Contents

1	\mathbf{Sim}	ple Sp	ectra and Standard Experimental Techniques	1
	1.1	Rotati	ion-Vibration-Electronic Spectra of Diatomic Molecules	2
		1.1.1	Rotation-Vibration-Electronic Energy Levels	
			and Standard Notation	3
		1.1.2	Band Systems, Bands, and Branches	6
		1.1.3	Rotational Structure: Fortrat Parabola	6
		1.1.4	Some Strategies for Rotational Line Assignments	11
	1.2	Exper	imental Techniques of Diatomic Molecule Spectroscopy	21
		1.2.1	The Goals of a Spectroscopic Experiment	21
			1.2.1.1 What and How Much? \ldots	22
			1.2.1.2 Rotational Analysis of a Spectrum	24
			1.2.1.3 Spectroscopic Strategies: Access and Selectivity	26
		1.2.2	Classes of Spectroscopic Experiment	27
			1.2.2.1 One Photon Resonant: Upward (Absorption Spec-	
			${\rm tra}) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	27
			1.2.2.2 One Photon Resonant: Downward (Emission Spec-	
			${\rm tra}) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	33
			1.2.2.3 Multiple Resonance Spectra	35
			1.2.2.4 Photofragment and Coincidence Experiments	39
		1.2.3	Molecule Sources	41
		1.2.4	Frequency Calibration	43
		1.2.5	Detection Techniques	45
		1.2.6	Radiation Sources	47
	1.3	Refere	ences	55
~	Б			
2	Bas	ic Moo	dels	61
	2.1	What	Is a Perturbation?	62
	2.2	Struct	ural Models	69
	2.3	Eleme	entary Properties of Angular Momenta in Diatomic Molecules	72
		2.3.1	Angular Momentum Components Defined by Normal and	70
		0.0.0	Anomalous Commutation Rules	73
		2.3.2	Recipes for Evaluation of Molecule-Fixed Angular Mo-	70
			mentum Matrix Elements	79

		2.3.3	Euler Angles, $ JM\Omega\rangle$ Basis Functions, Direction Cosines,	1
	9.4	Eatim	and Flases	L 2
	2.4 9.5	Data	compilations) 1
	2.0 9.6	Data	$\frac{1}{2}$	ŧ
	2.0	neiere	ces	J
3	Ter	ms Ne	lected in the Born-Oppenheimer Approximation 87	7
	3.1	The B	rn-Oppenheimer Approximation)
		3.1.1	Potential Energy Curves)
		3.1.2	Terms Neglected in the Born-Oppenheimer	
			Approximation $\ldots \ldots $	2
			3.1.2.1 Electrostatic and Nonadiabatic Part of \mathbf{H} 92	2
			3.1.2.1.1 Crossing or Diabatic Curves 93	3
			3.1.2.1.2 Noncrossing or Adiabatic Curves 94	1
			3.1.2.2 The Spin Part of \mathbf{H}	1
			3.1.2.3 Rotational Part of \mathbf{H} 90	3
	3.2	Basis	unctions \ldots \ldots \ldots \ldots \ldots \ldots \ldots 99)
		3.2.1	Hund's Cases $\ldots \ldots 10^{1}$	1
			3.2.1.1 Definition of Basis Sets $\ldots \ldots \ldots$	3
			3.2.1.2 Quantum Numbers, Level Patterns, and the Ef-	
			fects of Terms Excluded from $\mathbf{H}^{(0)}$ 113	3
			3.2.1.3 Intermediate Case Situations	3
			$3.2.1.3.1 \text{Introduction} \dots \dots \dots \dots 126$	3
			$3.2.1.3.2 \text{Examples} \dots \dots \dots \dots \dots 12'$	7
			3.2.1.4 Transformations Between Hund's Case Basis Sets 130)
			3.2.1.5 Spectroscopic vs. Dynamical Hund's Cases 136	3
			3.2.1.6 Relationship between Noncommuting Terms in	
			H and the Most Appropriate Hund's Case \ldots 137	7
		3.2.2	Symmetry Properties	3
			3.2.2.1 Symmetry Properties of Hund's Case (a) Basis	
			Functions \dots 138	3
			3.2.2.2 Symmetry Properties of non-Hund's Case (a)	_
		0.0.0	Basis Functions)
		3.2.3	Molecular Electronic Wavefunctions	5
	0.0	3.2.4	Matrix Elements between Electronic Wavefunctions 150)
	3.3	Electr	static Perturbations	L
		3.3.1	Diabatic Curves	5
		3.3.2	Approximate Representation of the Diabatic Electronic	_
		• • •	A distantia Comment)
		3.3.3 2.2.4	Adiabatic Curves	5
		ა.ა.4 ეე⊏	Choice between the Diabatic and Adiabatic Models 172 Electromegnetic Field Dressed Diabatic and Adiabatic D-	4
		ə.ə. ə	Electromagnetic r leig-Diesseu Diabatic and Adiabatic Po- tontial Energy Curves	7
	24	Spin T	ut of the Hamiltonian	r D
	0.4	3/1	The Spin-Orbit Operator 10°	י ו
		0.4.1	1 In optimorphic Optimulation	1

