength is highly dependent on the nuclear geometry,

one of the hallmarks of vibronic coupling. Silva reported an oscillator strength, fv =

1.35× 10−9 for the V 1
0 K

1
0 band. This determination is somewhat troubling because it

disagrees strongly with the classically measured value of fv = 4.2× 10−8 [108]. If the

CRDS measurement is correct, it may imply systematic errors in the cross-section

measurements reported by King and coworkers for a number of molecules. However,

the CRDS experiments were plagued by several inconsistencies, and the authors were

unable to recommend adoption of their new values for the absorption cross-section

of C2H2. Silva and Ruslen both noted significant and unexplained dependence of
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Figure A-1: A portion of the CRDS
A 3Σ+

u (v′ = 11) − X 3Σ−g (v′′ = 0)
spectrum. The O2 pressure is 40
Torr. Rotational assignments are
taken from Ref. [208].

the linestrengths on the laser scanning speed and step size. Furthermore, some of

the recorded bands appear to have qualitative distortions in their intensity profiles,

perhaps indicating that the CRDS measurements suffer from some form of saturation.

As an attempt to reconcile the measurements made by Silva with the earlier

work of Ingold and King, we performed validation experiments using UV-CRDS to

determine cross-sections of the well-characterized Herzberg I system of O2[205]. The

absolute intensities of the bands in this system have been investigated by a number

of authors and refined over the years[206, 207]. Ruslen[203] shows a spectrum of the

A 3Σ+
u (v′ = 11)−X 3Σ−g (v′′ = 0) band but does not attempt quantitative comparison

between her data and that of contemporary measurements of the absolute intensities

of these bands.

The same CRDS apparatus was used for the current experiments as was used by

Silva[204] and Ruslen[203], although the fast detector was replaced with a standard

photomultiplier tube that is unable to resolve each pass of the ringdown cavity. Align-

ment was performed by maximizing the ringdown decay times while minimizing the

residuals of a single exponential fit to the digitized ringdown transient. The portion

of the O2 band used for the intensity measurements is shown in Figure A-1. The ring-

down time, τ , is inverted at each frequency to give a value for the frequency-dependent

absorption coefficient, α(ω). Integrated cross-sections for the observed lines are ob-
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tained by integrating over α(ω) after subtracting a background value corresponding

to the baseline cavity loss between the resonances. We find that integrating the sig-

nal shown in Figure A-1 produces a cross-section for each line that is approximately

30% smaller than the best contemporary measurements of Mérienne et al.[207] and

Yoshino et al.[206].

Unexpectedly low values for transition intensities are a common feature of the

CRDS literature. Explanations for this phenomenon have been advanced by several

authors, starting from the early work by Zalicki and Zare[209] and Jongma et al.[210].

Hodges et al.[211] stressed the importance of the relative linewidths of the laser ra-

diation and the molecular absorption features. The fundamental, and frequently

overlooked, assumption underlying the naive picture of cavity ringdown spectroscopy

is that all frequencies injected into the ringdown cavity decay at the same rate. This

assumption breaks down when the laser linewidth is not very narrow compared to

the linewidth of the molecular feature being measured.

The sensitivity of cavity-ringdown techniques is due to the fact that the detec-

tion of absorption is shifted into the time-domain, rendering the technique immune

to intensity fluctuations in pulsed lasers. However, this aspect also requires that all

radiation in the cavity decay at the same rate in order to model the observed ring-

down transient signal by a single-exponential decay. In standard linear absorption

spectroscopy, the absorption spectrum is a convolution of the laser lineshape and the

absorber lineshape. In CRDS, the spectrum is not a simple convolution, due to the

properties of exponential decay: the average of several exponentially decaying func-

tions with varying decay times, τi, is not an exponentially decaying function with

the average decay time, τ̄i. As a consequence of the more complex effects of laser

linewidth when Γlaser 6� Γmol, Hodges states that “when multimode lasers are used

for CRDS, quantitative information can be extracted only when the laser’s actual

mode structure is taken into account”[211].
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Several strategies exist to incorporate a finite laser lineshape into the analysis, e.g.

Refs [212, 213, 214]. Common to all of these solutions is that the deleterious effects

of finite laser linewidth can be reduced both by selectively fitting the earliest portion

of the decay transient and by artificially broadening the molecular transitions with

the addition of a buffer gas. Our ringdown decays have been fitted using various time

windows (data not shown), with windows on the early part of the decay (fitting only

the region between 90% and 70% of the peak signal) giving rise to larger absorption

signals in agreement with the general principles discussed above. Extrapolating the

windowed fit data to shorter and shorter gate intervals is problematic as fast oscil-

lations in the ringdown transient that appear due to “mode beating” effects become

problematic and the resulting spectra become noisier.