		3.4.2	Expression of Spin-Orbit Matrix Elements in Terms of
			One-Electron Molecular Spin-Orbit Parameters 183
			3.4.2.1 Matrix Elements of the $\mathbf{l}_{zi} \cdot \mathbf{s}_{zi}$ Term 183
			3.4.2.1.1 Diagonal Matrix Elements 184
			3.4.2.1.2 Off-Diagonal Matrix Elements 187
			3.4.2.2 Matrix Elements of the $(\mathbf{l}_i^+\mathbf{s}_i^- + \mathbf{l}_i^-\mathbf{s}_i^+)$ Part of
			\mathbf{H}^{SO}
		3.4.3	The Spin-Rotation Operator
		3.4.4	The Spin-Spin Operator
			3.4.4.1 Diagonal Matrix Elements of \mathbf{H}^{SS} : Calculation
			of the Direct Spin-Spin Parameter
			3.4.4.2 Calculation of Second-Order Spin-Orbit Effects . 199
			3.4.4.2.1 π^2 Configuration
			3.4.4.2.2 $\pi^{3}\pi'$ (or $\pi^{3}\pi'^{3}$ and $\pi\pi'$) Configurations 201
		0.45	3.4.4.3 Off-Diagonal Matrix Elements
	0 F	3.4.5	Tensorial Operators
	3.5	Rotati	onal Perturbations
		3.5.1	Spin-Electronic Homogeneous Perturbations
		3.5.2	The S-Uncoupling Operator $\dots \dots \dots$
		3.5.3	$\begin{array}{cccc} 1 \text{ ne } \mathbf{L}\text{-} \text{Uncoupling Operator } \dots $
	26	3.5.4 Defere	$\Pi \sim 2^{\circ}$ Interaction
	3.6	3.5.4 Refere	$nces \dots \dots$
4	3.6 Met	3.5.4 Refere	$nces \dots \dots$
4	3.6 Met 4.1	3.5.4 Refere thods of Variat	$nces \dots \dots$
4	3.6 Met 4.1 4.2	3.5.4 Refere thods (Variat The V	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
4	3.6 Met 4.1 4.2 4.3	3.5.4 Refere thods of Variat The V Appro	II ~ 2.* Interaction 217 nces 227 of Deperturbation 233 ional Calculations 234 an Vleck Transformation and Effective Hamiltonians 237 ximate Solutions 243
4	 3.6 Met 4.1 4.2 4.3 	3.5.4 Refere thods of Variat The V Appro 4.3.1	II ~ 2.* Interaction 217 nces 227 of Deperturbation 233 ional Calculations 234 an Vleck Transformation and Effective Hamiltonians 237 ximate Solutions 243 Graphical Methods for Deperturbation 243
4	3.6 Met 4.1 4.2 4.3	3.5.4 Refere thods of Variat The V Appro 4.3.1 4.3.2	II ~ 2 * Interaction 217 nces 227 of Deperturbation 233 ional Calculations 234 an Vleck Transformation and Effective Hamiltonians 237 ximate Solutions 243 Graphical Methods for Deperturbation 243 Direct Diagonalization Versus Algebraic Approaches 247
4	 3.6 Met 4.1 4.2 4.3 4.4 	3.5.4 Refere thods of Variat The V Appro 4.3.1 4.3.2 Exact	II ~ 2* Interaction 217 nces 227 of Deperturbation 233 ional Calculations 234 an Vleck Transformation and Effective Hamiltonians 237 ximate Solutions 243 Graphical Methods for Deperturbation 243 Direct Diagonalization Versus Algebraic Approaches 247 Solutions 248
4	 3.6 Met 4.1 4.2 4.3 4.4 	3.5.4 Refere thods of Variat The V Appro 4.3.1 4.3.2 Exact 4.4.1	II ~ 2* Interaction 217 nces 227 of Deperturbation 233 ional Calculations 234 an Vleck Transformation and Effective Hamiltonians 237 ximate Solutions 243 Graphical Methods for Deperturbation 243 Direct Diagonalization Versus Algebraic Approaches 247 Solutions 248 Least-Squares Fitting 248
4	 3.6 Met 4.1 4.2 4.3 4.4 	3.5.4 Refere thods of Variat The V Appro 4.3.1 4.3.2 Exact 4.4.1	II ~ 2.* Interaction 217 nces 227 of Deperturbation 233 ional Calculations 234 an Vleck Transformation and Effective Hamiltonians 237 ximate Solutions 243 Graphical Methods for Deperturbation 243 Direct Diagonalization Versus Algebraic Approaches 247 Solutions 248 Least-Squares Fitting 248 4.4.1.1 Linear Least-Squares Fitting 248
4	 3.6 Met 4.1 4.2 4.3 4.4 	3.5.4 Refere thods of Variat The V Appro 4.3.1 4.3.2 Exact 4.4.1	II ~ 2 mineraction 217 nces 227 of Deperturbation 233 ional Calculations 234 an Vleck Transformation and Effective Hamiltonians 237 ximate Solutions 243 Graphical Methods for Deperturbation 243 Direct Diagonalization Versus Algebraic Approaches 247 Solutions 248 Least-Squares Fitting 248 4.4.1.1 Linear Least-Squares Fitting 248 4.4.1.2 Nonlinear Least-Squares Fitting 251
4	 3.6 Met 4.1 4.2 4.3 4.4 	3.5.4 Refere thods of Variat The V Appro 4.3.1 4.3.2 Exact 4.4.1	II ~ 2 mineraction 217 nces 227 of Deperturbation 233 ional Calculations 234 an Vleck Transformation and Effective Hamiltonians 237 ximate Solutions 243 Graphical Methods for Deperturbation 243 Direct Diagonalization Versus Algebraic Approaches 247 Solutions 248 Least-Squares Fitting 248 4.4.1.1 Linear Least-Squares Fitting 248 4.4.1.2 Nonlinear Least-Squares Fitting 251 4.4.1.3 Practical Considerations 255
4	 3.6 Met 4.1 4.2 4.3 4.4 	3.5.4 Refere thods of Variat The V Appro 4.3.1 4.3.2 Exact 4.4.1	II ~ 2.* Interaction217nces227of Deperturbation233ional Calculations234an Vleck Transformation and Effective Hamiltonians237ximate Solutions243Graphical Methods for Deperturbation243Direct Diagonalization Versus Algebraic Approaches247Solutions248Least-Squares Fitting2484.4.1.1Linear Least-Squares Fitting2484.4.1.2Nonlinear Least-Squares Fitting2514.4.1.3Practical Considerations2554.4.1.4Least Squares vs. Robust Estimator Fitting257
4	 3.6 Met 4.1 4.2 4.3 4.4 	3.5.4 Refere thods of Variat The V Appro 4.3.1 4.3.2 Exact 4.4.1	$n \approx 2^{\circ}$ Interaction217nces227of Deperturbation233ional Calculations234an Vleck Transformation and Effective Hamiltonians237ximate Solutions243Graphical Methods for Deperturbation243Direct Diagonalization Versus Algebraic Approaches247Solutions248Least-Squares Fitting2484.4.1.1Linear Least-Squares Fitting2484.4.1.2Nonlinear Least-Squares Fitting2514.4.1.3Practical Considerations2554.4.1.4Least Squares vs. Robust Estimator Fitting2574.4.1.5Types of Programs258
4	 3.6 Met 4.1 4.2 4.3 4.4 	3.5.4 Refere thods of Variat The V Appro 4.3.1 4.3.2 Exact 4.4.1	II ~ 2.* Interaction 217 nces 227 of Deperturbation 233 ional Calculations 234 an Vleck Transformation and Effective Hamiltonians 237 ximate Solutions 243 Graphical Methods for Deperturbation 243 Direct Diagonalization Versus Algebraic Approaches 247 Solutions 248 Least-Squares Fitting 248 4.4.1.1 Linear Least-Squares Fitting 248 4.4.1.2 Nonlinear Least-Squares Fitting 251 4.4.1.3 Practical Considerations 255 4.4.1.4 Least Squares vs. Robust Estimator Fitting 257 4.4.1.5 Types of Programs 258 Comparison Between Effective and True Parameters 261
4	 3.6 Met 4.1 4.2 4.3 4.4 	3.5.4 Refere Variat The V Appro 4.3.1 4.3.2 Exact 4.4.1	II ~ 2.* Interaction 217 nces 227 of Deperturbation 233 ional Calculations 234 an Vleck Transformation and Effective Hamiltonians 237 ximate Solutions 243 Graphical Methods for Deperturbation 243 Direct Diagonalization Versus Algebraic Approaches 247 Solutions 248 Least-Squares Fitting 248 4.4.1.1 Linear Least-Squares Fitting 248 4.4.1.2 Nonlinear Least-Squares Fitting 251 4.4.1.3 Practical Considerations 255 4.4.1.4 Least Squares vs. Robust Estimator Fitting 257 4.4.1.5 Types of Programs 258 Comparison Between Effective and True Parameters 261 Coupled Equations 264
4	 3.6 Met 4.1 4.2 4.3 4.4 4.5 	 3.5.4 Referee Chods of Variat The V Approx 4.3.1 4.3.2 Exact 4.4.1 4.4.2 4.4.2 4.4.3 Typica 	II ~ 2.* Interaction 217 nces 227 of Deperturbation 233 ional Calculations 234 an Vleck Transformation and Effective Hamiltonians 237 ximate Solutions 243 Graphical Methods for Deperturbation 243 Direct Diagonalization Versus Algebraic Approaches 247 Solutions 248 Least-Squares Fitting 248 4.4.1.1 Linear Least-Squares Fitting 248 4.4.1.2 Nonlinear Least-Squares Fitting 255 4.4.1.3 Practical Considerations 255 4.4.1.4 Least Squares vs. Robust Estimator Fitting 257 4.4.1.5 Types of Programs 258 Comparison Between Effective and True Parameters 264 al Examples of Fitted Perturbations 267
4	 3.6 Met 4.1 4.2 4.3 4.4 	 3.5.4 Referee Chods of Variat The V Approvide 4.3.1 4.3.2 Exact 4.4.1 4.4.2 4.4.2 4.4.3 Typica 4.5.1 	$\Pi \sim 2^{\circ}$ Interaction217nces227of Deperturbation233ional Calculations234an Vleck Transformation and Effective Hamiltonians237ximate Solutions243Graphical Methods for Deperturbation243Direct Diagonalization Versus Algebraic Approaches247Solutions248Least-Squares Fitting2484.4.1.1Linear Least-Squares Fitting2484.4.1.2Nonlinear Least-Squares Fitting2554.4.1.3Practical Considerations2554.4.1.4Least Squares vs. Robust Estimator Fitting2574.4.1.5Types of Programs258Comparison Between Effective and True Parameters264al Examples of Fitted Perturbations267An Indirect Heterogeneous Perturbation: NO B ² II ~ C ² II ~277
4	 3.6 Met 4.1 4.2 4.3 4.4 	3.5.4 Refere thods of Variat The V Appro 4.3.1 4.3.2 Exact 4.4.1 4.4.2 4.4.2 4.4.3 Typica 4.5.1	$\Pi \sim 2^{\circ}$ Interaction217nces227of Deperturbation233ional Calculations234an Vleck Transformation and Effective Hamiltonians237ximate Solutions243Graphical Methods for Deperturbation243Direct Diagonalization Versus Algebraic Approaches247Solutions248Least-Squares Fitting2484.4.1.1Linear Least-Squares Fitting2484.4.1.2Nonlinear Least-Squares Fitting2514.4.1.3Practical Considerations2554.4.1.4Least Squares vs. Robust Estimator Fitting2574.4.1.5Types of Programs258Comparison Between Effective and True Parameters261Coupled Equations267An Indirect Heterogeneous Perturbation: NO B ² II ~ C ² II ~D ² \Sigma ⁺ 267A State Mathematic Mathematic Mathematic Mathematic
4	 3.6 Met 4.1 4.2 4.3 4.4 	3.5.4 Refere thods of Variat The V Appro 4.3.1 4.3.2 Exact 4.4.1 4.4.2 4.4.3 Typica 4.5.1 4.5.2 P. 6	$\Pi \approx 2^{-1}$ Interaction217nces227of Deperturbation233ional Calculations234an Vleck Transformation and Effective Hamiltonians237ximate Solutions243Graphical Methods for Deperturbation243Direct Diagonalization Versus Algebraic Approaches247Solutions248Least-Squares Fitting2484.4.1.1Linear Least-Squares Fitting2484.4.1.2Nonlinear Least-Squares Fitting2554.4.1.3Practical Considerations2554.4.1.4Least Squares vs. Robust Estimator Fitting2574.4.1.5Types of Programs258Comparison Between Effective and True Parameters261Coupled Equations267An Indirect Heterogeneous Perturbation: NO B ² II ~ C ² II ~D ² \Sigma ⁺ 267A Strong Multistate Interaction in the NO Molecule269

5	Inte	erpreta	tion of the Perturbation Matrix Elements	275
	5.1	Calcul	lation of the Vibrational Factor	278
		5.1.1	Semiclassical Approximation	279
		5.1.2	Model Potentials	285
		5.1.3	Numerical Potentials and Vibrational Wavefunctions	288
		5.1.4	Some Remarks about "Borrowed" Computer Programs .	291
		5.1.5	Vibrational Assignment by the Matrix Element Method	293
		5.1.6	Homogeneous vs. Heterogeneous Perturbations	305
	5.2	Order	of Magnitude of Electrostatic Perturbation Parameters:	
		Intera	ctions Between Valence and Rydberg States of the Same	
		Symm	etry	307
		5.2.1	Valence and Rydberg States	308
		5.2.2	Different Classes of Valence~Rvdberg Mixing	310
		5.2.3	Electrostatic Perturbations Between Valence and Ryd-	
			berg States	312
		5.2.4	Electrostatic Perturbations between Rydberg States Con-	
			verging to Different States of the Ion	314
	5.3	Order	of Magnitude of Spin Parameters	315
		5.3.1	Diagonal Spin-Orbit Parameters	318
		5.3.2	Off-Diagonal Spin-Orbit Parameters	322
		5.3.3	Spin-Spin Parameters	323
	5.4	Magni	tudes of Rotational Perturbation Parameters	325
	5.5	Pure I	Precession Approximation	327
	5.6	<i>R</i> –Der	pendence of the Spin Interaction Parameters	333
	5.7	Beyon	d the Single-Configuration Approximation	340
	5.8	Identif	fication and Location of Metastable States by Perturbation	
		Effects	s	341
	5.9	Refere	ences	342
6	Tra	nsition	Intensities and Special Effects	347
	6.1	Intens	ity Factors	348
		6.1.1	Interrelationships between Intensity Factors	348
		6.1.2	General Formulas for One-Photon and Multi-Photon Tran-	
			sition Strengths	355
			6.1.2.1 One-Photon Transitions	356
			6.1.2.2 Two-Photon Transitions	359
			6.1.2.3 Three-Photon Transitions	366
			6.1.2.4 Comparisons between Excitation Schemes Involv-	
			ing Different Numbers of Photons	367
	6.2	Intens	ity Borrowing	368
		6.2.1	Perturbations by States with "Infinite" Radiative Life-	
			time; Simple Intensity Borrowing	368
		6.2.2	Multistate Deperturbation; The NO $^{2}\Pi$ States \ldots	375
	6.3	Interfe	erence Effects	378
		6.3.1	Perturbations between States of the Same Symmetry; Vibra	ational-
			Band Intensity Anomalies	380