We have also implemented a second general approach to compensate for the finite

laser linewidth, intentionally pressure-broadening the molecular transition by the ad-

dition of a buffer gas. CRD spectra were recorded of a cell containing 40 Torr of O2

gas. Nitrogen gas was then added to the cell in increments of roughly 150 Torr, up

to a total pressure of 700 Torr. Three of the resulting spectra are shown in Figure

A-2a.

It is clear from these spectra, which focus on only the QR12(7) line of the previously

described transition, that the total transition intensity is not conserved as it would

be in a purely linear measurement. While the peak height at the center frequency of

the transition is similar for the spectra recorded at 0 and 270 Torr of added N2 buffer

gas, the peak is significantly broader in the 270 Torr spectrum (ΓFWHM = 0.14 cm−1)

than in the unbroadened case (ΓFWHM = 0.11 cm−1). At higher buffer gas pressures,

the peak intensity decreases as expected, while the line continues to broaden. The

integrated cross-sections are shown in Figure A-2b, as a function of partial pressure

of the N2 buffer gas. As noted, the integrated intensity is not conserved despite the

constant number density of absorbing molecules. In the unbroadened spectra, the
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Figure A-2: Pressure-broadening of the transitions observed by CRDS in the Herzberg
I system. (a) Observed CRD lineshape of the QR12(7) line of the Herzberg I
(v′ = 11)− (v′′ = 0) band with addition of N2 gas. (b) Integrated cross-section of
three features in the CRD spectrum as a function of the added partial pressure of N2

gas. The dashed horizontal lines represent the cross-sections measured by Mérrienne
et al.[207].

intensities are significantly too low (∼ 30%) as compared to the best measurements

of these transitions, which are represented visually by dashed horizontal lines in Figure

A-2b. As the partial pressure of buffer gas is increased, the measured cross-sections

increase, until at a partial pressure of approximately 300 Torr they level off. At this

point, the linewidth of the molecular transition is approximately three times broader

than the frequency width of the frequency-doubled dye laser radiation (ΓFWHM ≈

0.06 cm−1). Although the agreement between our pressure-broadened cross-sections

and those of Ref. [207] is not exact, the agreement to within better than 10% is

promising in that it indicates that our general method is sound.

A second conclusion of these validation experiments, however, is that the under-

estimates of cross-sections due to finite-linewidth effects, under the conditions used in

our CRD experiments, are relatively small. These effects will lead to underestimates

of 50%, in the worst case, and cannot plausibly account for the factor of ∼ 30 discrep-

ancy between the oscillator strengths measured by Silva[204] and those measured by
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Ingold and King[108]. The finite-linewidth effects should be of comparable magnitude

for O2 and for C2H2, due to their similar molecular weights and, consequently, their

Doppler profiles.

Now that the UV-CRDS measurements have been validated, we return to the

question of the absorption cross-section of the V 1
0 K

1
0 band of the Ã 1Au − X̃ 1Σ+

g

transition of C2H2. CRDS spectra of the V 1
0 K

1
0 band, acquired using the methods

described for O2 above, are shown in Fig. A-3. The upper trace is the spectrum

recorded at 3 Torr of acetylene vapor, and the lower trace is recorded with an addi-

tional 300 Torr of N2 gas. The effects of the pressure-broadening are quite dramatic.

The density of features in the spectrum is such that the pressure-broadening required

to created a sufficient disparity between the transition linewidth and the laser line-

width causes most features in the spectrum to become blended with their neighbors.

In the R branch, the blending is particularly acute, and only the first few lines are

reasonably well resolved. This highlights one problem with the proposed applica-

tion of pressure-broadened CRDS to the study of the absolute cross-section of the

Ã 1Au − X̃ 1Σ+
g transition of C2H2. We wish to make line-by-line measurements of

the intensity, in order to search for rotational effects beyond those contained within

the Hönl-London factors. Lack of an obvious baseline, or regions where the intensity

between resolved transitions drops to zero, is problematic for such efforts.

Difficulties defining the baseline in CRDS are quite vexing, as it is not immedi-

ately clear how to deal with frequency-dependent losses caused by scattering at the

mirror surface or changes in alignment when the sample is introduced into the ring-

down cavity. This is particularly true for broad spectra or continuum measurements,

though some progress has been made in these directions recently[215]. In the spectra

of acetylene, recorded at room temperature and at Doppler-limited resolution, there

is very little “true” baseline. Rather, the observed baseline is made up of a somewhat

inhomogeneous collection of blended lines due to hot-bands and perhaps to excita-
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tion of the dense manifold of triplet states. Pressure-broadening, in this case, only

exacerbates the problem of separating the background absorption from the resonance

absorption that we seek to measure.