		629	AA 1 Depturbations, Detational Dranch Intensity Aper	
		0.3.2	$\Delta \Lambda = \pm 1$ Perturbations; Rotational-Dranch Intensity Anol.	na-
		6 9 9	lies	380
		0.3.3	Assignments Based on Pattern-Forming Rotational Quan-	40.9
		C 9 4	tum Numbers	403
		0.3.4	$\Sigma^+ \sim \Sigma^-$ Perturbations; Subband Intensity Anomalies in	40.4
		0 0 F	$\Sigma \leftrightarrow \Pi$ Transitions	404
		0.3.5	F_1 vs. F_2 Intensity Anomalies in ² Σ States	405
	6.4	Forbid	Iden Transitions; Intensity Borrowing by Mixing with a Re-	10.0
	~ -	mote	Perturber	406
	6.5	Specia	al Effects	415
		6.5.1	Differential Power Broadening	416
		6.5.2	Effects of Magnetic and Electric Fields on Perturbations.	418
		6.5.3	Anticrossing, Quantum-Beat, and Double-Resonance Ex-	
			periments	427
		6.5.4	Rydberg States and the Zeeman Effect	439
		6.5.5	Nonthermal Population Distributions; Chemical and Col-	
			lisional Effects	445
		6.5.6	"Deperturbation" at High Pressure and in Matrices	455
		6.5.7	Matrix Effects	458
	6.6	Refere	ences	460
7	Pho	todiss	ociation Dynamics	469
	7.1	Photo	fragmentation	470
	7.2	Direct	Dissociation	471
		7.2.1	Photodissociation: Wigner-Witmer Rules	471
		7.2.2	Photodissociation Cross Sections	476
		7.2.3	Photofragment Branching Ratios for Photodissociation	485
		7.2.4	Photofragment Angular Distribution	486
		7.2.5	Alignment of the Photofragment	491
	7.3	Introd	luction to Predissociation	493
	7.4	Exper	imental Aspects of Predissociation	495
		7.4.1	Measurement of Lifetimes	496
		7.4.2	Measurement of Linewidths	498
		7.4.3	Energy Shifts	503
		7.4.4	Detection of Fragments	505
	7.5	Theor	etical Expressions for Widths and Level Shifts	505
	7.6	The V	Vibrational Factor	510
	7.7	Mullik	en's Classification of Predissociations	514
	7.8	The E	Electronic Interaction Strength	518
		7.8.1	Electrostatic Predissociation	519
		7.8.2	Spin-Orbit Predissociation	520
		7.8.3	Rotational or Gyroscopic Predissociation	521
		7.8.4	Hyperfine Predissociation	521
	7.9	Fano l	Lineshape	522
	7.10	Isotop	e Effects	526
	7.11	Exam	ples of Predissociation	528

		7.11.1 Examples of Spin-Orbit Predissociation
		7.11.2 Examples of Nonadiabatic Predissociation
	7.12	Case of Intermediate Coupling Strength
	7.13	Indirect (Accidental) Predissociation and Interference Effects 538
	7.14	Some Recipes for Interpretation
	7.15	References
8	Pho	toionization Dynamics 551
	8.1	Direct Ionization
		8.1.1 Photoelectron Spectroscopy
		8.1.2 ZEKE Spectroscopy
		8.1.3 Shape resonances $\ldots \ldots 559$
		8.1.4 Cooper minima $\ldots \ldots 561$
	8.2	Experimental Aspects of Autoionization
	8.3	The Nature of Autoionized States
	8.4	Autoionization Widths
	8.5	Rotational Autoionization
	8.6	Vibrational Autoionization
	8.7	Spin-Orbit Autoionization
	8.8	Electronic (or Electrostatic) Autoionization
	8.9	Validity of the Approximations
	8.10	Influence of Autoionization on ZEKE Peak Intensities 591
	8.11	Photoelectron Angular Distribution, Photoion Alignment, and
		Spin Polarization
		8.11.1 Photoelectron Angular Distribution
		8.11.2 Photoion Alignment
		8.11.3 Spin-Polarization
	8.12	Competition between Autoionization and Predissociation \ldots . 604
		8.12.1 Superexcited State Decay Pathways
		8.12.2 Theoretical Treatment
	8.13	Coherent Control of Photofragmentation Product Branching Ratios609
	8.14	References
_	_	
9	Dyn	amics 621
	9.1	Dynamical Concepts, Tools, and Terminology 622
		9.1.1 The Time-Dependent Picture: Terminology 623
		9.1.2 Solution of the Time-Dependent Schrödinger Equation 624
		9.1.3 Frequency Domain Spectra Treated as the Fourier Trans-
		form of the Autocorrelation Function
		9.1.4 Dynamical Quantities
		9.1.5 General Density Matrix Formulation of a Dynamical Ex-
		periment: Excitation, Evolution, and Detection Matrices . 639
		9.1.6 Particle (Photon) vs. Wave Pictures of Spectroscopy 643
		9.1.7 Motion of the Center of the Wavepacket
		9.1.8 Equations of Motion for Resonance Operators 646
		9.1.9 The One-Color Pump-Probe Experiment

	9.1.10	Crafted Pulses for Detailed Manipulation of Molecular	
		Dynamics	355
9.2	From (Quantum Beats to Wavepackets 6	556
	9.2.1	Polarization Quantum Beats	657
	9.2.2	Population Quantum Beats	658
	9.2.3	Nuclear Wavepackets	659
		9.2.3.1 Vibrational Wavepackets	361
		9.2.3.2 Rotational Wavepackets	567
	9.2.4	Rydberg Wavepackets: Kepler and Precessional Periods $% \mathcal{A}$.	668
9.3	Relaxa	ation into a Quasi-Continuum: A Tool for Dimensionality	
	Reduct	tion \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	671
	9.3.1	The Complex-Energy Effective Hamiltonian 6	572
		9.3.1.1 Treatment of Two-State Interaction by Nonde-	
		generate Perturbation Theory $\ldots \ldots \ldots $	574
		9.3.1.2 Treatment by Quasidegenerate Perturbation The-	
		ory: 2×2 Diagonalization 6	575
	9.3.2	Quantum Beats Between Two Decaying Quasi-Eigenstates 6	579
	9.3.3	The Use of the Complex \mathbf{H}^{eff} in Reduced-Dimension Models	681
9.4	Beyon	d the Spectra and Dynamics of Diatomic Molecules \ldots . 6	683
	9.4.1	Basis States	683
	9.4.2	What is Deperturbation Anyway?	684
	9.4.3	Visualization of Dynamics	585
	9.4.4	Beyond Diatomic Molecules: Polyatomic Molecule Vibra-	
		tional Dynamics	687
	9.4.5	Polyads	689
	9.4.6	Creation and Annihilation Operators	690
	9.4.7	Dynamics in State Space	692
	9.4.8	Number Operator	693
	9.4.9	Resonance Energy and Energy Transfer Rate Operators . 6	594
	9.4.10	The Use of Expectation Values of Resonance Operators	
		to Visualize Dynamic Processes	697
	9.4.11	Q and P	700
	9.4.12	Transformation Between Local and Normal Mode Limits . 7	702
		9.4.12.1 Classical Mechanical Treatment	703
		9.4.12.2 The Morse Oscillator $\ldots \ldots \ldots \ldots \ldots $	705
		9.4.12.3 Quantum Mechanical Minimal Model for Two	
		Anharmonically Coupled Local Stretch Morse	706
		0.4.12.4 Transformation between 4 Dependent Forma of	100
		the Normal and Local Mode Basis Sots	710
		0.4.12.5 Transformation between 6 Parameter Forms of	110
		the Normal Mode and Local Mode \mathbf{H}^{eff} 7	714
	9.4.13	From Quantum Mechanical \mathbf{H}^{eff} to Classical Mechanical	
	-	$\mathcal{H}(\mathbf{Q},\mathbf{P})$	717
	9.4.14	Polyatomic Molecule Dynamics	733

	9.4.15 Inter-System Crossing, Internal Conversion, and Intramolec-	
	ular Vibrational Distribution	733
9.5	References	'36

List of Tables

1.1	Typical Ground State Molecular Constants (Huber and Herzberg, 1979)	5
2.1	Direction Cosine Matrix Elements for $\Delta J = 0^a$	77
3.1	Definitions and Approximations Associated with Different Types of Potential Energy Curves	95
3.2	Off-Diagonal Matrix Elements of Total Hamiltonian between Un- symmetrized Basis Functions	97
3.3	Hund's Cases	112
3.4	Spin Eigenfunctions ^{<i>a</i>} of \mathbf{S}^2 for $\Sigma = S$	151
3.5	Comparison between Diabatic and Adiabatic Parameters	171
3.6	Comparison between Two Types of Deperturbation of the G and $I^{1}\Pi$ States of SiO (in cm ⁻¹)	176
3.7	Comparison between Some Calculated and Observed Values for the First-Order Contribution to the Spin-Botation Constant	194
3.8	Semiempirical Expressions for Effective Spin-Spin Constants: Va- lence States of Homonuclear Molecules	200
3.9	${}^{2}\Pi(\pi) \sim {}^{2}\Sigma^{+}(\sigma)$ Interaction Matrix ^{<i>a</i>}	219
4.1	Mixing Coefficients for e -Parity Levels of the ¹⁴ N ¹⁶ O B ² $\Pi \sim C^{2}\Pi \sim L^{2}\Pi \sim D^{2}\Sigma^{+}$ Perturbation ^{<i>a</i>}	271
51	Calculated Electronic Factors for Trial Vibrational Numberings	
0.1	of the $e^{3}\Sigma^{-}$ Perturber of SiO A ¹ Π (cm ⁻¹)	300
5.2	Perturbation Parameters for the BaS Molecule	305
5.3	Comparison of Spin-Orbit Coupling Constants of Bydberg and	000
0.0	Valence States (cm^{-1})	309
5.4	Some Values of the Electrostatic Parameter	313
5.5	Dependence on n^* of the Electrostatic Perturbation Parameter .	314
5.6	Spin-Orbit Constants of Atoms and Ions $(cm^{-1})^a$	316
5.6	(Continued). \ldots	317
5.7	Spin-Orbit Constants for Isovalent Molecules $(cm^{-1})^a$	321
5.8	Electronic Perturbation Parameters in the Single Configuration	-
	Approximation ^{a,b}	324

$5.9 \\ 5.10$	Values of the Atomic Spin-Spin Parameter η (cm ⁻¹) ^{<i>a</i>} Effective Spin-Spin Constants for ${}^{3}\Sigma^{-}$ States of π^{2} Configurations	324
	(cm^{-1})	326
5.11	Some Spin-Orbit and Orbital Perturbation Matrix elements	327
6.1	<i>M</i> –Independent $\langle \Omega' J' \boldsymbol{\alpha} \Omega J \rangle$ Direction Cosine Matrix Elements .	391
6.2	Rotational Linestrengths for Case (c) $\frac{1}{2} - \frac{1}{2}$ Transitions	397
6.3	Rotational Linestrengths for ${}^{3}\Sigma^{-} - {}^{1}\Sigma^{+}$ Transitions	399
6.4	The NO $B^2\Pi_{1/2} - X^2\Pi_{1/2}$ Transition in the Gas Phase and in	
	Inert Gas Matrices	456
7.1	Correlation between molecular and atomic wave functions for HX	
	at $R = \infty$ (X=Halogen) ^c	475
7.2	Order of Magnitude of Predissociation Rates	499
7.3	Well-Characterized Weak Predissociations	500
7.4	Well-Characterized Strong Predissociations	501
8.1	Minimum n -values Required for Different Types of Autoionized	
0.1	States	573
82	Typical Examples of Autoionization Linewidths	578
8.3	The asymmetry parameter β for each angular momentum trans-	0.0
0.0	for j_i	596
84	The geometrical factors for the β parameter for a Σ ion-core (from	550
0.1	Table 1 of Thiel 1083)	500
	Table 1 of Thiel, 1900)	099