Though there are some clear difficulties in applying the CRDS method to acety-

lene, we have repeated some of the measurements of Ruslen[203] and of Silva[204] in

order to assess whether or not their measurements of the acetylene absorption cross-

sections correctly point to a large flaw in the cross-section determined by Ingold and

King[108]. The unbroadened CRD spectra of the V 0
0 K

1
0 , V 1

0 K
1
0 , and 21

0V
1

0 K
1
0 bands

of the Ã 1Au − X̃ 1Σ+
g transition of C2H2 are shown in Figure A-4. As was done for

the O2 transitions, nitrogen gas was added to the ringdown cell in order to broaden

the acetylene transitions. Approximately 200 Torr of N2 was used in order to suffi-

ciently broaden the lines until the integrated line intensities stopped increasing with

increasing buffer gas pressure. Following the approach of Silva[204], the integrated

line intensities were transformed into band oscillator strengths in order to compare

these measurements with those of Ingold and King[108]. There are significant line-

to-line variations in the calculated values of the band oscillator strengths, indicating

that there may be significant ignored rotational intensity factors.

The average value for the band oscillator strength, fv, determined from the Q(1–5)

lines of the V 1
0 K

1
0 band is 6.4×10−9. Our band oscillator strength is significantly larger

than that reported by Silva[204] (1.35 × 10−9), but significantly smaller than that

reported by Ingold and King[108] (4.2×10−8). Because our measurement is six times

smaller than the classically measured value and five times larger than the previous

CRD value, it does not provide any significant evidence to support either previous

determination. As a result, no further quantitative measurements are reported here.

At best, we may conclude that doubts remain about the original measurements by

Ingold and King[108], but that the large discrepancy between the cavity ringdown

measurements within our own group indicates that CRD is not the optimal tool for
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Figure A-4: CRD spectra of portions of the Q branches of the (a) V 0
0 K

1
0 , (b) V 1

0 K
1
0 ,

and (c) 21
0V

0
0 K

1
0 bands of acetylene. The pressures of acetylene in these spectra are

8, 3, and 4 Torr respectively. In (c), the transitions belonging to the 21
0V

0
0 K

1
0 band

are overlapped by more intense hot-bands terminating on the 2ν ′3 vibrational level.
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further investigation of this possible error.

There are several variants of the simple pulsed CRDS technique that more con-

clusively eliminate the effects of finite laser linewidth. The most obvious of these

is to use a single-mode laser, though this is experimentally challenging in the deep

UV [216]. Alternatively, the mutli-mode structure of the laser output may be ana-

lyzed and input into a complicated fit of the ringdown decay. Other modifications are

equally arduous, requiring significant additional experimental complexity to guaran-

tee more rigorously quantitative results. In addition to the finite-linewidth effects,

which were certainly a cause for error in the measurements of Silva[204], there is some

possibility that additional non-linearities[217] plague the CRDS measurements. The

consistent measurements of the oscillator strength of the Herzberg I system in Refs.

[206] and [207], identify UV fourier transform absorption spectroscopy as a highly

capable alternative for making such measurements.

The Ã 1Au − X̃ 1Σ+
g transition of C2H2 is not ideally suited to the use of CRDS.

In fact, the bands, particularly the higher members of the Franck–Condon progres-

sion are not weak enough to merit the use of CRDS, particularly since acetylene is a

stable gas and measurements, therefore, of high column densities are trivial. Several

groups have performed linear absorption spectroscopy on acetylene using conven-

tional, relatively noisy, pulsed lasers with the particular application of studying the

predissociation rate and mechanism[218, 219]. Further experiments along these lines

are required to determine whether the cross-sections reported by Ingold and King[108]

for bands in the Ã 1Au − X̃ 1Σ+
g transition of C2H2 are accurate.
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bend combination polyads in the Ã 1Au state of acetylene, C2H2.” Journal of Molecular
Spectroscopy, accepted (2009).

R. W. Field, A. J. Merer, A. H. Steeves*, J. H. Baraban, H. A. Bechtel, G. B. Park
III, B. M. Wong, J. F. Stanton, H. Guo, W. L. Virgo, K. L. Bittinger, E. M. Robertson,
S. H. Lipoff. “Acetylene!” 236th American Chemical Society National Meeting, Philadel-
phia, PA, August 17–21, 2008.

A. H. Steeves, A. J. Merer, H. A. Bechtel, A. R. Beck and R. W. Field. “Direct ob-
servation of the symmetric stretching modes of Ã 1Au acetylene by pulsed supersonic jet
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