List of Figures

1.1	A diatomic molecule	4
1.2	A typical vibrational band of an electronic transition	7
1.3	A bandhead	9
1.4	The lines in the R and P branches $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	10
1.5	Lower and Upper State Rotational Combination Differences	12
1.6	Vibrational bands linked via a common vibrational level	14
1.7a	A Loomis-Wood plot of an NbO $d^2\Delta_{3/2} - a^2\Delta_{3/2}$ sub-band	16
1.7b	A Loomis-Wood plot of an NbS ${}^{2}\Delta_{5/2} - {}^{2}\Delta_{5/2}$ sub-band	17
1.7c	A one-sided Loomis-Wood plot	18
1.8	A vibrational progression of $R(J-1)$, $P(J+1)$ doublets in an I ₂	
	$B0_u^+ - X^1 \Sigma_a^+ (v' = 58, v'' = 93 - 98)$ dispersed fluorescence spectrum	20
1.9	Collision induced rotational relaxation	21
1.10	REMPI-TOF permits selective simultaneous recording of sepa-	
	rate spectra for different cluster species or for different isotopomers	23
1.11	Lower state rotational combination differences for two consecu-	
	tive vibrational levels.	25
1.12	Lower state rotational combination differences for two consecu-	
	tive members of the same branch	25
1.13	Velocity Modulation Spectra (VMS)	30
1.14	Simultaneously recorded REMPI-TOF spectra of several isotopomera	s 32
1.15	Dispersed Fluorescence Spectrum of AgAu	33
1.16	v''-dependent $R(J-1): P(J+1)$ intensity anomalies	35
1.17	Level diagrams for two-color double resonance experiments	36
1.18	PHOFEX Spectra of Ketene	40
2.1	A comparison of the SiO $\mathrm{H}^{1}\Sigma(0,0)$ and bands	62
2.2	Pictorial evidence that a perturbation affects the upper rather	
	than lower electronic state.	63
2.3	Perturbations and predissociations affect absorption and emission	
	line intensities in quite different ways	64
2.4	Relationships between molecule-fixed (xuz) and space-fixed (XYZ)	
	axis systems.	83
3.1a	Natural rotational quantum numbers for Hund's cases (a) and (b).	118
3.1b	(b) Plot of $T_{v,J} - BN(N+1)$	119

3.2	e/f and total parity labeling of ${}^{3}\Sigma^{+}$ and ${}^{1}\Pi$ levels	146
3.3	Branching diagram shows the number of states of each spin mul-	
	tiplicity	150
3.4	Electrostatic valence~Rvdberg perturbations	162
3.5	Diabatic and adiabatic potential curves	164
3.6	Variation of ΛC_{-} for the mutually interacting b' and $c'^{1}\Sigma^{+}$ states	101
5.0	variation of ΔG_v for the initially interacting b and c Δ_u states of N.	166
0 7	2Λ and 2Π material ansatz and 3Π material measures of NO	167
3.7	Δ and Δ in potential energy curves of NO	107
3.8	Ab initio adiabatic potential curves with double minima for the	4 - 0
	$^{+}\Sigma_{g}^{+}$ states of H_{2}	173
3.9	Ab initio $\partial/\partial R$ and $\partial^2/\partial R^2$ matrix elements between the E, F	
	and G, K adiabatic states of H_2	174
3.10	Perturbations between the $6p\pi$ and $11p\pi$ $^{1}\Pi_{u}$ Rydberg states of	
	$\mathrm{H}_2.\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .$	175
3.11	Potential energy curves for the $1s\sigma_g$ and $2p\sigma_u$ states of H_2^+	179
3.12	Field-dressed potential energy curves for H_2^+	180
3.13	Correlation diagram between case (a) and case (c)	189
3.14	Electronic coordinate system.	192
3.15	Σ states derived from π^2 and $\pi^3 \pi'$ configurations.	199
3.16	Perturbations between $\Omega = \frac{3}{2}$ and $\frac{1}{2}$ sublevels of the ¹⁵ N ⁸⁰ Se	
0.10	$X^2\Pi_{-}$ state	213
3.17	Anomalous A-doubling in the $X^2\Pi$ state of $^{15}N^{80}Se$	214
3 18	Anomalous A-doubling in the CS ⁺ $\Delta^2\Pi_{\rm c}$ state	211
3 10	Potential anargy gurrog of the excited states of CO	210
2.19	I obtained energy curves of the excited states of 00	217
3.20	Λ -doubling of Π states and spin-doubling of Σ^{+}	220
41	Plot of effective ΛB -value versus $I(I+1)$ for the Si ¹⁶ O e ³ $\Sigma^{-}(v-1)$	
T . I	$(v = 0) \sim A^{1}\Pi(v = 2)$ perturbation	245
12	The ¹⁴ N ¹⁶ O B ² II ($w_{\rm p} = 24$) at C ² II ($w_{\rm p} = 6$) at I ² II ($w_{\rm p} = 5$) at	240
4.4	The N O B II $(b_B = 24) \approx 0$ II $(b_C = 0) \approx 1$ II $(b_L = 0) \approx 1$ $D^2 \Sigma (b_L = 6)$ porturbation	270
	$D \simeq (v_D = 0)$ perturbation	210
51	Isotope effect on a vibrational level	277
5.2	Bound level in a notential	280
53	The regular Airy function $Ai(-Z)$	281
5.4	Phase space mapping for the harmonic model	201
5.5	Somiclassical calculation of vibrational overlap integrals	202
0.0 E 6	Two displaced however accillators	204
5.0	Two displaced narmonic oscillators. \dots	201
5.1	Perturbations in the ²⁵ S1 ²⁰ O and ²⁶ S1 ²⁰ O A ² II state	293
5.8	Level shifts, reduced term values, and effective B -values for ho-	00 -
-	mogeneous versus heterogeneous perturbations	297
5.9	Potential energy curves for the $X^{T}\Sigma^{+}$, $a^{3}\Pi_{i}$, $A^{r}\Pi$, and $A^{T}\Sigma^{+}$	
	electronic states of the BaS molecule	303
5.10	Interleaved $A'^{\dagger}\Pi$ and $a^{3}\Pi$ levels of BaS	304
5.11	Calculated ${}^{2}\Sigma^{+}$ (3s σ) state of CH	310
5.12	Rydbergized and complementary ${}^{3}\Pi_{u}$ states in O ₂	311
5.13	CO $a^3 \Pi_1 \sim a'^3 \Sigma_1^+$ spin-orbit parameters	325

5.14 5.15	<i>R</i> -variation of the spin-orbit constant for the CO $a^3\Pi$ state <i>R</i> variation of the spin orbit constant for the PO $X^2\Pi$ state	333
5.16	Diagonal $A(R)$ and off-diagonal spin-orbit $(\langle AL^+ \rangle)$ and orbital	<u> </u>
	$(\langle L^+ \rangle)$ perturbation parameters for the OH X ² II state	335
5.17	Correlation diagram showing the effect of an electric field on atomic $L - S$ terms	336
5 18:	a The diagonal and off-diagonal spin-orbit matrix elements as a	000
0.100	function of the NO^+ internuclear separation	339
5.18	bThe dependence of the $\langle {}^{3}\Pi \mathbf{L}_{+} {}^{3}\Sigma^{+} \rangle$ matrix element of NO ⁺ on	
	the internuclear separation.	339
6.1	Parity and e/f labels for the rotational branches of a one-photon	
0	${}^{1}\Pi - {}^{1}\Sigma^{+}$ transition.	360
6.2	Allowed two-photon pathways via the NO $A^2\Sigma^+$ virtual state for	
	the two-photon O_{1e2e} and O_{1f2f} rotational branches	365
6.3	Radiative decay rates $(\Gamma = 1/\tau)$ for single <i>e</i> -parity rotational	
	levels of CO $A^1\Pi$ ($v = 0$)	372
6.4	Mixing fractions in ³⁰ Si ³² S A ¹ Π ($v = 5$)	373
6.5	Deperturbed potential curves for the mutually interacting $^{2}\Pi$ va-	
	lence and Rydberg states of NO	376
6.6	The vanishing of an entire band as a result of a homogeneous	
	perturbation	382
6.7	Schematic illustration of intensity interference effects	385
6.8	Calculated perturbed and deperturbed intensities for N ₂ $^{1}\Pi_{u} \leftarrow$	
	$X^{1}\Sigma_{g} (v=0)$ transitions	387
6.9	Natural rotational quantum numbers for the NO $4f$ Rydberg complex	401
6 10	Variation of the CO $a^3\Pi$ radiative lifetime versus I and Ω	410
6 11	The $a^{3}\Pi_{0} - X^{1}\Sigma^{+}(0,0)$ sub-band of CS	413
6.12	Level scheme for optical-optical double resonance on BaO $C^1\Sigma^+ \leftarrow$	110
0.12	$A^1\Sigma^+ \leftarrow X^1\Sigma^+$	416
6.13	OODR differential power broadening in BaO.	417
6.14	Effect of magnetic field and pressure on the CN $B^2\Sigma^+ - X^2\Sigma^+(0,0)$	$R^{}$
	branch lines.	420
6.15	Calculated Zeeman patterns for the perturbed rotational levels	
	of CN $A^2\Pi (v = 10) \sim B^2 \Sigma^+ (v = 0)$.	422
6.16	g_J -values for ⁸⁰ Se ₂ B0 ⁺ _u	426
6.17	Difference in lifetime for σ^+ versus σ^- polarized fluorescence \ldots	426
6.18	$H_2 W^1 \Sigma_q^+ \sim i^3 \Pi_q$ anticrossing spectra.	428
6.19	Stark quantum beats in BaO $A^{1}\Sigma^{+}(v=2, J=1)$	434
6.20	BaO $C^{1}\Sigma^{+}-a^{3}\Sigma^{+}$ (2,12) fluorescence excited by OODR	439
6.21	Angular Momentum Coupling Schemes for Rydberg States of a	
	Diatomic Molecule with a closed-shell Molecular-Ion-Core	441
6.22	Resolved Rotational (N^+) and Zeeman (m_l) Structures in the	
	NO $15f - A^2\Sigma^+$ Electronic Transition	442

6.23	The Zeeman Patterns of $n = 6 - 30 nf(N^+ = 3)$ complexes of NO in a 1 Tesla Magnetic Field	442
6.24	Calculated $I \rightarrow I + 1$ rate constants for CaO +N ₂ O collisions	452
6 25	Comparison of observed and deperturbed ΔG values for the NO	102
0.20	$B^2\Pi_{1/2}$ state with ΔG values observed in a 5 K Ne matrix	457
6.26	Schematic of CN $A^2\Pi \leftrightarrow X^2\Sigma^+$ relaxation in a neon matrix	459
6.27	NO $a^4\Pi \rightarrow B^2\Pi$ intersystem crossing mechanism in Ar at 5 K	460
0.21	To a H / D H morsystem crossing meenament in Ai at o K.	400
7.1	Transition from (A, S) to (J_1, J_2) coupling for the ² P + ² S sepa-	
	rated atom states. \ldots	474
7.2	Schematic description of the dissociation channels $Br^+({}^{3}P_{J}) + H({}^{2}S_{J})$	5)479
7.3	Reflection approximation	480
7.4	Potential energy curves of OH and Calculated photodissociation	
	cross sections	481
7.5	Total photodissociation cross sections, $\sigma(E)$, for HCl	482
7.6	Schematic relativistic adiabatic potential curves of HI	483
7.7	X * / (X * + X) photofragment branching ratios that result from	
	photodissociation of HBr and HI molecules	484
7.8	Coordinate system defining the direction of the incident radiation	
	$(+Z)$ and location of the photofragment detector \hdots	489
7.9	Intensity distributions for three important values of β : 2, 0, and	
	-1	489
7.10	Asymmetry parameters, β	491
7.11	M_J -sublevel populations for $J = 2$. (a) no polarization; (b)	
	orientation; (c) alignment $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	492
7.12	Predissociation by rotation	494
7.13	Predissociation	494
7.14	Measured lifetimes of the CH $A^2\Delta$ state	497
7.15	The diffuse 15-0 Band of the B 0_u^+ – X 0_g^+ system of ⁷⁸ Se ₂	502
7.16	A Lorentzian lineshape	502
7.17	$\Delta^2 G(v)$ differences in the O ₂ B ³ Σ_u^- state	504
7.18	Differential oscillator strengths	507
7.19	Pictorial descriptions of the phase difference between bound and	
	continuum vibrational wavefunctions	512
7.20	Example of an outer-limb curve crossing	514
7.21	Variation of linewidth versus N in the OD $A^2\Sigma^+$ state	515
7.22	Schematic illustration of the variation of Γ versus v and J	516
7.23	Example of an inner-limb curve crossing	517
7.24	The potential energy curves of CH	518
7.25	Example of ² II \sim ² II Rydberg \sim valence electrostatic interaction	
	m NO	520
7.26	Fano profiles for $q < 0, q = 0, q > 0$, and $q = \infty$ (and $-\infty$)	522
7.27	The potential energy curves for some excited states of H_2	524
7.28	Fano lineshape in H_2	525
7.29	Reduced mass dependence of the reduced (dimensionless) linewidth	.527

7.30	Jet absorption spectra of CO isotopomers in the region from	
	109100 to 109600 cm ^{-1}	529
7.31	The potential energy curves of OH	530
7.32	The potential energy curves of O_2^+	531
7.33	Vibration dependence of the observed and calculated predissoci-	
	ation rates for the $C^2\Sigma_u^+$ state of ${}^{14}N_2^+$, $({}^{14}N^{15}N)^+$, and ${}^{15}N_2^+$	532
7.34	Calculated adiabatic potential energy curves for the $B^2 \Sigma_u^+$ and	
	$C^2\Sigma_u^+$ states of N_2^+	532
7.35	Vibrational wavefunctions for the N_2^+ $C^2 \Sigma_u^+ v = 4$ level and the	
	isoenergetic continuum of $B^2\Sigma_u^+$. Isotopic dependence in the ac-	
	cumulation of $\langle \chi_E^{\rm B} W_{\rm BC}^e(R) d/dR \chi_4^{\rm C} \rangle$ vibronic integral	534
7.36	Predissociation for a pair of states intermediate between adiabatic	
	and diabatic coupling limits	537
7.37	Variation of Γ versus $(H^e)^2$	539
7.38	The potential energy curves of some states of N_2	541
7.39	Schematic mechanism of indirect or accidental predissociation	541
7.40	Comparison between the Budó-Kovács and coupled equations	
	models for indirect predissociation	542
7.41	Linewidth variation in the OH $A^2\Sigma^+(v=8)$ level for the resolved	
	F_1 and F_2 spin components	544
81	A Photoelectron Spectrum (PES) of HCl	553
8.2	Differential cross sections for $p \rightarrow d$ and $p \rightarrow s$ transitions in both	000
0	discrete and continuous spectra	554
8.3	Photoelectron spectrum of NO	556
8.4	Mechanism and timing of a ZEKE spectroscopy experiment	558
8.5	A pair of Rydbergized and complementary states in O_2	562
8.6	Vibrational state branching ratio for the photoionization of N_2 .	563
8.7	The 3d bound orbital and two examples of ϵf continuum wave-	
	functions	563
8.8	Relationship between full width at half maximum (FWHM) of	
	individual lines and band contours.	566
8.9	Absorption spectrum showing the autoionization of the N ₂ Hop-	
	field Rydberg series.	567
8.10	Hydrogenic radial wavefunctions for successive $2p$ and $3p$ Ryd-	
	berg orbitals	570
8.11	Schematic illustration of rotational autoionization in $\mathit{para}\text{-}\text{H}_2~$	575
8.12	Relative photoionization cross section of <i>para</i> –H ₂ , at 78 K, in the	
	region of the ionization threshold	577
8.13	Schematic illustration of vibrational autoionization of the H_2	
	$np\pi_u {}^1\Pi_u$ state	578
8.14	Photoionization cross-section of N_2	580
8.15	Photoionization of HI showing spin-orbit autoionization	584
8.16	Energy level diagram for a ${}^{2}\Pi_{i}$ state $\ldots \ldots \ldots \ldots \ldots$	585
8.17	Calculated lifetimes of rotational levels of HCl $n = 93$	585

8.18	Schematic illustration of the electrostatic autoionization of the	
	${}^{1}\Pi_{u}$ Rydberg states converging to the $A^{2}\Pi_{u}$ state of N_{2}^{+} by the	
	continuum of the $X^2 \Sigma_g^+$ state	587
8.19	The phase shift induced by the electric field of the core ion in a	
	nonhydrogenic atom	591
8.20	PES of HCl	593
8.21	ZEKE-PFI spectrum of HCl	594
8.22	Photoion vibrational branching fractions and photoelectron asym-	
	metry parameters for $CO^+ X^2 \Sigma^+ \dots \dots \dots \dots \dots$	599
8.23	Spectra illustrating various decay pathways for the $H_2 D^1 \Pi_u v =$	
	8 level	605
8.24	Potential energy curves of HCl (solid curves) and HCl ⁺ (dashed	
	curves).	606
8.25	Four spectra which sample different decay pathways for superex-	
	cited states of HCl	607
8.26	Calculated photoionization of HCl into the HCl ⁺ $X^2\Pi$ state	608
8.27	Potential energy diagram of Na ₂ displaying the control mecha-	
	nism for direct ionization and dissociative ionization of Na_2	611
8.28	Ratio of atomic to molecular products (Na^+/Na_2^+) as a function	
	of the delay between the 340-nm pump and 540-nm probe pulses.	611
8.29	Detection of ionization (HI ⁺) and dissociation.	612
8.30	Potential energy diagram of HI showing the control mechanism	
	for ionization vs. dissociation.	613
8.31	Calculated phase lag in the region of the 5d δ resonance of HI	614
9.1	Motion of a wavepacket in coordinate space	625
9.2	Relationships between features in the autocorrelation function.	
0	$\langle \phi \phi(\tau) \rangle$, and lineshapes in the frequency domain spectrum, $I(\omega)$	628
9.3	Photodissociation Spectra of ABC.	634
9.4	Dependence of the amplitude and phase of the survival and trans-	
	fer probability on mixing angle in $\Psi_I(0)$	638
9.5	The phase of a vibrational quantum beat	642
9.6	Wavepacket Interferometry in I_2	651
9.7	Vibrational wavepackets launched from a $v'' > 0$ initial state	662
9.8	Femtosecond Transition State (FTS) spectroscopy of I ₂	664
9.9	The radial probability distribution of an $n \approx 30$ wavepacket in a	
	hydrogen atom	668
9.10	Level anticrossings between states with complex energies in the	
	strong and weak coupling limits	682
9.11	Comparison of survival probability to the resonance energy	699
9.12	Contributions of DD1 and 3,245 to the transfer rate and accu-	
	mulated population in mode 4 of HCCH	701
9.13	Phase space trajectories and polyad phase spheres for polyad $N =$	
	$3 \text{ of } H_2O$	721
9.14	Nested invariant tori and a surface of section	722

9.15	Evolution of the polyad phase sphere from the local mode to the	
	normal mode limit	725
9.16	Polyads $N = 1$ through $N = 5$ for H ₂ O	726
9.17	The probability densities, $ \psi ^2$, in the top row are found to re-	
	semble the configuration space trajectories in the bottom row	726
9.18	Surfaces of section for the HCCH $[N_b, l] = [4, 0]$ and $[8, 0]$ polyads	730
9.19	Overview of the phase space and configuration space dynamics	
	associated with the HCCH $[N_b = 22, l = 0]$ polyad $\ldots \ldots \ldots$	731
9.20	The <i>cis</i> -bend and <i>trans</i> -bend normal mode frequencies of HCCH	
	tune into resonance at $N_b \approx 10$	732